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Quantum metastability in a class of moving potentials
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In this paper we consider quantum metastability in a class of moving potentials introduced by Berry and
Klein. This class of potential has height and width scaled in a specific way so that it can be transformed into
a stationary one. While deriving the nondecay probability of the system, we demonstrate that the appropriate
technique to use is the less well known method of scattering states. This method is illustrated through two
examples, namely, a moving &-function potential and a moving barrier potential. For expanding potentials, one
finds that a small but finite nondecay probability persists at large times. Generalization to scaling potentials of

arbitrary shape is briefly outlined.

DOI: 10.1103/PhysRevA.65.022111

L INTRODUCTION

An interesting issuc in cosmology is the evolution of
metastable states in the carly universe in the original version
and its variants in the inflationary models [1,2]. In these
models inflation of the early universe is governed by a Higgs
field trapped in a metastable state. Inflation ends when the
metastable statc decays to the true ground state of the uni-
verse. During inflation the universe expands exponcntially. it
is thus obvious that the metastable state of the Higgs field is
trapped in a rapidly varying potential. The problem is there-
fore a truly time-dependent one. However, owing to the in-
herent difficulties of the problem, more often than not one
considers the decay of the Higgs field in a quasistationary
approximation, in which the decay is studicd by assuming a
static potential {3]. Certainly this approximation is hard to
justify, but for the present onc has to be content with it
Ultimately one hopes to be able to tackle the nenstationary
casc. To this end, it 1s desirable to gain some insights first by
studying metastability in time-dependent potentials in simple
quantum-mechanical models.

Time-dependent potentials can be broadly divided into
three classes. Potentials in the first class are of time-
dependent strength. When the strength is small, the Schro-
dinger equation can be solved by time-dependent perturba-
tion theory. Almost all pedagogical examples belong to this
type. When the strength of the potential is not small, other
methods of solution must be sought. For example, solutions
of time-dependent harmonic oscillator [4] and time-
dependent linear [5] potentials can be obtained hy the
method of invariants. We note that the intercsting phenom-
enon of quantum tunneling induced by an externally driven
field has also been examined experimentally and theorcti-
cally [6~8]. The second class of potentials involves time-
dependent boundaries. Unlike the first class, this class of
potentials has attracted much less attention, and almost all
previous work in this area concerned only the simplest of all
cases, namely, an infinite potential weil with a moving wall
[9,10]. The last class is a combination of the previous two
classes.

We believe that the barrier potential in an inflationary
universe is nonstationary; not only the barrier height but also
the barrier width should be changing as time clapses. How-
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ever, it will be extremely difficult to study metastability in
such a time-dependent potential in full generality. Thus it
would be helpful if the quantum tunneling effect could be
studied in any class of moving potential, special though it
may be, as a step toward understand the decay of a nonsta-
tionary metastable system.

In this paper we consider quantum mctastability in a class
of scaling potentials that allows one to apply techniques used
in the corresponding problem with stationary potentials. This
class of potentials was introduced by Berry and Klein [11].
These potentials have heights and widths scaled in a specific
way so that one can transform the potential into a stationary
one.

The organization of the paper is as follows. In Sec. 1 we
give a general discussion of the solutions of the Schrodinger
equation with the scaling form of the ttme-dependent poten-
tial introduced in [11]. It is argued that the most suitable
technique for studying quantum metastability in such a po-
tential is the less well known method of scattering states.
Twa simple examples of such metastable systems, a moving
&-function potential and a moving square barrier, are inves-
tigated in Secs. IIT and 1V, rcspectively. A generalization to
an arbitrary barrier is briefly discussed in Sec. V. Section VI
concludes the paper.

