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Exact solutions of Dirac equation in two spatial dimensions in the Coulomb feld are
. obtained. Equation which determines the so-called critjcal charge of the Coulomb field
is derived and solved for a simple model.

1. Introduction

Planar nonrelatjvistic electron systems in a uniform magnetic field are fundamental
quantumn systems which have provided insights into mmany novel phenomena, such
as the quantum Hail effect, the theory of anyons and particles obeying fractional
statistics.!* On the other hand, planar electron systerns with energy spectrum de-
scribed by the Dirac Hamiltonian have alsc been studied as Seld-theoretic models for
the quantum Hall effect and anyon theory.3* Related to these fieid-theoretic models
are the recent interesting studies regarding the instability of the naive vacuum and
spontaneous magnetization in (24 1}-dimensional quantum electrodynamics {QED),
which is induced by a bare Chern-Simons term.5 In view of these developments, it
is essential to have a better understanding of the properties of planar Dirac particles
in the presence of external electromagnetic fields.

In this letter we would iike to consider solutions of Dirac equation in two spatial
dimensions in the presence of a strong Coulomb field, and to discuss instabilicy of
the Dirac vacuum in a regulated strong Coulomb field. In three space dimensions

the effect of positron production by strong Coulomb field was predicted in Ref. 6
and studied in: Refs. 7-15.

2. Motion of an Electron in the Coulomb Field

Let us consider a relativistic electron in two spatial dimensions in a Coulomb field,
the vector potential of which is specified as

Ar) = —Zefr,  AT=av=0. @)
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616 V. R. Khalilov & C.-L. Ho

In (2+ 1) dimensions, the Dirac matrices may be represented in terms of the Pauli
matrices. We choose & = (—c7,0%) and 8 = o3, then the Dirac equation has the
form{c=h=1)

(i, — Hp)¥ =90, (2)

where
Hp=a P+pm+eA’=c'P—a’P +a’m+eAd’, (3)
is the Dirac Hamiltonian, P, = i3, — eA, is the operator of generalized momentum
of electron, m is the rest mass of the electron, and e = —eq, €g > 0 is its elec-
tric charge. The conserved total angular momentum only has a single component,
namely, J, = L, + §;, where L, = —i8/8p and 5, = /2.
We shall look for solutions of (2) in the form

P(t,x) = % exp{—ie Et)p(r, i}, {4)
where ¢ = +1 and F > 0. We assume the ansatz
, £
o) = e'l? i , 5)
= e A

where ! is an integer. The function (r, ) is an eigenfunction of the total angutar
momentum J, with eigenvalue [+ 1/2. Substituting (4} and (5) into (2), and taking
into account the equations

. mﬁ.m
.HI.H.ﬁlll m
Py kiPy ,R Amﬂ&ﬂmﬁv_ ﬁu

we obtain

Z
@IWH+Amm+3+|quHo_

dr 1
(M
QIQ+EQITMJS+WNV\HO.
dr r T

where a = ¢2 = 1/137 is the fine structure constant.

The exact solutions and the energy eigenvalues with €& < e corresponding to
the stationary states of the Dirac equation may be found in full analogy with the
case of three space dimensions {we shall follow Ref. 16). Let us look for functions

f and g in the form

f=vm+Ee Q1+ Q2),
g=+m- mwzr\u\ﬁI;Op - @Nv )

(8)

where

Tr/08" (Zay. ()
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The value of « is to bLe found by studying the behavier of the wave function at
small 7. From (7) and (8), together with the equality (v — 1/2)? — (ZaE/A)? =
{141/2)® — (Zam/A)?, one can derive the differential equations satisfied by () and
(5. Tt turns qut that the functions @ and Q4 whieh rendered the solutions of (7)
finite atp= 0 are given in terms of the confluent hypergeometric function F(a, b; z)

as
1 ZaFE
= AF DR B Py
QH A Aw_‘ B h Y v y )_‘.bv )
(10)
1 ZaFE
s 2= BF = Pgs
Q.N b A\x + 3 h ) v y<Ti Bv
The constants A and B are related by
v-3 - BE
B=——F—2_A. 11
NJF w + NWE A V
The energy eigenvalues are defined by
1 ZaFE
.,T.ml%nl:q. (12)

It is easy to show that the following values of the quantum number n, are allowed:
n,=0,1,2,...,if! >0, and n, = 1,2,3,...if ] < 0. Therefore, the electron energy
spectrum in the Coulomb field (1) has the form

12t

(Za)?
?q + U127 - Am&mv”

E=mi{l4 . {13}

It is seen that
Ey =my/1-{2Za)? (14}

for I = n, = 0, and E; becomes zero at Za = 1/2, whereas in three spatial
dimensions, Eq equals zero at Za = 1, Thus, in two space dimensions the expression
for the electron ground state energy in the Coulomb field of a point-charge Z|e| has
no physical meaning at a much lower value of Za = 1/2, and the corresponding
solution of the Dirac equation oscillates near the point r — 0.

