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Abstract

" We explore the possibility of using the method of classical integral transforms to solve a class of g-difference-differential
equations. The Laplace and the Mellin transform of g-derivatives are derived. The results show that the Mellin transform of
the g-derivative resembles most closely the corresponding expression in classical analysis, and it could therefore be useful in
solving certain g-difference equations. © 2000 Published by Elsevier Science B.V. All rights reserved.

1. The study of g-analysis is an old subject,
which dates back. to the end of the 19th century
[1-4]. It has found many applications in such areas
as the theory of partitions, combinatorics, exactly
solvable models in statistical mechanics, computer
algebra, etc [5]. Recent developments in the theory
of quantum group has boosted further interests in
this old subject [6,7].

The subject of g-analysis concerns mainly the
properties of the so-called g-special functions, which
are the extensions of the classical special functions
based on a parameter, or the base, g. The relations
among these functions, and the difference equations
satisfied by them are among the topics most studied
so far. The g-difference equations involve a new
kind of difference operator, the g-derivative, which
can be viewed as a sort of deformation of the

E-mail address: hcl@polaron.phys.tku.edu.tw {C.-L. Ho).

ordinary derivative. Solutions of the g-difference
equations in one variable have been well studied 1n
terms of the g-hypergeometric series (also calied the
basic hypergeometric series). Partial g-difference
equations and g-difference-differential equations with
more than one variables are generally studied by
means of the method of seperation of variables, or by
the techniques of Lie symmetry in the literature
[3,8—13]. The method of integral transforms, which
is another powerful technique of solving differential
equations in classical analysis, has not been, in our
view, explored in g-analysis. The reason is not hard
to understand. The main virtue of the classical inte-
gral transforms, particularly the Fourier and the
Laplace transform, is to transform a differential
equation into an algebraic equation, which can be
solved easity. That this is possible is due to the fact
that these transforms change the derivatives of a
function to something proportional to the transform
of the original function. As far as we know, integral
transforms or g-integral transforms which could

0375-9601 /00 /$ - see front matter © 2000 Published by Elsevier Science B.V. All rights reserved.
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transform g-difference equations into algebraic equa-
tions have not been found. It should be mentioned
that in fact g-analogues of Fourier transform, based
on the Jackson g-integral, have been proposed re-
cently [14,15]. However, in order for the g-Fourier
transform of the g-derivative of a function f(x) to
be proportional to the g-Fourier transform of f(x),
the function f(x) must satisfy very special condi-
tions, such as flg7" ) =0=f{-4¢"") [15]. Hence,
while these g-Fourier transforms may be useful in
proving certain identities among the g-special func-
tions, their use in solving g-difference equations
seemns limited.

In this paper we shall explore the possibility of
using the method of classical integral transform to
solve a class of g-difference-differential equations.
We derive the Laplace and the Mellin transform of
g-derivative, and argue that the Mellin_transform,
which is not generally employed in soi\riﬁquiff;ren-
tial equations in classical analysis, may still be useful
in solving certain g-difference equations.

2. Suppose we want to solve the following g-dif-
fusion equation

2

Diy(x,t) =

y(x.1) (—o<x<o, t>0)

(1)

dx?

subject to the initial condition

y(x0) =f(x). - e - (2)

Here D? is the ‘‘forward” temporal q-deriv.ativc
defined by [15,16]

h(q™'t) — h(1)
(1—g)t
for any function #(x). We assume 0 < ¢ < 1 in this
paper. The function f(x) is assumed to vanish as

x— t. One may as well use the more common
definition of g-derivative {4]

h(1) —h( qt)
(1—g)t

We shall not employ this definition of the g-deriva-
tive here for reason to be explained later. We note

DEA(1) = (3)

9h(1) = 4

here that g-difference and g-difference-differential
equations of the diffusion type such as Eq. (1) have
been considered before [9-13], but mostly from the
point of view of Lie symmetry, or by seperation of
variables.

We can remove the partial differential operator in
x in (1) by a Fourier transform. The question now is
to choose an appropriate integral transform to re-
move the g-derivative. In view of the positivity of
the time variable, the two most natural choices are
the Laplace and the Mellin transform.