11. SCHRODINGER EQUATION WITH A SCALING
POTENTIAL

We consider the problem of quantum metastability of a
particle of mass m trapped in a moving potential F(x,z)
which has the scaling form proposed by Berry and Klein
[11], namely, ¥(x,t}=¥(x/L{)}L*(z), where L{t) is a
time-dependent scaling factor. The Schrodinger equation is

_ﬁé"l’(x,t)ﬁ #t g l 17( x )w
i — = ﬁﬁ;{z-i-zfz(—tj m (x,6. (1)

So far solution of Eq. (1) is restricted mostly to the special
case in which ¥ has the functional form of an infinite poten-
tial well, i.e., F{x,t) is an infinite well with a moving wall
[9,10]. In this case, the scaling factor L2(¢) in front of ¥ is
immatcrial,
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We assume V1o have the generic shape of a potential well
that is impenctrable to the left and has a finite barrier to the
right, much like that usually employed in the discussion of «
decay. The scaling factor L (7} is assumed to be a linear func-
tion of time:

L{t)=Ly+vt, wv=const (2)

Of course, for v<<0, the problem is meaningful only for time
duration 0<t<Ly/|v]. Equation (1) cannot be solved by
separating the time and spatial coordinates. However, for the
scaling form of ¥(x,1) in Eq. (1) and the linear form of L(1),
separation of variables can be achicved through a serics of
transformations introduced in [12,11] (sce also [9,10]). One
first transforms the coordinate frame into a rescaled frame

with a rescaled coordinate x defined by

X

-‘F(f)Em- 3)

[n this frame the Schrodinger equation becomes

S T LN

— 4+ ik x x,0).
2mlL? 95’ Loy
4)

i a\I»’ )=
11(% (x,8)=

Equation (4) can be further simplified by the transformatien

W(x,t)= plmZILex (5 1) (%)

L{t)

and the introduction of a new time variable 7:

Jf ds N t 6
o Ll ©

After substituting Egs. (5) and (6} into Eq. (4}, one obtains
the equation

2 -2

- &

d _ he & _ -
zﬁ;;@(x,r)— ™ E(D(x,r)+ V(i )P(x,r), (1)

which resembles the Schrodinger equation with a stationary
potential, Equation (7} can be solved by separation of vari-
ables:

O{x,7)=D(x)e UDET, ®)
where @ (x) satisfies the eigenvaluc equation

R L - _
[— o-—+ V(x)]%(x) =£,®,(x). (9

2m dx?

Once Eq. (9) is solved exactly in the rescaled frame, the
exact wave function m the original frame is then given by

PHYSICAL REVIEW A 65 022111

‘pk(){,f)=

e('"”ml(””“‘**'ze‘“”‘“‘”-O“Ef«‘@k{ f) '
L(1) L

(10}

The set of solutions (10) is complete and orthonormal:

(‘Pk(x,:}‘,‘lf,(x,t)):((Dk(f)\@;(f)):5“, (1)

s0 using this set of solutions we can find a solution satisfying
any initial condition. Furthermore, if an initial state ‘¥ {x,0)
is expressible in the basis {¥,} as

W(x,0)=§ W (x,0), =T (x,00|¥(x,0)),
(12)

then at a later time ¢ the state is
W(x,0)= 2, cW,(x,1). (13)
P

We have now succeeded in transforming the original
time-dependent  Schrodinger equation into a time-
independent onc. The prablem of calculating the decay prob-
ability of a particle contined in ¥(x,f) at time ¢ is reduced to
the corresponding problem with a static potential P(x).
Hence techniques used in the time-independent potential for
calculating decay rate can be borrowed.

However, there are somc subtletics. Naively, one is
tempted to employ the best-known method, namely, the com-
plex eigenvalue method, proposed by Gamow in his studies
of @ decay [13]. n this approach an “outgoing wave bound-
ary condition’ is imposed on the solutions of the Schro-
dinger equation for the particle trapped in the well. That
means incoming plane wave solutions outside the potential
well are discarded right from the beginning. This procedure
naturally leads to an eigenvalue problem with complex en-
ergy eigenvalues. One then relates the imaginary parts of the
energy to the decay ratc. While the complex eigenvalue
method is straightforward and physically reasonable, it suf-
fers from some conceptual difficulties [14]. For example,
how can energy eigenvalues be complex as we are dealing
with a Hermitian Hamiltonian? Also, the eigenfunctions are
not normalizable, a difficulty directly related to the eigenval-
ues being complex. Furthermore, the particle trapped in the
well cannat be in an eigenstate of the system in the first
place, since such states are not completely confined at ¢=0.

