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Charged particles in external fields as physical examples of quasi-exactly-solvable meodels:
A unified treatment

Chun-Ming Chiang"* and Choon-Lin Ho'
YDepartment of Physics, Tamkang University, Tamsui 25137, Taiwan
2Kuang Wu Institute of Technology, Peitow, Taipei 112, Taiwan
{Received 30 October 2000; published ¢ May 2001)

We present a unified treatment of three cases of quasi-exactly-solvable problems, namely, a charged particle
moving in Coulomb and magnetic fields for both the Schrodinger and the Kiein-Gordon case, and the relative
motion of two charged particies in an extemal oscillator potential. We show that all these cases are reducible
1o the same basic equation, which is quasiexactly solvable owing to the existence of a hidden si, algebraic
structure. A systematic and unified algebraic solution to the basic equation using the method of factorization is
given. Analytical expressions of the energies and the allowed frequencies for the three cases are given in terms
of roots of one and the same set of Bethe ansatz equations.

DOI: 10.1103/PhysRevA.63.062105

I. INTRODUCTION

It is well known that exact solutions are hard to come by
in physics (in fact, in all sciences}). Many exactly solvable
examples presented in textbooks of physics are only excep-
tions. More often than not they serve only as paradigms to
ustrate the fundamental principles in their respective fields,
For real problems, approximation methods are indispensable.

Recently, it was found that for certain gquantum-
mechanical problems analytical solutions are possible, but
only for paris of the energy spectra and for particular values
of the fundamental parameters. First it was realized that the
problem of two electrons moving in an external oscillator
potential belongs to this class of problems [1,2]. Later, it was
discovered that the two-dimensional Schrodinger equation of
an electron moving in an attractive/repulsive Coulomb field
and a homogeneous magnetic field also share similar charac-
teristics [3—5). More recently, the latter probiems were ex-
tended to the two-dimensional Kiein-Gordon {6} and the
Dirac equation [7].

The essential features shared by all these above examples
are as follows. The differential (Schrodinger, Klein-Gordon,
and Dirac) equations are solved according to the standard
procedure. After separating out the asympfotic behaviors of
the system, one obtains an equation for the part that can be
expanded as a power series of the basic variable. It is at this
point that deviation from the standard exactly solvable cases
appears: instead of the two-step recursion relations for the
coefficients of power series so often encountered in exactly-
solvable problems, one gets threc-step recursion relations.
The complexity of the recursion relations does not allow one
to do anything to guarantee normalizability of the eigenfunc-
tions. However, on¢ can imposc a suffictent condition for
normalizability by terminating the series at a certain order of
the power of the variable, i.e., by choosing a polynomiai. By
doing so ome could obtain exact solutions to the original
problem, but only for certain gnergies and for specific valugs
of the parameters of the problem. These parameters are the
frequency of the oscillator potential and the external mag-
netic fields.
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It was soon realized [8,7] that the above gquantum-
mechanical problems are just examples of the so-called
quasi-exactiy-solvable models, recently discovered by physi-
cists and mathematicians [9-16]. This is a special class of
quantum-mechanical problems for which several eigenstates
can be found explicitly. The reason for such quasiexact solv-
ability is usually the existence of a hidden Lie-algebraic
structure {10-14]. More precisely, a quasi-exactiy-solvable
Hamiltonian can be reduced to a guadratic combination of
the generators of a Lie group with finite-dimensional repre-
sentations.

In this paper we would like to show that three of the four
problems mentioned in the second paragraph, namely, (a)
charged particle moving in Coulomb and magnetic fields (the
Schrodinger case}, {b) charged particle in Coulomb and mag-
netic fields (the Klein-Gordon case}, and (c) relative motion
of two charged particles in an external oscillator potential,
can be given a unified treatment. We shall show that all these
cases are simply variations of the same basic equation [Eq.
(10) below}, which is quasiexactly solvable owing to the
exisience of a hidden sl; algebraic structure. This algebraic
structure was first realized by Turbiner for the case of two
electrons in an oscillator potential [8]. We shall give a sys-
termnatic and unified algebraic solution to the basic equation
using the method of factorizaiion presented in [7]. Our
method allows one to find the analytic expressions of the
energies, and the allowed frequencies once and for all in
terms of the roots of a set of Bethe ansatz equations. This is
in sharp contrast to the method of solving recursion relations,
which must be performed for each and every order of the
polynomial part in order to get these expressions.

We will define the three problems in Sec. IL In Sec, I
the basic equation is solved by the method of factorization.
The Lie-algebraic struncture underlying the basic equation is
discussed in Sec. IV. Section V then concludes the paper.

II. BRIEF DESCRIPTION OF THE THREE PROBLEMS

In this section we shall give a brief description of the
three cases of charged particles moving in external fields,
which we will consider in the rest of the paper. Following

©2001 The American Physical Society
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the previous works, we adopt the atomic units h=m=g=1
in the cgs system.

A. Electron in Coulomb and magnetic fields:
The Schradinger case

This general case was considered in {3-5,7). The Hamil-
tonian of a planar electren in a2 Coulomb field and a constant

magnetic ficld B=Bz (B>0) along the z direction is

H_i +1 : z
_zp CA s (1)

r

where ¢ is the speed of light, Z (positive or negative) is the
charge of the source of the Coulomb field, and the vector
potential A is A=4:BXr in the symmetric gauge.

An ansatz of the eigenfunction in the polar coordinates
(r,8) is

uir)
Y{rt)=——exp{imfB—iEt), m=0,x1,£2, .., .

vr
2

Here m is the angular momentum quantum number and E is
the energy. The radial wave function () satisfies the radial
Schrodinger equation

v At tf o, 11 22, %, ¢ y=0
37273 m N wprtt - maoy |u{r)=0,
(3)

where w; = 5/2c is the Larmor frequency.

B. Electron: in Coulomb and magnetic fields:
The Klein-Gordon case

In [6] the above problem is extended to the Klein-Gordon
case, assumning the same ansatz of the wave function as in
Eq. (2). Now the radial wave function u(r) obeys the fol-
lowing equation:

[1d2 1(2 z 1)1 t ,, EZ E* ¢

Zar? 2

~— el
P2 o 2 2

*mw;{}u(r)‘—'-‘i). )

But now, as noted in 6}, the quantum number m must satisfy
the relation

ZZ
mi- "‘2‘> 0 (3)
(44

in order for the solutions to make sense. This relation forbids
the existence of the s states (m=07}.

PHYSICAL REVIEW A 63 0621065

C. Relative motion of two electrons in an external
oscillator potential

In [2] the author considered the problem of a three-
dimensional Schrodinger equation for two electrons (inter-
acting with Coulomb potentizl) moving in an external
harmonic-oscillator potential characterized by frequency
@y, . The Hamiltonian is

1 1
H“—-—V2+ mmr,-—i-v% wwr§+| =

(6}
The total wave function is factorizable into three parts that
depend, respectively, only on the center of mass, the relative
coordinates, and the spins of the electrons. The wave func-
tion of the center-of-mass coordinates satisfies the Schro-
dinger equation of a three-dimensional oseillator, the solu-
tion of which is well known. The spin part dictates the parity
of the wave function of the relative motion. The Schrddinger
equation for the relative motion is

——V2+1m2r2+ =1 p(r) = €' ¢(r), )

where r=r,~1;, @, ~w, /2, and € is one-half of the
eigenenergy of the relative motion {in the notation of [2]).
By assuming an ansatz of the wave function in the spherical
coordinates of the form

H(ry=—— ( D Y imlF), (8)

where ¥, are the spherical harmonics, we get from Eq. (7)
the fellowing equation

14 H1+1) 1 122 i
-2";;5'——'—"2-""';3-'5&) —E'—‘FE u(r)=0. 9

We note here that if we change the sign of the 1/r term in
the last equation, we get an equation that describes the rela-
tive motion in the oscillator potential of an electron and a
positron. This case will be included in our discussions.