Let us first derive the expression of the Laplace
transform of the g-derivative. The Laplace transform
of a function () is defined as h(s) =Z{h(x),s} =
foh()exp(—st)dt. For the g-derivative of A(x), the
Laplace transform is

Z{Dih(1),s)

1 = k(g™ 't) . = h{1) ,
- g [ —Lemsgr |
l—q'[) - e dr j(; ; e dt

(5)

To proceed we have to use the following relation of

the Laplace transform [18] .

T Den

provided the integral on the r.h.s. of (6) is well-de-
fined. We may apply (6) to (5) directly if #(0)= 0.
However, if h(0) = 0, the r.h.s. of (6) is not well-de-
fined, and direct application of (6) to (5) leads to
incorrect result which does not reduce to the usual
expression of the Laplace transform of derivative in
the classical limit ¢ — 1. In order to recover the
classical -limit correctly, we find it necessary to
regularise (5) in the form

1 {f: h(g™'t) — h(0)

l1~-g t

e *dr

= h(t) — h(0)

‘fo,:

We may now apply (6) to (7). Making use of
ZL{h(1) = h(0),s} =h{s) — s " h(0) (8)

e‘“d!]. M
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we finally obtained
Ing~'

l—-gq

FDIA(1).5) = —— (') ds -

£(0) .
=4/, (0)

(9)

Eq. (9) reduces to the expression sh(s) — A(0) for
the Laplace transform of ordinary derivative as g —
17

If one uses instead the definition (4) for the
g-derivative, the Laplace transform would be

1 ~_ Ing™!
P Din(t),s) = T:ij h(s') ds' — T5}(—}-}:(0) .

(10)

It is now obvious that the Laplace transform is nqf. *

useful in solving equations involving g-derivatives:
it transforms such equations into integral equations!

3. We now consider the Mellin transform of a
g-derivative, The Mellin transform is seldom being
used in solving differential equations, because it
generally transforms differential equations into dif-
ference equations instead of the much simpler alge-
braic equations. Now that the Fourier and the Laplace
transform lose their virtues whenever g-derivatives
are present, the Mellin transform is naturally the next
one to be looked at. As we shall see below, the
Mellin transform still transforms an -equation con-
taining g-derivatives into a difference equation of
the transformed function, which is the best thing next
to an algebraic equation one could get. Previously,
the use of the Mellin transform in g-analysis is
limited to proving various identities among the g¢-
special functions [2,17].

The Mellin transform of a function A(#) is defined
as h*(s) =4{h(t),s} = [FTh(t)t*~'dt. For g-deriva-
tive defined in (3), we have

A(DiR(t),s}=—[s—=1],h"(s—1). (11)

Here [x]q is the g-number defined by

Note that [x]q —x as g — | 7. Hence (11) reduces
to the expression —(s — 1)A" (s — 1) for the Mellin
transtorm of the ordinary derivative as ¢ — 17. Re-
peated use of (11) leads to

A((D1) k(1) s}

= (_'l)u[s* He[s-2],---[s—n],
Xh™(s—n), nx>1. (13)

This is the g-analogue of the corresponding formula
in the classical case [18].
For the definition (4), one has

H{DIh(t),s}=[1=s]sh* (s 1) (14)

=—g'"[s=1],h"(s—1). (15)

Here an extra factor of g appears compared with
(11). In order to simplify our presentation, we there-
fore adopt the definition (3) in this paper. We must,
however, mention that all the arguments given below
apply equally well to the corresponding cases with
g-derivatives replaced by the definition (4).

4. Let Y "(£,5) be the transformed function of
y(x,t) obtained by taking the Mellin transform in-¢
and a Fourjer transform

G(§)=[  g(x)exp(iéx)dx
in x. Making these transforms to (1), one obtains

[s=1]gY " (E5—1) =€ (£5).  (16)

Fortunately sclution to this equation can be readily
found to be

Y'(§.5) =A(£)E7T(s), (17)

where A(£) is some function of £ only, and I (s)
is the g-gamma function defined by [4]

_ (4:9).
(9°:9)=

(a;q), = iIO(l—'aq"’). (19)

L(s): (1-¢) 7", 0<qg<l. (18)
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I (s) satisfies

llm L(s)=T(s), (20)

1_:,(5+ 1) = [S]qr(s)v

Inverse-Mellin transform of ¢72T,(s) in (17) is

L(1y=1. (21)

sz £ (s)ds. (22)