Apart from the difficulties mentioned above, the complex
eigenvalue method cannot be employed in the present case
for other reasons. First, the problem we are interested in is an
intrinsically time-dependent one, with a nonconservative
Hamiltonian. Hence encrgy eigenvalucs and cigenstates lose
their meanings altogether [£ in Eq. (9) is not an energy
eigenvalue] Second, the “outgoing wave boundary condi-
tion,” essential to Gamow’s method, cannot be imposed in
our casc, The reason is as follows, As discussed before, in
order to fix a moving potential we need to transform our
problem 1o a corresponding static one in a rescaled frame.
But m this frame the meaning of an incoming or outgoing

022111-2
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plane wave is rather obscure. In fact, it can be checked that

an outgoing plane wave in the original x-r {rescaled x-7)
frame contains both “incoming™ and “‘outgoing” compo-
nents in the rescaled x-7 {original x-¢) frame.

The instanton method is another technique commonly
uscd in the calculation of the decay rate of a metastable state
[15). This semiclassical method amounts essentially to find-
ing the imaginary part of the ground state energy of the sys-
tem. Since it is based on the iwdea of cigenvalues of the
Hamiltonian, it is therefore not suitable here.

One more method that can be useful in tackling the preb-
lem is the complex scaling method [16]. The gencral idea of
this method is to consider a complex rotatcd Hamiltonian
obtained from the usual Hamiltonian by making the position
and momentum complex. This resolves the paradox that the
eigencnergies are complex, since now the complex rotated
Hamiltonian is no longer Hermitian. A pleasant merit of the
method is that the eigenfunctions associated with these com-
plex resonant eigenvalucs are square integrable, and thus
various approximation methods developed for bound states
can be applied to the scattering processcs. However, this
method, while clegant in many respects, is not uscful in our
present case, sinee it also requires the idea of eigenencrgy.

Since these common methods fail to suit our purpose, we
have to look for alternatives. Forfunately, a different method
exists, namely, the scattering state method (or virtual level
methoed, as Fermi called it) (17]. This method is much less
well known and seldom used in the literature [18]. However,
it is conceptually the most satisfying of all the methods. In
this method, one first constructs the initial confining state,
which is not viewed as an eigenstate, but rather as a linear
superpasition of scattering states with real energies, and fol-
lows its evolution in time. In the course of this evolution, no
cnergy will become complex. Unlike the Gamow states, the
scattering states contain both incoming and outgoing compo-
nents in the region inte which the particle escapes. [t is this
feature of the method that makes it most suilable in the
present problem. The method is casily adapted to Eq. (7) by
taking the scattering states as the states (8) with real values
of E.

In the next two sections, the scattering state method is
applied to two simple examples of the class of scaling po-
tentials. As the scattering state method is not so weil known
in the literature, we think it appropriate to give some details
in order to make this work sclf-contained. The procedures
given in [14] are slightly adapted to our needs.

III. MOVING &-FUNCTION POTENTEAL

The first example is a uniformly moving 8-function po-
tential

Vix,t)=

_ . )
L(z} = (L(r) a), x>0,
(14}

PHYSICAL REVIEW A 65 022111

where a(£)=alL(t)>0 gives the location of the S-function
potential. This class of potentials was defined in the last sec-

tion and corresponds in the tescaled frame to ¥{x)= for
¥<0 and P(x) =V d(x—a). One has ®{x)=0 in the region
¥<0. For x>0, Eq. (9) is

#2 dz‘b(x)

33 Py a)D()=ED(E).  (15)

Its general solutions are

_ sin(kx), O<x<a,
Px)= — I (16)
Ceoslhx+8), a<x,

where k= V2mE/#, C is a real constant, and # is a phase
angle. Note that the wave function is real, and includes an

incoming wave component in the region x> g. This ensures

that &, and hence E | is always real. The wave function and its
first derivative satisfy the following boundary conditions at

