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Interfaces with superroughness
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We undertake an extensive analytical study of the (111)-dimensional discrete superrough growth pro-
cesses, which are the growth processes with theglobal roughness exponent larger than 1. First, we obtain the
exact expressions of the global interfacial widthw(L,t), the local interfacial width relative to the substrate
orientationw( l ,t), and the local interfacial width relative to the local interfacial orientationwn( l ,t), in terms
of the equal-time height difference correlation functionsG(r ,t). These relations are exact and can be applied
to all the (111)-dimensional discrete growth processes with periodic boundary conditions. Moreover, we
show that thelocal roughness exponent must be smaller than 1 for the (111)-dimensional superrough growth
processes withwn( l ,t) retaining the same anomalous dynamic scaling behaviors asw( l ,t); in contrast, the
local roughness exponent must be equal to 1 for those withwn( l ,t) retrieving the ordinary dynamic scaling
behaviors.

PACS number~s!: 05.40.2a, 47.55.Mh, 64.60.Ht, 68.35.Ct
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The kinetic roughening phenomenon of growing inte
faces @1–3# has brought about much interest for its wid
spread applications. Recently, much attention has been
cused on the superrough growth processes, which are
growth processes with the global roughness exponentx.1.
Among all the experimentally accessible quantities, one
the most informative quantities is the equal-time height d
ference correlation functionG(r ,t). Here,G(r ,t) is defined
as

G~r ,t ![^„h~x0 ,t !2h~x01r ,t !…2&L, ~1!

with h(x,t) denoting the interface height from a flat substra
at positionx and time t, ^•&L denoting the spatial averag
over the whole system of sizeL, and the overbar denotin
the statistical average, throughout the paper. For various
perrough growth processes with either annealed or quen
noises, the equal-time height difference correlation funct
G(r ,t), in the regime where the correlation lengthj;t1/z

!L, has been both numerically@4–7# and experimentally
@8–10# observed to display theanomalous dynamic scalin
behaviors:

G~r ,t !5r 2x f ~r /t1/z! ~2!

with the scaling functionf (y) obeying

f ~y!;H y22k for y!1,

y22x for y@1.
~3!

Here, the two independent exponentsx andz are known as
the global roughness exponentand thedynamic exponent,
respectively. Note that for the ordinary dynamic scaling b
havior @11# displayed by the truly self-affine interfaces, th
scaling function goes to a constant quickly in the smaly
limit. Thus, the appearance of the third independent nonz
exponentk, i.e., the anomalous temporal dependence in
intermediate time regimer !t1/z!L, is the signature of
anomalous dynamic scaling behaviors.
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For one decade, people have generally believed that
kinetically roughened interfaces are self-affine; namely,
local interfacial width and the equal-time height differen
correlation function have the same scaling behavior as
global interfacial width, which has been known to obey t
ordinary dynamic scaling ansatz. Therefore, the numer
and experimental establishment of the existence of ano
lous dynamic scaling behaviors is an important breakthro
in the study of interfacial kinetic roughening phenomen
Although many numerical works have been done, rigoro
analytical treatments are still rare. This motivates us to
dertake an extensive analytical treatment on
(111)-dimensional discrete superrough growth proces
with periodic boundary conditions. We first want to obta
the exact expressions of the global interfacial widthw(L,t),
the local interfacial width relative to the substrate orientat
w( l ,t), and the local interfacial width relative to the loc
interfacial orientationwn( l ,t), in terms of the equal-time
height difference correlation functionsG(r ,t). Then, we will
employ the obtained relations to explore the intriguing int
facial behaviors of the (111)-dimensional superrough
growth processes in the intermediate time regime.

Let us consider a one-dimensional interface represen
by a set of height variablesh(x,t) on a linear latticex
51,2, . . . ,L with periodic boundary conditions. The globa
interfacial widthw(L,t) is defined as

w2~L,t ![Š„h~x,t !2^h~x,t !&L…
2
‹L, ~4!

which describes the interface height fluctuation relative
the average interface height over the whole system of sizL.
In contrast, the local interfacial widthw( l ,t) is defined as

w2~ l ,t ![Š^„h~x,t !2^h~x,t !& l…
2& l‹L ~5!