IIL THE BASIC EQUATION AND THE METHOD OF
FACTORIZATION

After making some appropriate changes of the param-
eters, we can recast Eqgs. (3), (4), and (9) into the same basic
form, namely,

18 Hy-DI 1

2pt 4 —?-{- a]u(r)=0.
(10)

Here 8, v, and w (y,w>0) are real parameters, and « is the
eigenvalue of Eq. (10). Explicit expressions of these param-
eters for the three cases will be given in the next section.
That this equation is quasiexactly solvable means that, given

062105-2




-

CHARGED PARTICLES IN EXTERNAL FIELDS AS. ..

a fixed value of the parameter  and B (or w), the equation
can be solved exactly only for a particular set of parameter o
(or B) and eigenvalue a.

Now we make the following change of variables: x
=\2wr and b=+2/wf. Then Eq. (10} becomes

b a -0 )
- -4—--+;+; u{x)=0. {11

The values of @ and & in Eq. (11) may be fourd by means of
a method closely resernbling the method of factorization in
nonrelativistic quantum mechanics [7]. We shall discuss this
method briefly below. Let us assume

u(x)=x%exp(~ x4/4)Q{x), (12)

where () is a polynomial. As mentiored in the Introduction,
the assumption that ) be a polynomial is only a sufficient
condition for normalizability of the eigenfunction u(x). Sub-
stituting Eq. (12) into Eq. {11), we have

[d2 (27 d ( b)
Fl——x|—+le+—~
dx x

where e=a/w~(y+1/2).

a2\ x
It is seen that the problem of finding the spectrum of Eqg.
(13) is equivalent to determining the eigenvaiues of the op-
erator

gix)=0, {13

x| ———-. (14)

We want to factorize the operator (14) in the form
H=dla+te. (15)

The eigenfunctions of the operator H at =0 must satisfy the
equation

ap=0. (16)

Suppose polynomial solutions exist for Eg. (13), say Q
=1l;.,(x—x,), where x, are the zeros of O and » is the
degree of @ (we mention here that the order n in this paper is
equal to (n~1) in [2-6] where x"~! is the highest order
term in ). Then the operator & must have the form

13

a 1

a=5;-—k§l pye an

and the operator aT has the form

é 2 -
atem e T e .
ax x EELx—xg

(18)

Substituting Eqs. (17) and (18) into Eq. (15) and then
comparing the resuit with Eq. (14), we obtain the following
set of equations for the zeros x; {the go-called Bethe ansatz
equations [137):

PHYSICAL REVIEW A 63 062105

2y A
——x—2
Xk * %xj“

xk=0, k=1,...,n (19)
as well as the two relations,
n
b==27k2 x;t, e=n. (20)
=1

Summing all the » equations in Eq. (19) enables us to rewrite
the first relation in Eq. (20) as

n
b = E Xy (2 1)
k=1
From the second relation in Eq. (20), one gets

3l 22)

1
s=n=afw-—('y+——

For n=1,2 the zeros x; and the values of the parameter 4
for which solutions in terms of the polynomial of the corre~
sponding degrees exist can easily be found from Egs. {(19)
and (21) in the form

n=1, x,;=*xy2%, b=t\/§_;

n=2, x1==—x2=\f2—m, h=0,

X, =29y, Xp==(1+Ay+1)/2,
b=x\2(dy+1). (23)

For general values of # it is difficult to solve for the x)’s
from Eq. (19) and one must resort to numerical methods. But
some properties of the solutions are known. First, from Eq.
{19) we see that if {x,} is a set of solutions to Eq. (19), then
s0 is { —x;}. This means, by Eq. (21}, that for every possible
value of b, there is a corresponding negative value —b. Sec-
ond, as we shall see later in Sec. IV, the number of values of
b forafixed order mis n+1.

We now apply the above results to the three cases men-
tioned previously, The essential step is to solve the Bethe
ansatz equations (19) for the roots x;’s for each order n.
Then from Eqs. (21) and {22) we obtain the values of the
allowed pair of frequency and energy. Here we will give
only the general expressions. The reader can easily repro-
duce the expressions for the two simplest orders (ie., n=1
and 2) given in [2-6] by substituting Eq. {23} into the gen-
eral expressions.

A. Electyon in Coulomb and magnetic fields:
The Schrodinger case

In this case, y=|m|+1/2, w=w;, B=Z=%|Z|, and a
=E—muw; . The upper (lower) sign in 8 corresponds to the
case of attractive (repulsive) Coulomb interaction. We have

272
“’L:"l;“, E=wn+mtim{+1). (24)
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These are the general expressions for the frequency (and
hence the magnetic field) and the energy in terms of the
values of b. They reproduce ihe resuits in {3-5].

B. Electron in Coulomb and magnetic fields:
The Klein-Gordon case

For definiteness, we consider positive-energy solutions
for the attractive Coulomb potential (Z>>0). This is the case
considered in {6]. Negative-energy solutions and the case for
repulsive Coulomb field can be treated in exactly the same
way. In this case, y= \/mz—Zzlcz+ 172, w=w;, B
=ZE/c?, and a=E*2c*-c%2~mw;. In order for the
wave function to make sense, ¥ has to be real. This implies
that m?~2Z%/c*>0, which forbids the existence of the m
=0 states {the s states) in the Klein-Gordon case, as noted in
(6].

Using w;=28%5% we get the allowed magnetic field as

B=2cw,;=-;— (25)

and from Eq. (22) we obtain the corresponding energy £,

422 -
El=c - ——(n+1+m+m?=Z%c2| . (26
bZ 2
¢

These are the most genecral expressions for the energy and
the frequency.

For negative-energy solutions, the energy is given by the
negative roots of Eq. (26). The only difference is that the
roots of the Bethe ansatz equations have opposite signs in
view of Eq. {21). This only changes the nodal structure of the
wave functions. From the expression g=ZE/c?, we note the
equivalence between the positive- (negative-) energy solu-
tions in the attractive Coulomb case and the negative-
(positive-) energy solutions in the repulsive Coulomb case,

Let us mention here that for the cases in Secs. IIT A and
111 B, we may consider a dual situation of the original prob-
lem: we may consider the magnetic field 8 {and thus w,} as
a fixed guantity, and the Bethe ansatz equations instead give
the allowed values of the energy and the Coulomb charge Z.

C. Relative motion of two electrons in
an external oscillator potential

In this case, y={+12, w=w,, f=—1/2, and a=¢".
We have the following general solutions:

3
= e’=w,{n+!+ EJ 2n

They are also the solutions for the case of an electron and a
positron in the oscillator potential ( 8=+ 1/2).

PHYSICAL REVIEW A 63 062105

IV. HIDDEN LIE-ALGEBRAIC STRUCTURE
OF THE BASIC EQUATION

The basic equation (10), or its equivalent form (13), pos-
sesses an underlying Lie-algebraic structure that is respon-
sible for its quasiexact solvability. In fact, Turbiner has iden-
tified an s, structure for the case of two charged particles in
an osciliator potential [8], In view of the fact that all the
previous cases considered in this paper are related by the
same basic equation (10), one expects the same hidden struc-
ture to be present in all these cases. This is indeed the case
and it is sufficient to show that an sl, algebra is in fact the
underlying structure possessed by Egs. (10} or (13). In this
section we shall carry out Turbiner’s analysis to Bq. (13),
with only slight modifications in the parameters to suit the
general situation. Only the main ideas are given here, and we
refer the reader to [8] for details.