=a:
B(x=a")=P(z=a") (7
and
dd)(_;) —dtp@ ~2—,£V0¢(x a). (18)
de ;e ode i #

From these relations the coefficient C can be determined as a
function of ks

_ - ( __ 2mby __)2
CAE)=sin*(kat+ | cos{ka)+ ———sin(ka)| . (19)
hika

Physically, the value of C*(E) can be interpreted as the ratio
of the probability of finding particles in the region x>a 1o
the probability of finding them within the confined region
0<x<g for a particular k. The general shape of C*(F) is
shown in Fig. 1, from which we can assert that the particle
can be trapped within the confined region only when C?
assumes one of its minima, which occur only in the neigh-
borhood of some specific values of k. In thesc regions the
values of C*(k) are extremely small. From Eq. (19) it is
obvious that these minima will be centered around £,
=pwia {(n=12,...) fie, sin(k,a)=0) as long as F is
large enough so that 2m Py /A% nar.

For large ¥, approximate analytic expressions can be ob-
tained and compared with the corresponding results in the
time-independent case [19). According to the scattering state
method, one constructs confining states in the potential well
by taking a suitable superposition of the scattering states
with % in the neighborhood of k,. To this end, let us first

expand C? about £,=#2k2/2m (we revert to the variable £
below):

022111-3
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'3 ¥ Ll v

0.00 3.14 628 942
kd
FIG. 1. The shape of In C*(%a) in Eq. {19) as a function of ko for
2m ¥, /82=10 (dotted line} and 200 (solid line), The minima of
In C¥{ka) will be centered around I?,,.;: rw (n=12,...) for large
values of 2m ¥ 7h°.

(E—E, +8*
2mi70 71!
+ 1+ 7 200
1Ky
=GHA+ &)+ F, (21)
where A= £ —E,, and the constants
27 a7\
m
5:—,_"[;+( ﬁly”) } . (22)
a "
-\ 2 =12
, | ma 2mVy,
Sl UV ) )
2 l-} 21—
Filz=l 1+ f"jl?o) } _ {24)
t" n

The scattering states with £ in the neighborhoed of £, can
then be written as

2 1 - o
N \/%msm(kx}, <x<a,

*ffa(x): 5
\/R;cos(;?h 0), a<x.

This system is quantized in the interval [0,R], where R34,
which at the end of the calculation will be set to infinity.
With these scattering states, an initial state is constructed that
is completely confined within the well by taking a linear
combination of the scattering states with differcnt A but the

(25)

same valuc of £,

PHYSICAL REVIEW A 65 022111

- _ | #a(2), F<a,
P(x,7=0)= > Calffa(x):[ - (26)
A , Xx>a.
The coefficient ¢4 can be calculated from orthogonality of
the states A1),

R _—
ca= fo dxa(x)P(x,0)

2 ! i
= \/%WJO dx sm(kx) ¢,,(x). (27)

Choosing
- 2 RTX
&, (X)= \/;sin(—:—), n=1273,..., (28
ad [4]
we get
1 2 J';d_ ) (E_) ) nwx
et x sin{kx)sin| ——
T Jra Joiat el i a
29)
\ﬁ : (50)
R JGHALT &+ FT

The initial state is then given by

D(x 0~\/32 : ). (31
(x,‘r— }N EA W¢A(X} ( )

From Eqgs. {10), {12}, and {13), the solution at a later time 7
is

a 1 .

o)A Ay =y~ (RNE, + AT
O (x,7) \/;z::/ \GZ(A+5)2+F2¢A(I)Q .
(32)

As the system is quantized in the interval [0,R], we have
kR=n’m/2, where n' is a very large integer (n'3n). After
replacing the sum by an integral

R 2m
EA‘, _’jmﬁﬂa’ (33)

Eqg. (32) becomes

_ R 2m  fa =
QJ(.T,T)%}}; E— R dA

—;

wd(;)e—(ilh)(énﬂhl)r.

H

X il
JGHA+ 8+ F2
(34)

022111-4
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Substituting o, (x) from Eq. (25}, we obtain the approximate
wave function of the staic confined in the well (0<vy<a) as

2 ma

(D(E,T)mﬁ g’Sin(.’?,,,;)e‘{“”"H?"T

) e»(h’ﬁ);.\f
x| dA———-——
Lc GIA+ &2+ F?