The poles of I (s) are s=0,—1,-2,.... The
residual of I (s) at pole s = —n (n 2 0) is [4):

l—q r+ 1

(47";9)alng

The symbol {(a;q), is the g-shifted factorial;_
(a;9)o=1, n=0, (24)
(a:9),=(1-a)(1—ag) - (1-ag""'),
n=1,2... (25)
Hence (iZj becomes
R T
__1 E (26)
Ing n=0 (q )

In view of the identity [4]

-n N VEYIIR
(a7":4), = —7] 9 "2(g39) 0, (27)
(26) can be expressed as
1___‘q ® qn(n 1)/2

- q(1—q)¢s
et 5y G, LT 0E]

l1—g )
=B a1 -0 e, 29)

The function E_( 2) (for complex z) is the g-ex-
ponential function defined by [4]

E: a{n=13/2

E(=y L%

= -——(q;q)" ={(=2:9)w- (29)

In the limit ¢ —> 17, Eq. (28) tends to the usual
exponential function exp(— £7¢). Finally, perform-
ing an inverse Fourier transform we obtain the solu-
tion of the g-diffusion equation

y(x,t)

=*"‘/——_f A(¢)

~q(1—¢q)¢&? )}e"‘lf“ df.

(30)
Setting ¢ =0 in (30) shows that
1 - i = ‘
A( &) = [ y(x,0)e/¢ dx
V27 /e

— 1 = r'.fxd

—= [_xf(x)e x

=F(¢) (31)

is the Fourier transform of y(x,0)=f(x). So the
final solution of the initial problem.is... ... ... ... .

-
y(xat)=ﬁf"f(§)

XE(—q(l~qg)&ir)e "4 dE. (32)

This is the g-analogue of the solution given in [19]
for the corresponding classical case. One can easily
check that (32) indeed satisfies (1) by using the
following identity

DSE,(At) = E,(Af). (33)

_
g(l—q)

Let us consider an example. Suppose the initial
profile is f(x)=exp(—x?/4b)/V2b, (b>0). Its
Fourier transform is F(£) = exp(~b¢?). Then from
(32) and (29), we get

¢ 4
v(x) =B a1 = )i |7(). (34
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In the fimit g — 17, Eq. (34) gives the classical
solution

d 1 £2
Y= erﬁ(\/_z_"b"e_ T)
1 x2

Wem (35)

5. As another example, let us consider the follow-
ing wave equation

.l

(DfY y(x.1) = (00,

(—o<x<ew®,t>0) (36)

with initial conditions

y(x.0) =f(x). Dfy(x,0) =g(x).~ t&(37)

We assume that both f(x) and g(x) vanish as
x — % In this case the Fourier-Mellin transformed
function ¥ *(£,s) obeys

[s—l]q[s—-Z]qY“(g,s—Z) = —¢2Y*(£,5).
(38)

The general solution is

Ye(¢s)
=[A(E)(=i&) T +B(£)(ig) ] I(s),

(39)

where A(£) and B(£) are some functions of £.
Performing the inverse-Mellin transform, we get

Y(£.1) = ——n{A(£)E,(ig(1 - g)£1)

Ing

+B(£)E(~ig(1—q)¢r)}. (40)

Here Y(¢£,t) is the Fourier transform of y(x,7) with
respect to x. Now we rewrite (40) in terms of the
g-Sine and the g-Cosine function which are defined

by [4]

E (ix) = éq( = ix)

Sinq(x) = Y (41)
Cosq(x) _ E,(ix) +2£'q(—ix) | - (42)

The result is
l—gq
y(6:0) = 7 {C(6) Cos (a1 = ) 1)

+0(&)sin(a(1-9)€n}.  (43)

where the functions C(¢) and D(¢&) are linear
combinations of A(£) and B{¢). The inverse-Four-
ier transform of (43) is

y(x.t)
- s et (ot - a)e)
+D(¢)Sin(q(1-g)én)}e v dg.  (44)

Letting ¢ = 0 in (44), one can check that the function
C(£) is related to the Fourier transform of f{x) by

2 e, (45)

F(f) - Ing

Making use of the following relations, which can be
obtained by means of (33):

D/ Sin, (At) = Cos, (Ar), (46)

M
g(1-q)

D¢ Cos, (At) = — Sin,( Az), (47)

_
g(1—q)

we can relate D(£) to the Fourier transform G(¢&)
of g(x) as follows:

_G(E)=1—L%D(f)é’- (48)

With these results, we finally obtain the solution to
the initial problem of Eq. (36):

y(x,t) = —&E{F(E)COS{,(Q(I —q)§1)
G( ¢

+

sin,(at —q)gr)}e‘*‘f-‘ .
(49)



]
(8]
3

This solution is the g-analogue of the solution to the
corresponding classical case given in [19].