with ^•& l denoting, throughout the paper, the spatial aver
calculated within a local window of sizel. The local interfa-
cial width w( l ,t), obtained by averaging over many loc
windows of the same sizel along thex axis and then over the
3559 © 2000 The American Physical Society
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randomness, describes the interface height fluctuation r
tive to the average interface height within the local windo
of size l (! the system sizeL). To extract out the effect o
local interfacial orientational instability on interfacial roug
ening, we have proposed@12# a definition of the local inter-
facial width wn( l ,t) as follows:

wn
2~ l ,t ![Š^„h~x,t !2h̃l~x,t !…2& l‹L, ~6!

which describes the interface height fluctuation relative
the local interfacial orientation within a local window of siz
l (! the system sizeL) . Here,h̃l(x,t) denotes the heights
measured from the flat substrate, of a straight line segm
obtained by least squares fit to the interfacial configuration
the local window of sizel at a given timet. Quantitatively,

h̃l~x,t !5^h~x,t !& l1~x2^x& l !s~ l ,t ! ~7!

with

s~ l ,t !5
12

~ l 221!
Š~x2^x& l !h~x,t !‹l , ~8!

which is the slope of the straight line segmenth̃l(x,t) in the
local window of sizel at a given timet of a given interfacial
configuration. Note that, throughout the paper, the term ‘‘
cal interfacial orientation’’ quantitatively refers tos( l ,t).
Consequently, the original local widthw( l ,t) and the modi-
fied local widthwn( l ,t) have the relation as follows:

w2~ l ,t !2wn
2~ l ,t !5

~ l 221!

12
^s2~ l ,t !&L. ~9!

Here, ^s2( l ,t)&L is obtained by first taking the average
w

la-

o

nt
n

-
s2( l ,t) from many local windows of the same sizel along the
x axis over the whole system of sizeL and then taking the
statistical average. Figure 1 gives a pictorial explanat
about the above related quantities.

Next, we want to first obtain the explicit relation betwee
the correlation function,G(r ,t), and the average magnitud
of the local interfacial orientation,̂s2( l ,t)&L

1/2. From Eq.
~8!,

FIG. 1. A snapshot of typical (111)-dimensional superrough
interface configuration in a system of sizeL. The solid curve rep-
resents the interface heightsh(x,t). The dot-dashed straight line

segment representsh̃l(x,t) obtained by least squares fit to the inte
facial configuration within a local window of sizel (! the system
sizeL).
^s2~ l ,t !&L5
144

~ l 221!2
ŠŠ~x2^x& l !h~x,t !‹l

2
‹L

5
144
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144

~ l 221!2Ll 2 (
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ol-
By using the properties of periodic boundary conditions,
can easily obtain the first term, denoted byA, in the right-
hand side~rhs! of Eq. ~10!

A5
12

l ~ l 221!
^h~x8,t !2&L. ~11!
eIt demands much more effort to calculate the second te
denoted byB, in the rhs of Eq.~10!. First, due to the trans
lational invariance of the system, the spatial average and
statistical average are interchangeable. Then, by using
technique of change of variables, we can rewrite it as f
lows:
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B5
288

~ l 221!2Ll 2 (
x051

L

(
x85x0

x01 l 22

(
r 51

x01 l 212x8 S x82x02
l 21

2 D
3S x81r 2x02

l 21

2 Dh~x8,t !h~x81r ,t !. ~12!

Moreover, the periodic boundary conditions give the follo
ing relation:

(
x051

L

(
x85x0

x01 l 22

(
r 51

x01 l 212x8

g~x8,x0!g~x81r ,x0!

5 (
x851

L

(
r 51

l 21

(
x05x81r 112 l

x8

g~x8,x0!g~x81r ,x0! ~13!

for any functiong. Thus, by employing Eq.~13!, we obtain

B5
288

~ l 221!2Ll 2 (
x851

L

(
r 51

l 21

(
x05x81r 112 l

x8 S x82x02
l 21

2 D
3S x81r 2x02

l 21

2 Dh~x8,t !h~x81r ,t !

5
72

~ l 221!2l 2 (
r 51

l 21

~ l 2r !

3S ~ l 2r !221

3
2r 2D ^h~x8,t !h~x81r ,t !&L. ~14!

We then substitute Eq.~1! into Eq. ~14! and obtain

B52
12

l ~ l 221!
^h~x8,t !2&L1

12

l 2~ l 221!
(
r 51

l 21

~ l 2r !

3F2r ~r 1 l !

~ l 221!
21GG~r ,t !. ~15!