_ E\/leisin(k,,x) o GIRVE, T, —(RFIGl T
»NE TFG]

(35)

For metastable systems an important quantity is the non-
decay probability P(r) that the particle is still in the well at
time ¢ if it 1s initially confined in the well at =0 [P(r
=0)y=1]. In our case P(¢) is defined as

f“mhy(.r;,z)ﬁdx ﬁ@(f,r}lzd;
0 _ 0

P(t)=—p = — . (36)
J W (x, 0] %dx f [ (x,00] dx
0 )
From Eq. (35) we find
Plt)~exp[ = ¥a.(0)], (37
where
_ F t
Yalt)=2 D) (38)
—2(ﬁ21?u) l+ 2}?7[70)2 - i (39
N\ ma 42k, LoL{n)’ :

We have used Egs. (6), (23), and (24} to obtain the result
{39). We note that for an expanding potential (v>0)

l
m‘ (40)

F
'yn(f)_ﬂz E

as t— @, Unlike the stationary case (v =0), therc is a small
but fintte probability that the particle does not tunncl out of

!

PHYSICAL REVIEW A 65 (22111

the well. This result is reasonable, since as the barrier moves
away from x=0 it leaves more room for the particle to stay
within the well.

For ¥y much larger than the characteristic value of &, of
the escaping particles, y(r) becomes

12E,)
(0 [(__>

2mia Vﬁ

t
Lok()’
(41}

where k,=n/a has been substituted. 1t is proper to com-
pare Eq. {41) with the corresponding result in the stationary
case (p=0). In the limit v—0, we have L(1) =Ly, a
—ally, Ey=E,LL, and k,—k,Lo, where E, is the corre-
sponding energy in the static frame, and &k, = V2mE_ fA. In
this limit (v =0} is dircctly proportional to the time 1. We
can therefore define a decay rate by I',= v, (v =0)/¢, which
in this case is

t AT
Lol{1) |2mia* P}

hok; i(nm)? )
Vs == (42)
2mta(VylLyy 2ma™{Vy/Ly)

Equation (42) is consistent with the result obtained by the
complex eigenvalue method in [19] for a static S-function

potential located at x =a with strength 7y /L,.

V. MOVING SQUARE BARRIER POTENTIAL

For the next example, consider a moving barrier potential

o, x=0,
Vix, )= L2(x)l7°’ a(t)<x<b(1), (43)
0, x>b(s},

with a{fy=al{t) and 6(t)=b1L{1}{a and & are two positive
constants), When the problem is transformed to the rescaled
frame, it is cquivalent to solving Eq. (9) with a stationary
potential

®,  x=(0,
Fiy=s Fo, a<x<h, (44)
0, x>é&

The general solutions arc

sin(fx), O0<x<a, k=v2mEih?,

(V=4 At "+ BeFF, G<i<h, F=2m(V,-E)R2, (45)

Ceosikx+8), a<x.

022111-5
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15 In Gka)

o}

ka
FIG. 2. The shapes of In C*(ka) (solid line) in Fq. (48) and
Se*'d4(ka)/2 (dotied line) in Eq, (46) as functions of ka for b
=2a and 2mVya?/hi=40 showing that the minima of In CX(Ea)

occur only in a finite number of neighborhoods of £, (n
=1,2,...) such that A(E,,E)=O.

Here 4, B, and C are real constants, and 8 is a phase angle.
As before, one can sct the solutions real in the whole region

to cnsure that & is always real. The solutions and their de-

rivatives need to be continuous at the boundaries ¥ =« and 4.
These bourdary conditions determine the values of the coef-

ficients 4, 8, and C as functions of &:

I G T S
Alk)= Ee_k "[sin(ka)-i-?cos(ka)l, (46)

R S .k __
B(k}=zek "[Sin{ka)-—]?—rcos(ka)}, 47
2 o 12
2y — Mo ke e _-
C(k)—(1+P)e AS+2[ 1 IP)AB
E;Z o
A RS T AN |
+( 1+ P2 )e B-. (48)