Let us construct three generators in the following manner:

g = ;; ~nr,
d n
So=r ar 2
J; -2 (28)
dr
These generators realize the sl algebra,
Wy Jil=-2J, [hJpl=x0 (29

for any value of the parameter ». If 1 is a non-negative inte-
ger, then there exists for the sl, algebra a
(#+1)-dimensional irreducible representation 7, . (r)
=(1,7,7%, ... ,r"). From this it is clear that any differential
operator formed by taking the polynomial of the generators
{28} will have the space P, as the finite-dimensional in-
variant subspace. This is the main idea underlying the guasi-
exactly-solvable operators {8—14].

Now consider the quasi-exactly-solvable operator that is
quadratic in the J’s,

n
T2=—Jﬂ.];+2w.!:-(-2-+2y).};. (30)
This operator belongs to the class VIt according to the clas-

sification given in {10]. In terms of r, T, becomes

T,= d2+ 2 a 2 (31
2—-—r-dr—2 2{wr _Y)dr wnr. }

Let us now consider the eigenvalue problem

T0(r)=2p(n}Q(r). 32)

This eigenvalue problem possesses n-+1 eigenvalues 8(n),
and the corresponding eigenfunctions are in the form of a
polynomial of the nth power, while other eigenfunctions are
nonpolynomial, which in general cannot be found in closed

062105-4
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analytic form [8]. Let us first substitute the form (31) into
Eq. (32), then divide the resulting equation by Zewr and
change the variable r to x=+2Zwr. This leads to the follow-
ing equation

at |2 d 2 1
EWL(T"—J:) 3;+{n+ \/;,B(n);HQ(x)=O.
(33)

This is exactly Eq. (13), provided that e=n and 5
= \ﬁ’.—/—c;ﬁ(n). This means that Eq. (13} is quasiexactly solv-
able if e=n, which is exactly our relation in Eq. (22}, and
that there are only n+ 1 allowed values of b= i in Eq.
{13) fef. Eq. 23)1.

Translating back to the original three cases considered in
this paper, these results imply the following. In Sec. lIIC, 8
is a fixed parameter (8==*1/2), hence the finite number
(=n+1) of the values of b implies the same number of the
allowed frequency tw,,, of the external oscillator potential
and the corresponding energy. This is the case found in [2]
and presented here again from a new light, For the cases in
Secs. MIA (8=2) and B (8=ZE/c?), the above results
mean that, at a fixed order n, there are exactly n+1 allowed
values of the pair of energy and magnetic ficld for a fixed
Coulomb charge, or of the pair of energy and Coulomb
charge for a fixed magnetic field.

Furthermore, it has been shown {8) that there exist [(»
+1)/2] positive eigenvalues and the same number of nega-
tive eigenvalues of b (here [a] represents the integral part of
a). In the general situation considered in this paper, positive
{negative) values of b correspond to the ativactive {repulsive)

PHYSICAL REVIEW A 63 062105

Coulomb field for positive-encrgy solutions. For negative-
energy solutions, the sign of & is reversed for the two kinds
of Coulomb field. Hence, our unified treatment together with
the Lie-aigebraic analysis of these cases give a very simple
explanation as to why the number of the positive-energy lev-
els for a fixed order »# considered in [2—6] are all equal to
[(n+1)/2].

Y. CONCLUSIONS

In this paper we have presented a unified treatmenmt of
three cases of quasi-exactly-solvable problems, namely, a
charged particle moving in Coulomb and magnetic fields for
both the Schrodinger and the Klein-Gordon case, and the
relative motion of two charged particles in an external oscil-
lator potential. We show that all these cases are reducible to
the same basic equation [Eq. (10)), which is quasiexactly
solvable owing to the existence of a hidden sl, algebraic
structure. A systematic and unified algebraic solution to the
basic equation using the method of factorization is given.
Our method allows one to express the analytic expressions of
the energies and the allowed frequencics once and for all in
terms of the roots of a set of Bethe ansatz equations. Cur
treatment also reveals that the eigenenergies and the allowed
frequencies in these cases are all given by the roots of the
same set of Bethe ansatz equations.
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Planar Dirac Electron in Coulomb and Magnetic Fields:

a Bethe ansatz approach
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Abstract

The Dirac equation for an electron in two spatial dimensions in the Comlomb and ho-
mogeneous magnetic fields is an example of the so-called quasi-exactly solvable models. -
The solvable parts of its spectrum was previously solved from the recursion relations.

In this work we present a purely algebraic solution based on the Bethe ansatz equa-
tions. It is realised that, unlike the corresponding problems in the Schrodinger and the
Klein-Gordon case, here the unknown parameters to be solved for in the Bethe ansatz
equations include not only the roots of wave function assumed, but also a parameter
from the relevant operator. We also show that the quasi-exactly solvable differential

equation does not belong to the classes based on the algebra sia.
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Jul 31, 2001




1. Recently a new type of spectral problem, so-called quasi-exactly solvable model
(QESM), was discovered by physicists and mathematicians {{1]-[8]]. This is a special class
of quantum-mechanical problems for which analytical solutions are paossible only for parts of
the energy spectra and for particular values of the fundamental parameters. The reason for
such quasi-exactly solvability is usually the existence of a hidden Lie-algebraic structure [[2}-
[6]. More precisely, quasi-exactly solvable (QES) Hamiltonian can be reduced to a quadratic
combination of the generators of a Lie group with finite-dimensional representations.

The first physical example of QESM in atomic physics is the system of two electrons
moving in an external oscillator potential discussed in [9, 10]. The authors of these works
apparently were nunaware of the mathematical development in QESM. Later, several physi-
cal QESM were discovered, which include the two-dimensional Schrodinger {11}, the Klein-
Gordon (12}, and the Dirac equations [13] of an electron moving in an attractive/repulsive
Coulomb field and a homogeneous magnetic field. The essential features shared by all these
above examples are as follows. The differential equations are solved according to the stan-
dard procedure. After separating out the asymptotic behaviors of the system, one obtains
an equation for the part which can be expanded as a power series of the basic variable. But
instead of the two-step recursion relations for the coefficients of power series so often encoun-
tered in exactly solvable problems, one gets three—step. recursion relations. The complexity
of the recursion relations does not allow one to determine the energy spectrum exactly from
the normalisability of the eigenfunctions. However, one can impose a sufficient condition for
normalisability by terminating the series at a certain order of power of the variable; i.e. by
choosing a polynomial. By doing so one could obtain exact solutions to the original problem,
but only for certain energies and for specific values of the parameters of the problem. These
parameters, namely, are the frequency of the oscillator potential and the external magnetic
fields.

In [14] a systematic and unified algebraic treatment was given to the above-mentioned
systems, with the exception of the Dirac case. This was made possible by realising that

these systems are governed essentially by the same basic equation, which is quasi-exactly




solvable owing to the existence of a hidden sl, algebraic structure. This algebraic structure
was first realised by Turbiner for the case of two electrons in an oscillator potential {15]. In
this algebraic approach, analytic expressions of the solvable parts of the energy spectrum
and the allowed parameters were expressible in ferms of the roots of a set of Bethe ansatz
equations.

In this paper we would like to extend the method of {14] to the planar Dirac equation
of an electron in the Coulomb and magnetic fields. If turns out the a set of Bethe ansatz
equation can also _he/!set up in this case. However, unlike the systems considered in {14],
here the unknown variables in the Bethe ansatz equations involved not only the roots of
the wave functions assumed, bui also a parameter from the relevant operator. We also
demonstrate that the Bethe ansatz approach yields the same spectrum as that obtained by

solving recursion relations. Finally, we show that the quasi-exactly solvability of this system

is not related to the sl; algebra.