From Eqs.~11! and~15!, we thus obtain the relation betwee
the average magnitude of the local interfacial orientati
^s2( l ,t)&L

1/2, and the correlation function,G(r ,t), as fol-
lows:

^s2~ l ,t !&L5
12

l 2~ l 221!
(
r 51

l 21

~ l 2r !F2r ~r 1 l !

~ l 221!
21GG~r ,t !.

~16!

The local interfacial orientation,s( l ,t), definitely has close
relations with any physical quantities related to interfa
slopes. For example, the step size~the nearest neighbor in
terface height difference! of the interface,@G(1,t)#1/2, is ex-
actly equal to^s2(2,t)&L

1/2. This equality can be easily ob
tained from Eq.~16!. In addition, the slope-slope correlatio
function ^¹h(x0 ,t)¹h(x01r ,t)&L, proposed in Ref.@13#, is
also intimately related tôs2( l ,t)&L

1/2, which can be easily
seen from Eqs.~1! and ~16!.

Subsequently, from Eqs.~1!, ~4!, and ~5!, we can easily
obtain the relation between the global interfacial wid
w(L,t), and the correlation function,G(r ,t), as
-

,

e

,

w2~L,t !5
1

2L (
r 51

L21

G~r ,t !, ~17!

and the relation between the local interfacial width,w( l ,t),
and the correlation function,G(r ,t), as

w2~ l ,t !5
1

l 2 (
r 51

l 21

~ l 2r !G~r ,t !. ~18!

Then, by substituting Eqs.~16! and~18! into Eq.~9!, we also
obtain the expression ofwn( l ,t), the local interfacial width
relative to the local interfacial orientation, in terms of th
correlation functionG(r ,t) as follows:

wn
2~ l ,t !5

2

l 2 (
r 51

l 21

~ l 2r !F12
r ~r 1 l !

~ l 221!
GG~r ,t !. ~19!

These relations, obtained above, are exact and thus ca
applied to all the (111)-dimensional discrete growth pro
cesses with periodic boundary conditions, no matter whe
the interface is superrough or not.

In the following, we want to employ the above obtaine
relations to study the asymptotic interfacial behaviors of
(111)-dimensional superrough growth processes in the
termediate and late time regimes. From Eqs.~2! and~3!, we
see thatG(r ,t);r 2x8t2k/z, with the local roughness expo
nentx8[x2k, in the regimer !t1/z!L. On the other hand
G(r ,t);r 2x8L2k after the correlation lengthj(;t1/z)
reaches the system sizeL. Thus, the saturated global interfa
cial width wsat(L)[w(L,t@Lz);Lx(5x81k). From a geo-
metrical argument@14#, it has been shown that the loca
roughness exponentx8<1. Consequently, for the system
with the correlation functionG(r ,t) obeying the ordinary
dynamic scaling ansatz, i.e.,k50, the global roughness ex
ponentx must be smaller than or equal to 1. Thus, the
perrough growth processes~wherex.1) must be accompa
nied by the anomalous dynamic scaling behaviors ofG(r ,t).
However, for those withG(r ,t) obeying the anomalous dy
namic scaling ansatz, i.e.,kÞ0, the global roughness expo
nentx could be larger or smaller than one. Thus, we see
the anomalous dynamic scaling behaviors ofG(r ,t) are nec-
essary but not sufficient conditions for the superroughnes
the interfaces. It has been known in the literature that
local interfacial widthw( l ,t) of the superrough growth pro
cesses displays the same anomalous dynamic scaling be
iors as the correlation functionG(r ,t). Namely, in the re-
gime where the correlation lengthj;t1/z!L, w( l ,t)
5 l x f̃ ( l /t1/z) with the scaling functionf̃ (y);y2k when y

!1 andf̃ (y);y2x wheny@1. This result can also be easil
seen from Eqs.~2!, ~3!, and~18!. Note that the nonsaturatio
of the scaling functionf̃ ( l /t1/z), in the regimel !t1/z!L,
gives rise to the substantial difference between global
local scaling behaviors. That is, the local interfacial wid
w( l ,t); l x8 at a fixed time slicet, in the regimet1/z@ l ; while
the global interfacial widthw(L,t);Lx, in the regimet1/z

@L. Since the exponentk5” 0 in the superrough growth pro
cesses, the local roughness exponentx8, which describes the
spatial scaling behavior of the local interfacial widthw( l ,t),
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has a different value from the global roughness exponenx,
which describes the spatial scaling behavior of the glo
interfacial widthw(L,t). One has to take good care of th
distinct feature, which is very crucial for correctly analyzin
and interpreting the experimental data.