6. We now see how the above steps are gener-
alised to the equation:

5

(D7) ¥(x) = = y(x.1),

dx*
(-2 <x<2,1>0, n>2) (50)

with initial conditions
y{(x0) =f(x), (D7) y(x,0) =g,(x),
k=1,...,n—1, (51)

where the functions f(x) and g,(x) are assumed to
vanish as x = +¢0, The Fourier-Mellin transformed

function ¥ *(¢,s5) obeys R
(_1)”[5'_ l]q[s-'z]q T [5 _”]qY*(f'S_”)
= —§2Y"(§,s). (52)
The general solution is
Yo (&.s)
b _@m+l F
=FQ(S)§ " ;()Am(é:)[_“e n T”} .

(53)

where A _(£) are some functions of &. We can now
perform the inverse Mellin and Fourier transforms to
get the final solution, which is given formally as

1 n—1 . A
w) = et T [ 4 (6)

(Zm+ 1) z

X Eq(CI(l —g)e ” mE”t)e“f" d¢.
(54)

The functions A (£) can then be related to the
Fourier transforms of the functions f(x) and g.(x)
from the initial conditions.

7. To summarise, we show that the Mellin trans-
form of the g-derivative resembles most closely the

C.-L. Ho / Physics Letters A 268 (2000) 217-223

corresponding  expression in classical analysis,
whereas transforms such as the Fourier and the
Laplace transform fail in this respect. As such the
Mellin transform can be useful in solving certain
g-difference equations. We illustrated this fact with a
few examples. However, for the Mellin transform to
be really useful, a more complete knowledge of the
properties of the g-special functions under various
integral transforms (Fourier, Laplace, Mellin, etc.)
and their inverses has yet to be attained. What is
more desirable is to invent integral transforms or
g-integral transforms that possess the virtue of the
Fourier and the Laplace transform in the classical
analysis mentioned in the introduction.
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Planar Dirac Electron in Coulomb and Magnetic
Fields: an example of quasi-exactly solvable models

Choon-Lin Ho! and V.R. Khalilov?

1. Department of Physics, Tamkang University, Tamsui 25137, Taiwan
2. Department of Physics, Moscow State University
Moscow 119899, Russia

1 Introduction

The Dirac equation for an electron in two spatial dimensions in the
Coulomb and homogeneous magnetic fields is discussed [1]. This is
connected to the problem of the two-dimensional hydrogen-like atom
in the presence of external magnetic field. For weak magnetic fields,
the approximate energy values are obtained by semiclassical method.
In the case with strong magnetic fields, we present the exact recur-
sion relations that determine the coefficients of the series expansion
of wave functions, the possible energies and the magnetic fields. It is
found that analytic solutions are possible for a denumerably infinite
set of magnetic field strengths. This system thus furnishes an ex-
ample of the so-called quasi-exactly solvable models [2]. Solutions in
the nonrelativistic limit with both attractive and repulsive Coulomb
fields are briefly discussed by means of the method of factorization.



2 Motion of Dirac electron in the Coulomb and mag-
netic fields

The planar Dirac equation for an electron, with mass m and charge
—e (e > 0), minimally coupled to an external electromagnetic field
A, has the form (weset c=h = 1)

(18, — Hp)¥(t,r) =0, (1)
where
Hp=aoP +pm—eA’=0,P, — 0sP, + o3m — eA®  (2)

and P, = —10; + eAy. ‘

We shall solve for both positive and negative energy solutions of
the Dirac equation (1) and (2) in an external Coulomb field and a
constant homogeneous magnetic field B > 0 along the z direction:

AYr) = Ze/r (e>0), A,=-By/2, A,=Bz/2. (3)
We assume the wave functions to have the form

U(t,%) = = exp(<iBOh(r, ) (4)

where F is the energy of the electron, and
1 F(r)e'?
Pilr, ) = _\/_F ( G(,r)ei(H-l)cp ) (5)
with integral number I. The function ¥(r, ¢) is an eigenfunction of

the conserved total angular momentum J, = L, + S, = —10/0¢ +
o3/2 with eigenvalue 7 = { + 1/2. The Dirac equation becomes:

1
dFf _ (143 eBr F+(E+m+@)G=0, (6)
dr T 2 r

§+ l+2+eBr G—(E—-m+—3)F=0, (7)
dr 7 2

e

2



where o = €% = 1/137 is the fine structure constant.

In a strong magnetic field the asymptotic solutions of F'(r) and
G(r) have the forms exp(—ar?/2) with a = eB/2 at large r, and 77
with

7=l +1/22 = (Za)® | (8)

for small r. One must have Za < 1/2, otherwise the wave function
will oscillate as 7 — 0 when ! = 0 and [ = —1. In this paper we
shall look for solutions of F(r) and G(r) which can be expressed as
a product of the asymptotic solutions (for small and large ) and a
series in the form

F(r)=r" exp(—ar2/2) 3 a,r", (9)

n=0
G(r) = r" exp(—ar?/2) 2_:0 Br™ (10)

with ag # 0, By # 0. Substituting (9) and (10) into (6) and (7), we
obtain -

- (z+—;-) oo + Zafy=0, (11)
[('y+1)—(l+%): ay + Zafi+(E+m)By=0, (12)
[(n-}-’y) — (l+%) an + Zaf,+ (E+m)Ba1 —2aan_2 =10

(n > 2) (13)
from (6), and

(v+1+3) 8 — Zaey =0, (14)

(n+'y+l+%)ﬂn — Zaa, — (E—m)a,_1 =0 (n > 1)15)

3



from (7).
Eq.(11) and (14) allow us to express By in terms of ey in two forms:

B = —22 1 a (16)

which are equivalent since v = \/(l +1/2)2 — (Za)? . Solving (12)
and (15) with n =1 gives

+i+H(E-—m)+(y+1+3)(E+
a = _(’7 2)( ) (7 - 2)( m) A 010(,18)
@y+1)(y+1+1)
2(y+D)E—-m
: . 19

ZEDER : (19)
From (15) one sees that 5, (n > 1) are obtainable from e, and o, 1.
To determine the recursion relations for the «,,, we simply eliminate

Br and B,_1 in (13) by means of (15). This leads to (for n > 2):

A

(n+7+l—%) (n2+2n'y)an

+Zal(n+’y+l-—%) (E—m)+(n+7+l+%) (E+m)]an_1

1 1
+(n+’y+l+§) Eg—m2—2a(n+'r—|—l—§)]an_2=(;t}20)

We impose the sufficient condition that the series parts of F(r)
and G(r) should terminate appropriately in order to guarantee nor-
malizability of the eigenfunctions. It follows from (20) that the so-
lution of F(r) becomes a polynomial of degree (n — 1) if the series
given by (20) terminates at a certain n when a, = an41 = 0, and
an = 0 (m > n+ 2) follow from (20). Then from (15) we have
Bri1 = Brya = ... =0. Thus in general the polynomial part of the
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function G(r) is of one degree higher than that of F. Now suppose
we have calculated oy, in terms of ag (o # 0) from (18) and (20) in
the form:

a,=K(l,n,E,a,Z) o . (21)

Then two conditions that ensure &, = 0 and a1 = 0 are
K(l,n,F,a,Z)=0 (22)
and
Ez—m2=2a(n+7+l+%) , n=12... (23)

Since the right hand side of (23) is always non-negative !, we must
have |E| > m for the energy.

For any integer n, egs.(22) and (23) give us a certain number of
pairs (E, a) of energy E and the corresponding magnetic field B (or
a) which would guarantee normalizability of the wave function. Thus
only parts of the whole spectrum of the system are exactly solved.
'The system can therefore be considered as an example of the quasi-
exactly solvable models defined in [2]|. In principle the possible values
of E' and a can be obtained by first expressing the a (or E) in (22) in
terms of £ (a) according to (23). This gives an algebraic equation in
E (a) which can be solved for real E (a). The corresponding values
of a (E) are then obtained from (23). In practice the task could be
tedious. The simplest cases, namely, those with n = 1, 2 and 3, were
discussed in detail in [1].