2. In 2+1 dimensions the Dirac algebra

{v*, v} =2¢", " =diag(l,-1,-1) (1)

may be represented in terms of the Pauli matrices as v° = o3, ¥* = ioy, or equivalently,
the matrices {ay,03) = 7¥(7',7?) = (~02,01) and § = +°. Then the Dirac equation for
an electron minimally coupled to an external electromagnetic field has the form (we set

c=h=1)

(i0; — Hp)¥(t,r) =0, (2)

where
Hp = oP + fm — eA® = 6, P; ~ 03 P, + a3m — eA” (3)
is the Dirac Hamiltonian, P, = —id; + eAy is the operator of generalized momentum of

the electron, A4, the vector potential of the external electromagnetic field, m the rest mass

of the electron, and —e (e > 0) is its electric charge. The Dirac wave function ¥(z,r)
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is a two-component function. In an external Coulomb field and a constant homogeneous
magnetic field B > 0 along the z direction, the potential A, assume the following forras in

the symmetric gauge
A%(r)=Ze/r (e >0), A,=~-By/2, A,=Bz/2. (4)
We assume the wave functions to have the form

1 .
\I’(tn X) - % exP(—ZEt)'/’i (T: {P) ) (5)
where F is the energy of the electron, and

P(r)e'e
szi (T: (P) = . (6)
G(r)eiltle
with integral number I. The function vy(r,¢) is an eigenfunction of the conserved total
angular momentumw J, = L, + .5, = —i8/8p + 03/2 with eigenvalue j = +1/2. It should
be reminded that ! is not a good quantum number. Only the eigenvalues j of the conserved

total angular momentum J, are physically meaningful.

By putting Eq.(5) and (6) into (2), and taking into account of the equations

{0 i & eBr
. — _iatip ] Y L
Py £iF, = —ie (Bri(rago 2)), (7)
we obtain
1+ L
g—‘li—(+"’+~e—‘35’1"1)ﬁ'+(E+m+§f’f)c;=0, (8)
dr T 2 T
[+1
E+(+2+5§3)G~(E—m+gﬁ)ﬁ’=o, (9)
dr T 2 T

where o = ¢ = 1/137 is the fine structure constant. In a strong magnetic field the asymp-

totic solutions of F(r) and G(r) have the forms exp(—eBr?/4) at large r, and r7 with

= \/ (1 +1/2)2 ~ (Za)? for small r. One must have Za < 1/2, otherwise the wave function
will oscillate as 7 — 0 when { =0 and { = 1.

Let us assume

F(r) = 17 exp(—eBri/4) Q(r), G(r) =rTexp(—eBr?/4) P(r) . (10)
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In [13] we showed that parts of the spectrum could be analytically solved for by imposing
the sufficient condition that Q(r) and P(r) be polynomials, thus showing that the system
belongs to the QESM. The spectrum was solved in [13] from the recursion relations for the
coeflicients in the series expansion in @ and P. In this paper, we will show that the same
spectrum can also be obtained in a purely algebraic way. This is achieved by the methed of
factorisation which leads to a set of Bethe ansatz equations {13, 14].

Substituting Eq.(10) into Eq.(8) and {9) and eliminating P(r) from the coupled equations,

we have

2
{£—+[?——68r+ Zofr ]-9!—-’;-1?}""—1722

dr? E+m+ Zafr|dr
2EZa l+3 v
X 1
=t eB(T'+1)
Zafr? ¥ l+1/2
2 —eBr— =0 11
+E+m+Za/'r [’r i T Q) ’ (1)

where I' = +1/2+ . Once Q(r) is solved, the form of P(r) is obtainable from Eqgs.(8) and
(10). ¥ we let z = r/lp, lg = 1//eB, Eq.(11} becomes

dz? |z ((E +m)lpz + Zo | dx

1/2 —
+(E? - m®) % + ZE‘:BQ + (- /2 7 _ (r+1)
__Zao{l+1/2~-9 Za _
22[(E+m)lpz + Za] (E+milpzr+ Za Qz)=0. (12)
Eq.(12) can be rewritten as
d? 23 1 d b ¢ _
{a;f“*[‘;“w"xwo]a;*”;“zﬂg} Qle)=0. (1)

Here f = v+ 1/2, 2 = Za/[(E + m)lg], ¢ = (E? —m?)i — (T + 1), b = b + L/,
by = 2EZalp, L= (1 +1/2—«), and ¢ = z¢ + L/zy. On expressing {p in the expression of

€ in terms of xp, we get

= B (2o
T E+m

)2 —(C+1) . (14)

Zo
It is obvious that the energy E is determined once we know the values of € and 7. The
corresponding value of the magnetic field B is then obtainable from the expression Ip =

Zo/|(E + m)xg). Solution of z; is achieved below by means of the Bethe ansatz equations.
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3. We observe that the problem of finding the spectrum for Eq.(13) is equivalent to

determining the eigenvalues of the aperator

2
=_&%‘(2§q*m_;—%§)%*§+m—:xg (15)
We want to factorise the operator (13) in the form
D=a*a+e. (16)
The eigenfunctions of the operator H at € = ( must satisfy the equation
aQ(z) = 0. 7)

Suppose polynomial solution exist for Eq.(13), say @ equals a non-vanishing constant, or
@ = [17=(z — ), where x), are the zeros of Q, and n is the degree of Q). In the case where
@ is a constant {which may be viewed as corresponding to n = 0), the operators ¢ and a™

have the form

a=i a+=—~€i——(3@--—m-— ! ) (18)

If Q = [Ti=i(z — 2}, @ and a* will assume the form

d - 1

dx T — Tk

(19)

73

and

a+=__fi_(_2£_$_ ! )—kf: L. (20)

z Z + Zy 1T — Tk
We now substitute the forms of ¢ and a* into Eq.(16) and compare the result with
Eq.(15). This leads to conditions that must be satisfied by the various parameters and the

roots z;'s. For constant @} (n = 0), one has
e=b=c=0. (21)
The fact that ¢ = 0 implies

xg =-L. (22)




For n > 1, one gets

L 1

bo+— = 28y — e=n, 23
L i 1

Tg+ — = 24

0 Lo ,f\___:lxk-i-xg’ ( )

2 1 L i

2, - —9 =0, k=1,...,n. (25)

Tk Tx + Tp Fk TP~ Tk

Egs.(22), (24) and (25) constitute the set of n + 1 Bethe ausatz equations relevant to this
Dirac system, which involve 7+ 1 unknown parameters {zg, 21,...,%,} . It is worthwhile to
note that, unlike the corresponding equations in the Schrodinger and the Klein-Gordon case
discussed in [14], this set of Bethe ansatz equations involved not only the roots z;'s, but also
a parameter To from H. Summing Eq.(25) over k leads to the expression by = zq + Y.p-; Tk,
i.e. by is simply the sum of all the roots of the Bethe ansatz equations. From the second

equation in Eq.(23) we get
EBrem?P=(T+n+1). (26)

Since ~1/2 < T < 0 for Ze < 1/2 [13], we see from Eq.(26) that the solvable parts of the
spectrum must satisfy |E| > m.

So we see that the solution of the solvable parts of the spectrum E boils down to solving
the Bethe ansatz equations for z; in the differential operator, and the roots z; (k= 1,...,7n)
of Q(z). Once the value of zq for each order n = ¢ is known, the energy £ is given by
Eq.(14). The corresponding magnetic field B is then determined from the definition of b, or
from Eq.(26). The Bethe ansatz equations thus provides a systematic solutions of the QES
spectrum. Of course, as the order of the degree of ¢} increases, analytical solutions of the

Bethe ansatz equations becomes difficult, and one must resort to numerical methods.

4. In what follows we shall show the consistency of the solutions by the Bethe ansatz
approach and that by the recorsion relations presented in [13] for the first three lowest orders
(n = 0,1,2) in Q. Instead of solving for zy, our strategy is to eliminate it in Eq.(14) by

means of the equations (22)-(25) so as to obtain an equation obeyed by E for each order
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of . This equation is then compared with the corresponding equation obtained from the
recursion relations as presented in [13].