3. Critical Charge

It is known!®!® that in three spatial dimensions the expression for the electron
ground state energy in the Coulomb field of a point-charge Zle| becomes purely
imaginary when Z > 137, and that its interpretation as electron energy has no
physical meaning. "To determine the electron energy spectrumn in the Coulomb field
with such a charge we need to eliminate the singularity of the Coulemb potential
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618 V. R. Khalilov & C.-L. Ho

of a point-charge at r = 0 by cutting off the Coulomb potential at small distances.
This is equivalent to taking into account the nucleus size. In three space dimensions
the electron energy spectrum in the Coulomb field regulated at small distances was
first considered in Ref. 15. With increasing Z in the region Z > 137, the electron
energy levels in such a fieid were found to decrease, become negative, and may
cross the boundary of the lower energy continuum, E = —m. The value of Zle] =
Zc|e] at which the lowest electron energy level Teach the boundary of the lower
energy continuum is called the critical charge for the electron ground state.** 14 If
Z continues to grow and enters the transcritical region with 2 > Zc, the lowest
electron energy level “sinks” into the lower energy continuum, which result in a
rearrangement of the vacuum of the QED. This rearrangement is constrained by
Pauli’s exclusion principle. If the electron ground state at Z < Z; is vacant, two
electron-positron pairs are created, if it is half-occupied, one pair is created; and if it
is occupied, no pairs are created. The Coulomb potential is repulsive for the created
positrons, so they go to infinity. Hence at Z > Z. a quasistationary state appears
in the lower energy continuum and the new vacuum of QED, which corresponds
to filling of all the electron states with £ < —m, has the total electric charge
2¢.12-14 Indeed, all the electron states with £ < —m (the Dirac sea) were filled at
Z < Z., so electrons created by the strong Coulomb field with Z > Z, cannot be
described by means of 3 convenient wave function, and the notion of charged vacuum
was introduced to describe these states.”~%121% In terms of the new vacuum, the
density of electric charge p(r) is classical. It is a function characterizing the spatial
distribution of the real electric charge appearing in the new {charged) vacuum, while
in terms of the old {uncharged) vacuum, this function should be interpreted as the
probability of two electrons (with charge 2e) being present at a given point in space.

We would like to see how the same system behaves in two dimensions. Let
us therefore consider the solutions and the energy eigenvalues corresponding to
stationary states of the Dirac equation in the Coulomb field with 22 > 137 and
find the corresponding value of Z.. To find Z. it is enough to study the energy
region near the boundary of the lower energy continuum, —m. We shall rewrite the
Dirac equation, taking into account the fact that e E = —m. Introducing functions
F(r) = rf(r) and G{r) = rg{r), and eliminating G{r) from (7), we arrive at the
equation for the function F' near the boundary of the lower energy continuum —7m

in the form

&wm...?..v A.m_,m _ E‘Nmn_: 26FEZo + ANQVm — MQ+ “_.vv M.Q.v =10. C.mv

dr? + P re

We note that near the boundary of the upper energy continuum for eE == m, the
function G{r) obeys Eq. (15) with F(r) replaced by G(r).

Solution of (15), which tends to zero as r — 00, may be expressed by means of
the Whittaker function (see also Ref. 17)

P(r) ~ Wiz (2A7), (16)

Dirac Electron in a Coulomb Field in (2 -+ 1) Dimensions 619

where

mumlm%, v=2/[Za? -+ 1/2)%, A=ymi-E'. (I7)

From (7), the function G(r) at ¢E = —m can be obtained as

*

Glr) = mla ? i:f ﬂ%v . rmv

Near the boundary of the upper energy continuum, the function G{r) is given by
the Whittaker function in Eq. (16) with ¢ E = m, while the function F(r) can be
found from the relation

= Za

1 aG
F(; G+r— | . 9
(r) C +ro u (19)
Using the asymptotic representation for Whittaker function at large |z] in the form
Wa,ulz) ~ e (2P, {20)

it is seen that the bound electron state (with |E| < m or A > 0) is localized in the

plane.
If we treat (15) as a one-dimensional Schrédinger-type equation which describes

a particle with “particle energy” E' = (E? — m?}/2m in the field of the effective
potential {in particular, for { = 0), the behaviar mentioned above may be easily

understood:
Ug(r) = —eEZa/mr — (Za)?/2mr?.