1For I > 0, this is obvious. For I < —1, one has —1/2 < y 4+ 1+ % < 0, recalling that Zar < 1/2.



3 Non-relativistic limit and method of factorization

The electron in 2+1 dimensions in the nonrelativistic approximation
is described by one-component wave function v satisfying

O (Pl+ P} eB Zé¢
z(9t_( om  om 7t v

where, as before, P, = —i0, + eA,.

One can proceed in the same manner as in the Dirac case to solve
for the possible energies and magnetic fields. However, in this case
one can also follow a method closely resembling the method of factor-
1zation in nonrelativistic quantum mechanics. We shall discuss this
method briefly below. Both the attractive and repulsive Coulomb
interactions will be considered, since planar two electron systems in
strong external homogeneous magnetic field (perpendicular to the
plane in which the electrons is located) are also of considerable inter-
est for the understanding of the fractional quantum Hall effect. Let
us assume

(24)

exp(—tEt + z'lgo)'r'lll exp(—arg/Q)Q('r) ,  (25) N

1
t =
=
where () is a polynomial, and a = eB/2 as defined before. Substi-
tuting (25) into (24), we have

d? 27y d b

[d$2+ (sc —a:)gg+ (Ei;)

Here z = r/lg, lp = 1/VeB, v = |l| +1/2, b = 2m|Z|alp =
|Z|ew/2m/wy, and € = E/w;, — (2+1+ |l}). The upper (lower) sign

in (26) corresponds to the case of attractive (repulsive) Coulomb
interaction.

Qz) =0, (26)




It is seen that the problem of finding spectrum for (26) is equivalent
to determining the eigenvalues of the operator

| d? 27y d b
i (T2 75 (27)
We want to factorize the operator (27) in the form

H =a%a +p, (28)

where the quantum numbers p are related to the eigenvalues of (26)
by p = €. The eigenfunctions of the operator H at p = 0 must
satisfy the equation

ah =0 . (29)

Suppose polynomial solutions exist for (26), say Q@ = klil(:c — T),
where z; are the zeros of ), and s is the degree of (). Then the
operator a must have the form

=2y 1 (30)
3:13 k=1 — T
and the operator at has the form
2 s, 1
) AN . (31)
ox <z =1L — Tk

Substituting (30) and (31) into (28) and then comparing the result
with (27), we obtain the following set of equations for the zeros x
(the so-called Bethe ansatz equations [2]):

5 1
D -2y =0, k=l..,s,  (3)
Tk j#k L5 — Tk

as well as the two relations:
:i:b=2'yzij,:1, S=p. (33)
k=1
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Summing all the s equations in (32) enables us to rewrite the first
relation in (33) as

th= 3 z1. (34)
k=1

From these formulas we can find the simplest solutions as well as the
values of energy and magnetic field strength. The second relation in
(33) gives E =wr(2+s+ 1+ |I).

For s = 1,2 the zeros x; and the values of the parameter b for
which solutions in terms of polynomial of the corresponding degrees
exist can easily be found from (32) and (34) in the form

s=1, z = /2| +1, b=y2+1,
s=2, x = QU+1)/z2, z2=2(1+4|l|+3)/V2,
b = 2(41 +3) . : (35)

From (35) and the definition of b one has the corresponding values
of magnetic field strengths

wy, = 2m2(|lZIO_;_)21, s=1,
szmél('lZ|—C:_)23, s=2, (36)
as well as the energies
R LI
m{Za) ———(4+1+]l]) . (37)
" (@l +3)

The corresponding polynomials are

Q1=:L'—:131=2E:Fb,
2
Qg:H(m—wk)=x22F63:+2|l|+1. (38)
k=1
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The wave functions are described by (25). For s = 1,2 for the
repulsive Coulomb field the wave functions do not have nodes (for
|I| =0,1), i.e. the states described by them are ground states, while
for the attractive Coulomb field the wave function for s = 1 has one
node (first excited state) and the wave function for s = 2 has two
nodes (second excited state).
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