From Eq.(21) and (22) we have 23 = —L and € = 0 when @ is a constant. Substitute
these values of 7 and € into Eq.(14), and using the fact that 'L = (Za)?, we obtain the

corresponding value of £ as

E= gty (27)

This is the result presented in [13]. The corresponding allowed value of the magnetic field
B is then obtained from Eq.(26) and (27). The fact that z; be real leads to L < 0, whichh
in turn implies that the energy levels given by Eq.(27) are only possible for | < 0. This is

consistent with the conclusion obtained in by the method of recursion relations [13].

For n = 1, we find from Egs.(14), (23), (24) and (25) that

E - m(Za)?
— Kk 28
U'+2 E+m ¢ ° (28)
L 2
bt~ = 2 (29)
Ty I
1 L
= X+ —, 30
. 0+ o (30)
20 1
- - -~ =0. 31
T o T + Iy ( )

Eq.(29), (30), and (31) imply z, = by — . Substituting z, into Eq.(30}, we obtain

E+4+m !
2 -
xo—L[zE(Z 7i 1} . (32)
Then from Eq.(32) and Eq.(28), we get
r o N
— e —— —_— e A -_— 0 .
[4(I‘+ 1) )<’ 2] E+4FEm+ Z )zm (33)

The energy E can be solved from Eq.(33) by the standard formula, after which the magnetic
field is determined from Eq.(26). Eq.(33) does not resemble the one obtained from recursion
relation in [13]. However, on multiplying Eq.{(33) by I' + 1 and making use of the fact that
(Za)? = I'(I' — 2v), we can show, after some algebra, that Eq.(33) is equivalent to the

corresponding equation given in {13].




Finally we consider the case for n = 2. We have Eq.(14) with ¢ = 2, together with
Egs.(23), (24) and (25) in the forms

E-m(Za)?

'+3 = ———
* E+m z§ ' (34)
L 2 2
by — = -ﬁ—+—@, (85)
Lo M Ig
1 1 L
+ =ZTp+—, 36
I+ Zg Ta + Ty 0 Ty ( )
2
W g - L% (37)
1 Ty +Tp T2—T1
W gy - 22 g, (38)
To To+ Ty T} —To

From these equations we find z; + 2, = by — zy and ;22 = 28z(by — o)/ {boze + L). Putting

these expressions into Eq.(36) and using the fact that ©' =28 + L — 1, we arrive at

(t2 - 28) 23 + bol'zg + BL-1)-LEs+1)]+

WLy (39)
Zy

Now multiplying Eq.(39) by I, using I'L = (Z)?, and expressing &y, (5, and 1/ in terms

of E, we get finally

{4(2[‘+3) (21)2 [6I‘+2( +1) + M]}E”’

+3
1 (2y+1)I
+{12——(§a—)'§[2(’}’+1) 13 ]}
(Zl) [6P+2(7+1)+(27+1)F]
(Zl) [2( +1) - @%{-3315] mi=0. (40)

Again, this equation does not look the same as that obtained from the recursion relations.
But we can show they are in fact equivalent as they differ only by a multiplicative factor

(T + 1)(T' +2).

5. One may as well solve the QES energy spectrum of the problem from the differential
equation of P(z) instead of Q{z). The analysis proceeds in exactly the same way as we did
for Q(z}. We shall only give the outline below in order to show the similarity and differences

between the two sets of Bethe ansatz equations.
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The equation for P(z) can be cast into the following form
{2 1 d , ¥ d
{azs*[?'“’*ng]a‘;*”;“xﬂa}PW—O- 1)

Here 2, = Zo/{(E ~ m)g], € = (E* —mA)IE - T, ¥ = b + ¢, and ¢! = -T/z;. Other

parameters are as defined previously. Instead of Eq.(14) we now have

Ed+m{Za 2

We note here the sign difference before the mass terms in Eq.(14) and (42). It is obvious that
Eq.(41) is in the same form as Eq.(13), and hence is also quasi-exactly solvable. Suppose
P(z) has the factorized form P(z) = [[f_,(z ~ z}), then the set of Bethe ansatz equations

for the parameters {2}, z},...,2},} is given by

r i 1
- = 7 IR} (43)
Ty k=1 Zx T Zp
1 Y1
26_’_1-; - =2Y) ——— =0, k=1,...,7. (44)
Ty Ty + Ty 7k Ti — T
In place of Eq.(23} we have
r L
- =9
bD xa ﬁézg!
€=n',n=12.... (45)

Summing Eq.(44) over k gives by = 1.0, x}. For any given integral value of € = n’ the QES
part of the energy E is determined from Eq.(42) once the values of zf is obtained from the
Bethe ansatz equations. The corresponding value of the magnetic field B is then obtainable
from the expression Ig = Za/{(E ~ m)x}).

We note here that since the two sets of Bethe ansatz equations Eq.(22), {24)-(25) and
Eq.(43)-(44) give the same spectrum of the QES energy F and the corresponding B, we

bave, from the values of ¢, ¢ and by, the following necessary conditions:

n o= n+1l, (46)
n
by = :1:9+Z$k
k=1
n+l
- 34 (a7
k=1
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Conversely, one can easily show that Eq.(46) and (47) are also the sufficient conditions for
the two sets of Bethe ansatz equations to give the same QES energy spectrum and magnetic
field. The condition (46) implies that the degree of the polynomial P(z) is of one order
higher than that of Q(z}), which is in complete agreement with the result obtained in [13].

6. We now demonstrate that the QES equations (13) and (41) cannot be represented
as bilinear combination of the generators of the sl; algebra. The guestion of whether there
exists non-sl;-based one-dimensional QESM was first posed in [2] in which all sl,-based
QESM are classified. The first example of such a kind was given in [16], which presents a
potential arising in the context of the stability analysis around the kink solution for ¢*-type
field theory in 1 + 1 dimensions.

We shall show that Eq.(13) is not generated by the sl algebra. The same conclusion
applies immediately to Eq.(41), since both equations have the same form. Let us rewrite

Eq.(13) as

{— (xz +:z:0x) % + [:c3 + 222 + (1 - 28)z — 2ﬁ$o] %_

—ex? 4 (¢~ b~exg)z ~ b:cg} Q(zx)y=0. (48)

Turbiner {2} has shown that all sl,-based second order QES differential equations can be cast

into the form

P2 1 P22 4 (P@) - N @ =0, (49)

where

Py(z) = aypq7® +ap07® + (0= + ago) 22 +09-2 +a_,
Py(z) = 2(2f - 1)a4s2® +{(35 — 1) ey + by] 2*

+ [27{@+- + aoo) + @00 + bo] T + jao- + b,

i

Py(z) 2§ (25 ~ V) a442° + 27 (Jaso + b3) 2 + a00i® + boj - (50)

Here ay's and by’s (k,I = +,0,—) are constants, and j is & non-negative integer or half-
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integer. Eq.(49) corresponds to the eigenvalue problem

HQ=XQ, H=- Y auJ*7l+ > bJ*, (51)

k,=4,0,— = -
Ay k=+,0,

which has a polynomial solution of power 2j in z. Here J*’s are the generators of sly:

d d d
— 2-—.—— y _— — a— 1 ——_'-_'-
J'=1z 2jz, J'=zx i, J= o (52)

Comparing Eqs.(48) and (49) we find that the two equations are inconsistent with each
other. For instance, the coefficient of 2! in Pj requires a,, = 0, whereas the coefficient of
7® in P; implies 2(2] — 1)a+4 = 1, which gives a non-vanishing a, . for positive integral and

half-integral values of j. This shows that Eq.(13) is not sl;-based.