Next, we substituteG(r ,t);r 2x8t2k/z into Eq. ~16! and
obtain that the average magnitude of the local interfacial
entation has the anomalous temporal depende

^s2( l ,t)&L
1/2; l x8tk/z, in the regimel !t1/z!L. Note that, for

the systems obeying the ordinary dynamic scaling ansatz
local interfacial orientation saturates quickly after the grow
time reaching the regimet1/z@ l . Here, we explicitly verify,
in ~111! dimensions, the usual conjecture@6# that all the
superrough growth processes are associated with local i
facial orientational instability towards the creation of lar
slopes. Since all the superrough growth processes are a
ciated with local interfacial orientational instability, it is in
teresting to find out whether local interfacial orientation
instability alone causes the anomalous temporal depend
of the local interfacial width,w( l ,t); l x8tk/z, in the interme-
diate time regimel !t1/z!L. We then substitute the asymp
totics of the correlation functionG(r ,t);r 2x8t2k/z, in the
intermediate time regimel !t1/z!L, into Eq.~19! and obtain
very intriguing results:~1! for the growth processes wit
x8,1,

wn
2~ l ,t !;

2

l 2 H (
r 51

l 21

~ l 2r !F12
r ~r 1 l !

~ l 221!
G r 2x8J t2k/z

;
12x8

~2x811!~x811!~x812!
l 2x8t2k/z, ~20!

which indicateswn( l ,t) retaining the same anomalous tem
poral dependence as the original local widthw( l ,t); ~2!
while, for the growth processes withx851,

wn
2~ l ,t !;

2

l 2 H (
r 51

l 21

~ l 2r !F12
r ~r 1 l !

~ l 221!
G r 2J t2k/z50,

~21!

which indicates the leading asymptotic term of the corre
tion function G(r ,t), r 2t2k/z, having no contribution to the
asymptotic behaviors ofwn

2( l ,t).
For the ~111!-dimensional superrough growth process

with x8,1, this robust anomalous temporal dependence
wn( l ,t) implies that the local interface not only tilts, due
local interfacial orientational instability, but also forms loc
grooves or spikes as the time increases. Since the forma
s
E
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of local grooves or spikes is usually associated with the s
tial multiscaling behaviors of interfaces, we thus conjectu
that the interfaces of the~111!-dimensional superrough
growth processes with the local roughness exponentx8,1
display the spatial multiscaling behaviors. In contrast, for
~111!-dimensional superrough growth processes withx8
51, wn( l ,t) either retrieves the ordinary dynamic scalin
behaviors or has a much weakened temporal depend
~i.e., the lower order thantk/z) in the intermediate time re
gime l !t1/z!L. This result indicates that local interfacia
orientational instability is the dominant mechanism caus
the anomalous temporal dependence ofw( l ,t) and, thus, the
local interface of this class can be viewed as a normal s
affine interface but gradually tilted as the time increases.
thus conjecture that the interfaces of the~111!-dimensional
superrough growth processes with the local roughness e
nentx851 display spatial single scaling behaviors.

In conclusion, an extensive analytical study of t
(111)-dimensional discrete superrough growth processe
undertaken. We obtain the exact expressions of the glo
interfacial widthw(L,t), the local interfacial width relative
to the substrate orientationw( l ,t), and the local interfacial
width relative to the local interfacial orientationwn( l ,t), in
terms of the equal-time height difference correlation fun
tionsG(r ,t). These relations are exact and can be applied
all the (111)-dimensional discrete growth processes w
periodic boundary conditions, no matter whether the int
face is superrough or not. Then we show that the anoma
dynamic scaling behaviors ofG(r ,t) are necessary but no
sufficient conditions for the superroughness~where the glo-
bal roughness exponentx.1) of the interfaces. Moreover
we show that the local roughness exponentx8 must be
smaller than 1 for the (111)-dimensional superrough
growth processes withwn( l ,t) retaining the same anomalou
dynamic scaling behaviors asw( l ,t); in contrast, the local
roughness exponentx8 must be equal to 1 for those wit
wn( l ,t) retrieving the ordinary dynamic scaling behavior
We then conjecture that the former class is associated
spatial multiscaling behaviors and the latter class is ass
ated with spatial single scaling behaviors. It will be ve
interesting for future study to find out whether this conje
ture is valid.
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