We note that the effective potential is wide enough near the boundary of the lower
energy continuum (for behavior of the effective potential in three space dimensions
see e.g. Ref. 14), and that the effective potential in two space dimensions does not

contain the spin electron term —s(s + 1) = —3/4.
The solution of (15} at eE = —m can be written in terms of the MacDonald

function of imaginary order
F(r) = V7K. (V8mZar). (21}

The function G(r) at ¢E = —m is determined by (18). In the following we shall
determine the critical value Z; for a simple model in which the potential Ag(r) is
regulated at small distances as follows:

Af(r) = {22)
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In the region r < R, the function F(r) obeys the equation

d*R dF Za\? 1 -
P S - 2 _
) ﬂ&ﬂ.f eE + mv —m +q F{ry =0, {23)
The solution of (23) is
.TJT-V = ﬁ_ﬂ,ﬁuh_w_ﬁﬁﬂv + mw \_:Am.ﬂvv ) . A.Ne\s
where |
Zo\2
K= Tm+ %u ~—m?, (25)

and J,{z) and Y, (z) are the Bessel and the Neumann functions of integer order n.

In order for the function F{r) to be finite at the point ¥ = 0, we need to set
By = 0. To determine the energy spectrum we need to match the solutions at the
point r = R:

DS |0_3
M‘Jﬁ.ﬁv r=R—{ a M...ﬁ...‘u.vﬂ“:.?c . ﬂmmv

Taking into account the fact that R is much less than 1/m so that x = Za/R,
we obtain, for the state with { = 0 and ¢E = —m, the following equation that
determines {at fixed R} the critical charge:

A 1 Ki(2)

w00 =i Ve R ) (27)

Here X = Zea, v = VaXT—1, z = V8mRX and K|, (z) = dKi.(z)/dz. Equa-
tion (27) may be solved numerically. As we are interested only in the critical charge
corresponding to the ground state, we can consider small values of z. In this case,
the MacDonald function with imaginary order K. (z) has the following expansion:

A v sinl i 3
K (z}) — ; 51n t¢~|+m.m,.w~ﬁw+ﬁxu
N1 3 i A Ir 4 t. 1 v tar v+ Awmv
+ sin|vln—- 4 argl + i) 1 e

Numerical solutions of Eq. {27) give Z. = 84, 89 at Am = 0.02 and 0.03, respec-
tively. m,o,ﬁ..nogﬁwlmoz purpose, we recall that Z, =~ 170 at Rm = 0.03 for the
analogical model in three space dimensions.!?~14

Thus, the Dirac vacuum in two space dimensions in the presence of a strong
Coulomb field is unstable against electron-positron production at significantly
siialler values of the critical charge than in the case of three spatial dimensions.
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Another difference between these two cases results from the fact that electrons
confined to a plane behave like a spinless fermion. So if the ground electron state
at Z < Z. is vacant, one pair is created; if it is occupied, no pairs are created.

4. Summary

In this letter we present the exact solutions of the {2+ 1)-dimensional Dirac equation
with a Coulomb field, and determine the critical charge Z of a regulated Coulomb
source for which the Dirac vacuum of the system become unstable. At 2 > Z. the
lowest electron state of discrete spectrum is the state with n, # 0. So if the electron
ground state at Z < Z, was vacant, then at Z > Z; an electron would be created,
together with a hole in the lower energy continuum. According to Dirac, this hole
is to behave as a real positive charged particle far from the Coulomb center. Thus,
phenomena that may occur at Z > Z, are many-particle, and to describe them it is
necessary to apply the quantum field theory. From the point of view of QED, the
strong Coulomb field with Z > Z. creates a positron and changes the vacuum in
such a way that it gains the electric charge which is exactly equal to the electron
charge e. The spatial distribution of the electric charge appearing in the vacuum
looks like the spatial distribution of the electron charge in the level with n, =0
in an atom with Z < Z.. However, the density of the vacuum electric charge is a
function characterizing the spatial distribution of the real electric charge appearing
in the vacuur, while in the atom this function gives the probability density that
the electron {with charge e) may be found at a given point in space.
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