7. In conclusion, we have given an algebraic solution to the planar Dirac equation of
an electron in the Coulomb and magnetic fields. The relevant Bethe ansatz equations are
presented. Unlike the corresponding equations in the Schrédinger and the Klein-Gordon case
discussed in [14], the unknown variables in this set of Bethe ansatz equations include not only
the roots of the polynomial assumed, but also a parameter from the QES differential operator.
Equivalence between this approach and that by the recursion relations is demonstrated.
Finally, we show that the QES equation for this problem does not belong to any of the

classes based on the sl; algebra.
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The discovery of giant magnetic fields at the surface of neutron stars has greatly stim-
ulated recent interest in the behavior of relativistic electrons in a constant strong magnetic
field 1, 2, 3]. Observations of hard X-rays from pulsar Hercules X-1 allowed one to estimate
the magnetic field at the pulsar surface to be of the order of 10*2 G. Such a magnetic field
“frozen” in a neutron star must become stronger and stronger, reaching the ultrastrong value
of the order of 10"® G in the central part of the neutron star [4]. It is also believed that a
new class of gamma-ray bufsters, so~called soft gamma repeaters [5], are newly born neutron
stars that have very large surface magnetic fields of the order up to 10'® G. These extremely
magnetized neutron stars have been named the magnetars [6]. Furthermare, fields of the or-
der of 10% G [7] and even possibly 10* G {8} may exist at the electroweak phase transition.
It is worthwhile noting that the magnetic field in a neutron star may be considered as a
macroscopically uniform field with respect to the characteristic scales, such as the Compton
wavelengths, of constituent particles of the neutron star. However, the field is extremely-
nonuniform at the eleciroweak phase transition. In any case, such a strong field will affect-
in an essential way the behaviors of charged particles in the star.

Inspired by these developments, we shall consider in this paper the effects of strong
constant magnetic fields on the chemical equilibrium of a degenerate ideal gas of neutrons
(n), protons (p), and electrons (e). We assume in what follows that the gas is spatially
homogeneous due to the homogeneity of the magnetic field.

The first physical quantity which we must define is the chemical potential y; (i = e, p,n),
or the Fermi energy (if the gas temperature is equal to zero), of the relativistic charged and
neutral particles as a function of magnetic field.

Without any magnetic field (B = 0) and at zero temperature (# = 0), the chemical

potential y; of an ideal gas of particles of type i and mass m; is related to the particle




density n; by [9]
(7 ~ 1P =nifnei , no; =mdc® /307K (1)

In the presence of a magnetic field B = (0,0, B), the chemical potential and density of the
neutron gas are still given by eq.(1). But now the number density and chemical potential of

the charged particles are related by

_eB _ o0 dp .
= e 10 O L o e TSP @

where e > 0 is the magnitude of the elementary charge, E, = (p?c® + mic* + 2eBhicn)'? is
the energy spectrum of a relativistic charged particle, n =0, 1,2, ... enumerates the Landau
levels, p is the momentum component parallel to B, and @ is the {emperature. In what
follows we shall express values of y; in dimensionless units: ; = ui/mc®. Eq. (2) may be
considered as a relation between n;, 4; and & at a given B. By integrating with respect to p -

in (2), making allowance for Ey.x = pi; at § =0, if is easy to obtain:

()7 (o) E (s )" o

3ng;

Here the critical field By; = m2c®/eh, and the value ny; is given by np; = (72 — 1) By/2B),
where [z] is the integral part of z. We note here that By, = 4.41-10" G and By, = 3.4-10° Bg..

Let us now consider the conditions for chemical equilibrium of a degenerate gas of protons,
neutrons and electrons in the presence of large magnetic fields. We also suppose that the
temperature ¢ is equal {0 zero, since for a typical 100-year old neutron star, its temperature
is estimated to be 10® K (about 10 keV), which can be considered cold as compared to the
Fermi energy (about 1000 MeV) of the degenerate relativistic neutrons [10).

We are interested in reactions in which the total density of baryons ny, = np + nn is
conserved and the charge neutrality condition of a gas n, = n, is satisfied . These processes

are called the direct URCA processes {11, 9, 10]. Our purpose here is to determine the
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density of protons as a function of the density of neutrons from the condition of chemical
equilibrium, namely, p, = p, + 4., and the neutrality condition. A similar problem but in
the context of the equation of state, i.e. pressure of the gas as a function of the particle
density, was considered in [12] for magnetic fields much smaller than By, namely, for B up
to only 100By, =~ 107*By,. For ultrastrong magnetic fields (B > By,), the problem was first
considered in [13]. In [13], however, the problem was only partially solved by restricting to
the lowest Landau level of electrons and/or protons anly. Also, for B < By, the chemical
potential of the protons was approximated by the expression obtained in the absence of the
maguetic field. Here we shall determine the density of protons numerically without making
any approximation.

An essential observation which we employed in our numerical solution is that, under the
charge neutrality condition n, = n,, the chemical potentials y, and g, in the presence of a

magnetic field, as given by eq.(3), are related by

1/2

1+ (52 - 1) (%)2] : @

which is exactly the relation satisfied by fi, and fi. without a magnetic field. In the absence

fp =

of a magnetic field, eq.(4) is easily proved from eq.(1). To show that eq.(4) is also satisfied
by the chemical potentials when B # 0, we substitute n, = ne, Byy/Bo. = (my/me)? and
ngp/Tige = (Mp/m)? into eq.(3) for the proton (i = p), we get

1/2

Van, (Eoi

0. \ B )3/2 = [(ﬁﬁ - 1) (my/me)’ 53—;5] +2"f ((,af,—- 1) (mp/me)2§g~ - n)llz . (5)

n=1
The left hand side of eq.(5) exactly equals the left hand side of eq.(3) for the electron (i = e).
Since eq.(3) is a monotonic increasing function, we get by equating the right hand side of

both eq.(3) and (5) the equality .y, = fime and

(Bp = 1) (mp/me)* = (B2 - 1) . (6)
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Hence eq.(4) is proved. The equality n,, = nny. implies that the Landau levels of electrons
and protons, are populated in the same manner. This is a direct consequence of the equality
of the number of electrons and protons assumed here and the fact that the density of states
per Landau level is independent of the mass of the charged particles.

QOur numerical results are presented in Fig. 1 and 2 for strong (B < By,) and ultrastrong
(B > By,) magnetic fields, respectively. These curves represent the normalized proton
density number n,/ng, as a function of the normalized neutron density number ny, /ng, at
various values of magnetic field. The dotted curve gives the corresponding values in the
absence of the magnetic field. In the presence of the magnetic field, the density of protons is
a piecewise continuous and monotonic increasing funetion of the neutron density. The values
of the proton density at which the first derivatives do not exist are the values at which a
Landau level is being completely filled. It turns out that, for B < By,, the approximation
made in {13] by treating the protons as if no magnetic field were present is a very good one. _

From the figures one observes the following distinctive effects that a strong magnetic field-
has on the chemical equilibrium of the degenerate gas of nucleons and electrons: (a) when
only the first Landau level is populated, the values of n,/ng, in the presence of finite B’s are
for the most part higher than the corresponding value when the field is absent; (b) in the
presence of an ultrastrong magnetic field, there appear values of densities (populating only
the first Landau Jevel) for which n, > ny; and (c) when higher Landau levels are being filled,
the curves corresponding to finite magnetic fields all converge to the one without magnetic
field.