The general shapcs of A(k) and C*(X} are shown in Fig. 2.
Note that metastable states of the system will occur only in a

finite number of neighborhoods of k, (#=1,2, ...} such that
Ak, y=0. The roots k, satisfy

Ky —
Sin(k”a)+}(_—rcos(k,,a)=0. (49)

"

Equation (48) implies that C2(k) is minimal at k,. For a
given Fg, the number of roots &, is restricted by the condi-
tion that £ in Eq. (45),

_ mbP,
= .

i {50)

nr

PHYSICAL REVIEW A 65 022111

must be real. Hence the possible values of &, can lic only in

the interval {0,y 2m ¥V, /ﬁz). For instance, there are only two
roots for the parameters assumed in Fig. 2.

We now expand the coefficients A{k) and B(k) about
E, (=ﬁzl?i/2m):

MD~dA (E~E,) (51)
dET Esgn ni
B(EY~B{(E). (52)

Inserting Eqgs. (51) and (52) into Eq. (48), after some tedious
calculations we find that C*(E) behaves in the neighborhood
of E, as

CHE)=G*HA+8)* +F?, (53}

where A=E£—E as in the previous example, and the con-
stants in the present case are

Gzl(m?21+P3 @‘)E“(EUZ
= = — || costk @) ——smlx,a
4VR, i K

L

XeZi::‘(i—a-E}, (54)

2y k P -
l+k:’l) [sin{l?,,&)*ﬁcos(l?na) e~ htb-a),

(55)

and

ﬁz/?n) EL—‘PEL
o=
ma | \KE+E?2

( k. sin(k,a) -k, cos(k,
X

k cos(k,a) -k, sin(k,a

)) ekzk;{b—a)_ (56)
)

From the rclation (53), the scattering states relevant to this
metastable system can be constructed by following exactly
the same procedures as in the previous section. The nonde-
cay probability P(r) of finding the particle within the con-

fined region (0<lx<(a) ut time ! is again of the form P{f)
~exp(— ¥,(#)), where v,(t} is now given by

el
Yalt}=2 G LoD

273 Tt 2
_swte & -2
BE

T O

mMa

where we have used Eqs. (54), (55), and {49). When the
barrier height is much larger than the characteristic “energy”

of the cscaping particles (7> £}, which is equivalent to
the relation k,3k,, ¥,(¢) becomes

022111-6
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882k, Lo - ¢
(1 __:_"_,—anib—u)____. 58
yu(t)— e k’ic LoL(1) (58)

As in the previous example, for positive v>>0 (the expanding
case) one finds a smali but finite probability that the particle
does not tunnel out of the well at large time. In this case not
only does the barrier leave more room for the particic to stay
within the well as it moves away from x=0, but its width
also becomes thicker, thus making tunneling difficult.

In order to transform the result (38) to the stationary one,
we simply apply the same substitutions as given at the end of
the last section, with the addition of b—h/L, and k|

—k,Ly, where &k = \./2:1:[{170/1,3)*5,,]/&. Once again
¥,(v=0) is directly proportional to the time ¢, in which case
a decay rate can be defined: I' ;= v,{uv=0)/1. For the present
example,

842 kD )
F,,(Uﬁ())zm Feizk"(bi"), (39)
h

which is the same as the result obtained by the complex
eigenvalue method for a square barrier with width (b—a)

and height 7,/L; [20].

V. GENERAL SCALING POTENTIALS

We have calculated the nondecay probabilitics of two
nenstationary metastable systems explicitly. The potential
barriers in the rescaled frame considered in these systems
assumed the form of a § function and a square barrier. These
calculations can be immediately generalized to bharriers with
more general shapes. Without giving further examples, we
only discuss briefly the close connection between the nonde-
cay probability P(¢) of a particle in a metastable scaling
potential ¥(x,)=F{x/L(£))/L*(t) and the decay ratc [ of
the same particle if it were instead confined in a static pe-
tential well V({x)=¥(x).

