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The Vortex Dynamics and Retardation in Type II Superconductor

Wei Yeu Chen
Department of Physics, Tamkang University, Tamsui 25137, Taiwan R.0O.C.

The eigen modes of the fluctuation of the vortex lattice are calculated by
diagonalized the effective Hamiltonian which includes both the non-local and Hall
properties. The excitations of these normal modes via the interactions between the
moving vortex lattice and weak impurities are investigated. Finally, the contribution

to the coefficient of friction » due to these excitations are also calculated.

PACS: 74.60 Ge; 74.60Ec.




1. Introduction

Since the formation of the vortex lattice in type-Il superconductors was
discovered by A.A. Abrikosov [1}, vortex dynamics and related topics have been
studied extensively {1-12]. In this Letter we shall calculate the eigen modes of the

J—

fluctuations of the vortex lattice. The effective Hamiltonian includes both non-local
and Hall properties. The interaction between a moving vortex lattice and weak
impurities are then investigated. Thé excitations of the normal modes via these
interactions are studied. Finally, the contribution of the coefficient of friction through

the dissipation of energy of the translational motion via the excitations of the normal

modes are calculated.

2. Normal modes

The Hamiltonian of the fluctuation of the vortex line lattice ( FLL ) is [4,12]

H:]_[kilr+He+H}r > (I)
where
Hyp =5 PP, (-K) @
2p %,

- ~ 1 - -
He = % Ech.uka!t (k )SV (_k) * 5 _Z(C%Kz + C44kf )S,U(k)S.“ (_k) 3 (3)

kuy L1




k

r . - . . R R . . . "
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where (pad=x.v. H,, . . and /7, represent the kinetic. clastic, and all

Hamiltonian forthe FLL. p . 1" are the effective mass density of the flux line,

and the Iall constraint, K2 =kl +&7. P (k), Sﬂ(!'r‘) are the Fouricr components of

the momentum and displacement operators, ¢, €, . C, arc the bulk,
compression, tlt and shear modulus respectively. The Hamiltonian is symmetric about’
the z-axis. one can rotate about the = -axis so that the new v -axis is parallel to all

different & directions. Then the Hamiltonian becomes

| - - - — I —5 - -

H = A= D(0P (k) + Py P (=R + — K28, (K)S, (k)

i 2P 2
15, = ~ T - - - -
+EK2‘*S'2(/‘)52(“!‘)+ﬁ[Sz(k)Pl(—k)*‘S‘;(k)f)z(‘k)]} : (5)

where (1,2)=x",y", and

- 2 . - 2 . 2 1 r 2
R M Kl :(Cf +('()G)K +C44k: “}“*""(_) Y

. 55

_ ) . | T
K22 =(Cp K ? +C44k:2)+—(—)2
g2

[ntroducing a canonical translormation

I_"(A:) =cosa, I (/{') +sina, S, (l:}




52 (it:) =-sing, P](IE) +cosa, S, (E)

H

‘!'F’;(E):cosoc2 Pz(E)+silaa2 SI(E) R

S,(ky=—sina, P,(k) +cosa, S, (k) , (6)

and following by another transformation

a (k)= RE)+ @, (bp, Sk
| ﬁ le(k)pl | |
a; (k)= Py (k) + @, ()5, S,(-k)) -, )

J—ﬁ V‘ﬂ)z(k)p2

the Hamiltonian is diagonalized

H=YW, @+ na, ®)
kit
where
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When the Tadl effect is neglected, namely when 1= 0. the results agree with the

results obtained previously [12].

3. Excitation of normal modes
The mteraction between the moving FLL in the positive v direction with a

velocity v and the defeats is given by
e Lo

If“

my

= Jr.",\' drde Vi rve e S e S Lz (1O

v

where 17 s the pinning potential cucrgy, which s the sum of the contributions of the
defects with a distance & away from the vortex core position, where £ is the order
of coherent length. Assuming that the Nuctuations of the FLL S(k) are small, so that

we can drop all the non-linear terms in S in the Taylor's expansion of V. [l we

keep only the relevant terms for the excitations of the normal modes of the FLL, the

interaction potential energy can be written as

Hoy = Y explik w) [V, ()8 (=) + 1V, (K)S (k)] . (1h
k

AGRNELIAG)

respectively,
Ox Ay P Y

- - o ;
where ¥ (k),V, (k) are the Fourier transform ol —

rom the Fermi Golden rule, alter some algebra, the excitation rate of the normal
nmodes per unit volume via the interaction between the moving FLL and weak

impurtties arc
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2, 6)7,
where D, (k), D, (k) are the density of states of the corresponding normal modes.
4. The coefficient of friction

It is understood that the contributions to the cocflicient of the friction 7

for the motion of vortex lattice come form two sources, the quasiparticles excitations

as well as the excitations of the normal modes of the FLL. Therefore, we have
n= ?]qp + Unm M (13)

The contribution due to quasiparticle excitations are given approximately by Bardeen-
Stephen {2], namely

®;
. S 14
Tar QrciEipy) (19

where p, is the normal state resistivity. The energy dissipation rate per unit volume

for the moving FLL due to the normal modes excitations is given by

dE _2r Vi

-k -k,
=% {cosa, [v (k)= + v, (k)L | ———
dt fr. i 2 K ’ K ,'Za—Jl(k)El

* D, (k) ha, (k)
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Therefore, the contributions of the coefficient of friction due to normal modes

excitations of the FLL are given by

b

ﬁ_z{icosaz[vx(i}')%w_y(i{) | |* D, (k) hig, (k)

Tome = 7 - =
Nofw k K zal (k)ﬁl

A
V28, (k)p,

-k - - -
ﬂmwdﬂumf+wwﬂﬂ 0,0y ha, By}, (16)

where N, =B/®d, are the number vortices per unit area.

5. Cenclusion

We have calculated the normal modes of the FLL by directly diagonalize;l—‘w
the Hamiltonian of the fluctuations, which includes both the non-local and Hall
properties. The excitations of these normal modes due to the interaction of the moving
FLL and weak impurities are calculated by using the Fermi Golden rule. Finally, the

contribution to the coeflicient of friction of a moving vortex via the excitations of the

normal modes are calculated.
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