Features (a) and (b) had been noted previously in {13]. Such behavior may be understood
as follows. When the neutron density at a fixed magnetic field is low enough {(or equivalently,
when the magnetic field at a fixed neutron density is high enough) that only the first Landau

level is filled by the electrons and protons, the chemical potentials of the electrons and protons




are given by (from eq.(1} and (3)):

1/2
tn = myct [1+(ﬂn/n(]n)2/3]/ )

o= mid? L+ @2rsBo)/(3neiBY] T, i=e.p. (7)

Eq. (7) shows that a higher magnetic field B tends to lower the the chemical potential of the
electron when B > By, (and the chemical potential of the proton as well when B > Bp,). To
maintain chemical equilibrium among the particles at a fixed value of n,/ng,, the chemical
potentials of the electrons and protons have to be raised so that the equilibrium condition
Un = pp+ pte is still satisfied. This is achieved through the increase in the density of electrons,
and hence the density of protons by the neutrality condition assnmed here. For a given value
of n,/np,, the value of ny/ng, in the presence of finite B’s are, for the most part, higher

than the corresponding value when the field is absent, until the proton density reaches a

value (g /Ton)eross = (3B/2B9)*? (m/my,)®, which is the point of intersection between the

curves with B # 0 and B = 0. When B > By, there exist values of the densities for which _

np > np. This gives the possibility of stars with proton-rich matter. These ranges of particle
densities are of great interest, since in zero magnetic field the ratio n,/n, is always less than
unity, with a maximum equal to 1/8 [9]. The fact that the density of proton is raised under
these conditions has the important implication that the direct URCA reaction is enhanced,
leading to a more efficient neutron star cooling through neutrino emission.

However, as soon as the higher Laudau levels are being filled, the behaviour of the system
under the magnetic field does not deviate much from that without the magnetic field. In
fact, for large n they are nearly identical. This can be proved as follows. For large n we have

Tmi = (2 ~ 1) Bg;/2B. Then eq.{3) can be approximated by
V2, (301)3/2 ~ 2[""’" i —n) 1/2 dn

3’1"1(),
4 3/2 { Boi\*/*
= 5@E-0"(55) - ®
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This leads to n;/ng; = (a2 ~ 1)*/2, which is exactly the result, namely eq.(1), when B = 0.
To conclude, we have discussed the effects of strong constant magnetic fields on the
chemical equilibrium of a degenerate gas of neutrons, protons, and electrons. The equations
for chemical equilibrium under the condition of charge neutrality are numerically solved
for for different values of the magnetic field and the neutron density. The effect of higher
Landau levels were considered, which was left out in previous work [13]. It is found that the
chemical potentials of the electrons and the protons are related in the same way, namely,
through eq.(4), regardless of whether there is a magnetic field or not. When only the fixst
Landau level is being filled, the proton density is enhanced, as compared to the case without
the magnetic field. For an ultrastrong field there exists the possibility that the proton

density is greater than the neutron density, giving a proton-rich matter. However, when

higher Landau levels are being filled, the values of the particle density at equilibrium quickly

converge to those obtained without the magnetic field. The latfer result indicates that, when

the density of the particles are very high, the infinence of the magnetic field is negligible.
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Figures Captions

Fig. 1. Plot of log(n,/non) verses log(n,/nes) (continuous curves) for values of B/ By,
at (from bottom to top): 10%, 10%, 10* and 10° The dotted line corresponds to the curve

with B = Q.

Fig. 2. Same as in Fig. 1, but for values of B/Bj, at (from bottom to top): 107, 109, 10"
and 109,
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Abstract

In this work a mean field approach to the Quantum Frenkel-Kontorova model
is presented. Qur approach is based on Dirac’s time-dependent variational
principle together with the Jackiw-Kerman {JK) function as the single particle
state. The JK wavefunction can be viewed as the g-representation of the
gqueeze state. We showed that our approach reproduces the essential features
observed in a previous guantum Monte Carlo studies.

L INTRODUCTION

The Frenkel-Kontorova (FK) model [1] is a simple one-dimensional model used to study
incommensurate structures appearing in many condensed-matter systems, such as charge-
density waves, magnetic spirals, and adsorbed monolayers. These modulated structures
arise as a result of the competition between two or more length scales. The FK model
describes a chain of atoms connected by harmonic springs subjected to an external sinusoidal
potential. In an important development in the study of the classical FK model, Aubry {2]
first made use of the connection between the FK model, the so-called “standard map”, and
the Kolmogorov-Arnold-Moser (KAM) theorem to reveal many interesting features of the
FK model. Particularly, he showed that when the mean distance (also called the winding
number) between two successive atoms is rational, the system is always pinned. But when
the winding number is irrational, there exits a critical external field strength below {above)
which the system is unpinned (pinned). This transition is called by Aubry a “transition
by breaking of analyticity”, and is closely connected with the breakup of a KAM torus.
It is very analogous to a phase transition, and various critical exponents and questions of
universality have been extensively studied in the past.

Needless to say, quantum effects are very important in the FK model. However, unlike
the classical case, study of quantum FK models is rather scanty. It was first considered in
a quantum Monte Carlo (QMC) analysis in {3]. Their main observation is that the map




appropriate to describe the quantum case is no longer the standard map, but rather a map
with a sawtooth shape. Theoretical explanation of this phenomenon was later attempted in
[4]. In this work the authors first showed that the sawtooth map could not be explained in
the naive mean field approximation (MFA), i.e. the Hartree’s independent-particle approx-
imation, which they used. It was then argued that to get the sawtooth map one must go
beyond the MFA by including the contributions from the so-called quasidegenerate states.
These states are inhomogeneous configurations corresponding to excited states in the MFA
which are nearly degenerate in energy with the naive MFA ground state. They contribute
substantially to the actual quantum ground state through quantum tunneling. The saw-
tooth map emerged after the mixing of these quasidegenerate states were taken into account
in [4].

More recently, a different approach was proposed in {5] which uses a generalized squeezed
state many-body wavefunction to demonstrate that the sawtooth behavior is simply the
result of quantum fluctuations. Similar to [4], this work also adopted an approximation that
goes beyond the MFA. In our opinion, the approach of [5] is very appealing in principle.
However, the variational method applied there is problematic, and some difficulties in this
work need be overcome before it could be considered satisfactory.

In [6] we showed that all the essential features observed in the QMC studies can in fact
be obtained from an independent-particle picture of the many-body ground state, i.e. in the
MFA. In the independent-particle picture the many-body trial wavefunction is factorizable
into single-particle states. One can assume the single-particle state to have the form of a
squeeze state. For the quantum FK model, a simpler and, in our view, more elegant approach
is to adopt Dirac’s time-dependent variational principle together with the Jackiw-Kerman
(JK) function {7] as the single particle state. The JK wavefunction can be viewed as the Q-
representation of the squeeze state {8]. We shall show that our simple independent-particle
approach produces an effective classical Hamiltonian which is bounded below, admits simple
numerical solution of the ground state without recourse to QMC analysis, and reproduces
the essential features observed in QMC studies.

II. EFFECTIVE HAMILTONIAN

The Hamiltonian of the quantum FK model is given by

= Z[ 3 G~ 8" =V eosllod)| W

Here ¢; and p; are the position and momentum operators, respectively, of the ith atom, v the
elastic constant of the spring, V and 2n/ly are the strength and the period of the external
potential. As in [4], it is convenient to use the dimensionless variables Q. = oy, P- =

lofi/ /7y, and K = VI /. With these new variables, we obtain the following dimensionless
Hamiltonian H
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We have H = yH/(2. The effective Planck constant is & = AlZ/ /m7y. For the classical FK
model, the Aubry transition occurs at the critical value K, = 0.971635- -

To study the ground state properties of the quantum FK model in {2}, we adopt here
the time-dependent variational principle pioneered by Dirac. In this approach, one first
constructs the effective action I' = fdt (U, t}ihd, — H|¥,t) for a given system described by
H and |, ). Variation of I' is then the quantum analogue of the Hamilton’s principle. The
time-dependent Hartree-Fock approximation emerges when a specific ansatz is made for the
state |W,£). We now assume the trial wavefunction of the ground state of our quantum
FK system to bave the Hartree form ¥, ) = [T; |vi, ¢}, where the normalized single-particle
state |44, £) is taken to be the JK wavefunction [7]:

1 1 S DR i
(Qild, t) = W X exP{‘é‘g (Qi — z:) ['2-@,- - 21“:'] + g?’i (@i~ Ia)} . 3)
The real quantities z;(t), p;(t), Gi(t) and II;(¢) are variational parameters the variations of
which at ¢ = *oo are assumed to vanish. Squeezed state function in the form of the JK
wavefunction has the advantage that the physical meanings of the variational parameters
contained in the JK wavefunction are most transparent, as we shall show below. Further-
more, the JK form is in the general Gaussian form so that integrations are most easily
performed. .