From the previeus examples, we know that the calculation
of P(t) is reduced to the corresponding computation in a
static potential F{x) in the rescaled frame, Now this last task
would be exactly the same as that carried out in the potential
F(x)=¥(x} in ordinary coordinates. The only difference, as
seen from the previous two examples, is that all ordinary
parameters, such as £, &, k', 1, 4, elc., are replaced
by the corresponding rescaled ones, Le.,
l::, 1?, 1'?’, T, E, etc. Application of the scattering
state method to the general « decay type of potential V(x) in
normal coordinates was given in [14], and can be carried
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over directly. Following [14] the important step is to deter-
mine the discrete values £, (or equivalently k,) that mini-
ntize the amplitude C of the wave function in the region
outside the well. Consider a confining state constructed with
E centercd around a specific £, . Minimization of C then
gives the two functions F(E,) and G(£,) (other parameters
in F and @ are not indicated). The nondecay probability in
P(x) is then given by exp{-1,7), where the decay rate I, is

F(Ell)

FH(E)I);z G(En)

. (60)

Suppese all these computations have been done in ordinary
coordinates. Then one can immediately write down the ex-
pression of the nondecay probability P(f)~expl—v,(f)] for
the scaling potential ¥{x,f) as

t t

By O

F(E,)
G(E,)

Yult)=2

Here the functional form of the decay rate I, is taken over
dircctly, but with all the parameters replaced by the corre-
sponding rescaled ones. Equation (61) gives the connection
between  the  nondccay  prebability in F{x.f)
=V (x/L(£))/L*(t) and the decay ratc in ¥(x)=¥(x). Fi-
nally, in the nonmoving limit v=0, F(x,t) becomes ¥F(x})
=V(x/Ly)/L;. Setting v=0 in Eq. (61) then gives the decay
rate m this potential, F,,(E,,)/Lé, as seen in the previous
Cascs.

V1i. CONCLUSION

The problem of quantum metastability in a class of mov-
ing potentials introduced by Berry and Klein is considered.
The potential in this class has its height and width scaled in
a specific way so that it can be transformed into a stationary
one. In deriving the nondecay probability of the system, we
employed a method that is less well known but conceptually
more satisfactory, namely, the method of scattering states.
Nondecay probabilities in a moving S-function potential and
a moving squarc barrier potential were derived, and a con-
nection between the nondecay probability in a general scal-
ing potential and the decay rate in a related static potential
was established.
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Quantum Frenkel-Kontorova Model

Choon-Lin Ho'! and Chung-I Chou?

! Department of Physics, Tamkang University, Tamsui 25137, Taiwan
?Institute of Physics, Acadesmia Sinica, Taipet 11529, Taiwan

Abstract. This paper presenis a simple variational approach to the quantum Frenkel-
Kontorova model.

1. Introduction

The Frenkel-Kontorova (FK) model {17 is a simple one-dimensional mode! used to study
incommensurale structures appearing in many condensed-matter systems, such as charge-
density waves, magnetic spirals, and adsorbed monolayers. These modulated structures
arise as a result of the competition between two or more length scales. The FK model
describes a chain of atoms connected by harmonic springs subjected to an external sinusoidal
potential. In an important development in the study of the classical FK model, Aubry [2]
first made use of the connection between the FK model, the so-called “standard map”, and
the Kotmogorov-Amold-Moser (KAM) theorem to reveal many interesting features of the FK
model. Particularly, he showed that when the mean distance (also called the winding number)
between two successive aloms is rational, the system is always pinned. Bui when the winding
number is irrational, therc cxits a critical external field strength below (above) which the
system is unpinncd (pinned). This transition is called by Aubry a “transition by breaking of
analyticity”, and is closely connceled with the breakup of a KAM torus. It is very analogous
to a phase transition, and various critical exponents and questions of universality have been
extensively studied in the past.

Needless to say, quantum cffects are very important in the FK model. However, unlike
the classical case, study of quantum FK models is rather scanty. It was first considered in
a quantum Monte Carlo (QMC) analysis in {3]. Their main observation is that the map
appropriate to describe the quantum case is no longer the standard map, but rather a map
with a sawiooth shape.