It is not hard to check that z; and p; are the expectation values of the operators ¢J; and
P z; = (UIQ:[ %), p; = (TP ¥). Also, one has (¥|(Q; — £:)*¥) = hG;, and (¥|ih,|T) =
Yipit: — RGL;), where the dot represents derivative with respect to (w.r.t.) timef. It
is now clear that AG; is the mean fluctuation of the position of the ¢-th atom, and that
G; > 0. From the form of the effective action one sees that that p; and II; are the canonical
conjugates of z; and G, respectively. The Dirac variational principle leads to the following
effective Hamiltonian

Hepp = (P|H|T)
= Z-;- [p? +h G-G;‘ + 411,?6*,:)]
1
+ Z 3 (®ig1 — 33:')2

h
+ E -2'- (Gi+1 + G,—)

- > Kexp (u-‘;G‘i) COS T; . (4)
;

The last term B in
(4) can be very easily obtained from (¥|F(Q:)|¥) = X2 F*™)(z;)(AG;)™/(2m)!, where
Fi(z) = 8°F(z)/82", and ol = n{n — 2){n ~ 4)---1. Eq. (4) is bounded from below.

We can obtain the equations for the equilibrium states in the Hartree-Fock approxima-
tionby directly varying the effective Hamiltonian H,;; w.r.t. the variables. Varying H,sf
w.r.t. p;, I, z; and G; give, respectively,




P = 0 , 4H£G,; =10 y (5)

Tiy1 — 20 + 3o = Kexp (—%G.—) sinz; , (6)

1 h
ZGi_2 — Kexp (—EG:') cosx; — 2= 4II? . (7)

The second equation in (5) implies II; = 0 as G; > 0. This in turn means that the right
hand side of eq.{7) is equal to zero:

) .
ZGfg — Kexp (—gGi) cos(z;) —2=0. (8)
In the limit A = 0, eq.(6) is equivalent to the standard map.

IT1. NUMERICAL RESULTS

We numerically solve for the set of variables x; and G; which characterize the ground
state using the Newton method. In all our numerical computations the winding number
P/Q = 610/987, which is an approximation of the golden mean winding number (v/5—1)/2,
is used with the periodic boundary condition ;.4 = z; + 2rP. This winding number is
much more accurate than those used in previous works to approximate the golden mean
number, thus giving us better accuracy in the computations of physical quantities related
to the ground state. We emphasize that all values of z; and G; are determined by the same
numerical method consistently. In particnlar, we do not have to input the values of G; from
quanturn Monte Carlo results in order to solve for the x;, as was done in [5].

Having obtained the values of z; which give the mean positions of the quantum atoms in
the chain, we can compare the results with the classical configuration, following [3], in two
ways: (1) by the quantum hull function, which is the plot of z; (mod 27) of the atoms against
their unperturbed positions 2miP/@Q (mod 27); (2) by the so-called g-function, defined by

g=K1! (Zigr — 2% + 3ia) (9

versus the actual atomic positions x;. jFrom (6), we also have

-~

gi = eXp (a%Gi) sing; . (10)

Here G; is related to z; by eq.(8). We see from this equation that quantum fluctuations G;
will modify the shape of the classical sine-map. In addition to these two types of graphs,
we also plot the graph of G; against the unperturbed and the actual positions. The formal
graph was first introduced in [3} to show the strong correlation of the fluctuations of atoms’
positions with their unperturbed positions. We introduce the latter type of graphs here
since we think that such graphs provide better picture about how the quantum fuctuations
of the atoms are related to their actual positions.




In Fig. 1 we show the four graphs mentioned above with different values of # for the
supercritical case K = 5. Fig. 1(a) shows the quantum hull functions. For small values of
i the quantum hull function consists of a countable set of steps discontinuities, just as in
the classical case: the atoms are in a pinning phase. In fact, the atoms are more likely to
be located near the valley of the external potential well, namely, near z; = 0 (mod 2x).
As the quantum effect increases, i.e., for increasing values of h, the quantum hull function
gradually changes into a monotonic analytic function, signifying that the system is entering
the depinning phase. There exists a critical value, approximately %, = 6.58 for K = 5, above
which the quantum hull function changes from an nonanalytic function to an analytic one.
This is a quantum analogue of the Aubry transition in the classical case, and can therefore
be called the quantum Aubry transition.

Next in Fig. 1{b) we show the graphs of the g-function. The curve defined by (10}
with G; satisfying (8) are shown here as dashed curves for different h. In the classical limit
(h 0) this curve is simply the standard map (sine-curve). As % increases, the amplitude of
the curve decreases. For sufficiently large h the curve resembies more closely a “sawtooth”
shape. This is first noted in QMC study in (3]. Here we see that it comes out very naturally
from the equation of motion (8) and (10). We have therefore demonstrated that the sawtooth
map could be recovered in the MFA. In the supercritical case (K = 5), when & < fq, the
positions z; of the atoms cover only a subset of the g-curves. This is in accord with the fact
that the atoms are in the pinning phase [¢f Fig. 1(a)]. As A increases, the points begin to
spread along the g-curve. When & > ., the g-graph is completely covered as the system
has entered the depinning phase.

Fig. 1{c) shows the quantum fluctuations G; plotted against the actual atomic positions
z;. The dashed curves represent the curves of eq.(8) for different #i. For small fi, the atoms
are located near z; = 0 (mod 27) with small values of G; which means, from (3), that
the wavefunctions are highly peaked at these positions. As the quantum effect increases,
the external potential is so modified that now the atoms could be found at other positions,
but with atoms at z; = 7 (mod 2x) having the largest value of G;. This indicates that
wavefunctions of the atoms near the top of the potential are more extended with smaller
amplitudes. Again, when & > F., the curves of (8) are completely covered by the solutions ;.
To compare with the results in [3], we plot the values of G; against the unperturbed positions
in Fig. 1(d). One sees that the values of G; are strongly correlated with the unperturbed
positions, as first noted in [3]. For h < h, the graphs consists of steps discontinuities, and
for i > . the graphs are continnous. This is correlated with the graphs of the quantum
hull function in Fig. 1(a), since from {8} any fixed value of z; correspond to a fixed value of
G;.

Next we show in Fig. 2 the corresponding graphs for the case K = 1.5. This represents the
situation which is slightly over the critical classical case. The general trends of the behavior
of the graphs are the same as those in Fig. 1. As expected, quantum Aubry transition takes
place at a smaller fi, = 1.17. We note here that the shape of the g-function at large B in
this case is intermediate between a sine and a sawtooth map.

We have also checked the subcritical cases with K < K. The classical system is already
in the depinning phase in this regime. Quantum fluctuations only enhance the trend of
depinning. The g-function is found to be closer to a sine-shape with smaller amplitude for




higher f. This is consistent with the QMC results [3].
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Figures captions

Fig. 1 Structure of the quantum ground state for X' = 5 and winding number P/Q =
. 610/987 at = 2 (black dots), 6 (white dots) and 7 (black curve). (a) quantum hull
function plotted against unperturbed atomic positions; (b) g-function plotted against
actual atomic positions (the dashed curves represent eq.(10) with G; satisfying (8); {(c)
and (d) quantum fluctuations G; plotted against the actual and unperturbed positions,
respectively. The dashed curves in (c) represent the curves of eq.(8) for different .

Fig. 2 Same as Fig. 1 for K = 1.5 and £ = 0.5 (black dots), 1.0 (white dots) and 2 (black
curve).
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