Previous theoretical attempts at obtaining the sawtooth map require one to go beyond the
independent-particle approximation. In {4], however, we showed that all the essential features
obscrved in the QMC studics can indeed be obtained from an independent-particic picture
of the many-body ground state. Our strategy is to derive an cffective Hamiltonian for the
quanturn FK model by adopting Diruc’s time-dependent variational principle together with
the Jackiw-Kerman (JK) function {5] as the single particle state. The JK wavefunction can be
viewed as the Q-representation of the squeeze state.

2, Effective Hamiltonian

The Hamiltonian of the quantum FK mode! is given by

SN B T .
~'H~——; 2m+2(%+1 Gi)” — Veos(logi) | - (1)
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Here ¢; and p; arc the position and momentum operators, respectively, of the ith atom, «y the
clastic constant of the spring, V and 27 /{; are the strength and the pcriod of the external
potential. It is convenient to usc the dimensionless variables Q, = lods, Iy = lopi/ /M7, and
K = VI2/~. With these new variables, we obtain the following dxmcnsxonlcss Hamiltonian

H = Z [l + = (Qm = Qi)2 - KCOS(Q:’)] : 2)

We have H = yH/I§. The cifective Planck constant is b = ki3 /. /m7. For the classical FK
model, the Aobry transmon oceurs at the critical value K, = 0.971635- -

To study the ground state properties of the quantum FK model in (2), we adopt here the
time-dependent variational principle pioncered by Dirac. In this approach, one first constructs
the effective action T' = [dt (U, t|ihd, — H|¥,t) for a given system described by H and
|, t). Variation of T is then the quantum analogue of the Hamilton’s principle. The time-
dependent Hartree-Fock approximation emerges when a specific ansatz is made for the state
{0, £). We now assume the trial wavefunction of the ground state of our quantum FK system
to have the Hartree form 1, 2) = [, |4, ¢}, where the normalized single-particle state |15;, t)
is taken to be the JK wavefunction [5):

1
(Qils, 1) = EETNE
1
X exp{—:?—} (6 — :ci)Q {%G;l
~ 23'11‘] (o 33:‘)} - (3)
h

The rcal quantitics z;(t), p;(t), Gi(t) and I1;(¢) arc variational parameters the variations of
which at ¢ = oo arc assumed to vanish. Squeczed siate function in the form of the JK
wavefunclion has the advantage that the physical meanings of the variational parameters
contained in the JK wavefunction are most transparent, as we shall show below. Furthermore,
the JK form is in the general Gaussian form so that integrations are most casily performed.

It is not hard to check that z; and p; arc the cxpectation values of the operators Q,
and Bz = (W[Q]W), pi = (U|B|T). Also, onc has (¥|(Q; — 2;)2I¥) = AG;, and
(B|ihd,|T) = 3, (st — AG;IL;), where the dot represents derivative with respect to time
t. It is now clear that AG; is the mean fluctuation of the position of the i-th atom, and that
G; > 0. From the form of the effective action one secs that that p; and I1; arc the canonical

conjugates of z; and G, respectively. The Dirac variational principle leads to the following
cffective Hamiltonian

Hepp = (W|H|Y)
_ 1 2, f l -1 9 H
= ‘;2 {pt + h (401 +4H1Gz
1 2
—+ Z§($i+] "‘.’E,‘)
h
+ ZE(GHI +Gy)

i

F
— > Kexp (~§LG5) COS T; . (4)
i
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We can obtain the cquations for the cquilibrium states in the Hartree-Fock approximation
by dircedly varying the effective Hamiltonian H, ¢; with respect to the variables p;, IT;, z; and
G;, which give, respectively,

D = Q y 4HiGi =10 , (5)
h

Tip1 — 2% + i = Kexp (——56'1-) sin z; , {6)

1, i )

ZGi — Kexp ~—§Gi cosz; ~ 2 =4Il . (N

The sccond cquation in (5) implies I1; = 0 as G; > 0. This in turn means that the right hand
side of eq.(7) is cqual to zero:

iG;‘z — K exp (FgGi) cos(z;) —2=10. (8)

In the himit /i = 0, cq.(6) is cquivalent to the standard map.

3, Numerical results

We numerically solve for the sct of variables z; and G; which characterize the ground
state using the Newton method. In all our numerical compuiations the winding number
P/} = 610/987, which is an approximation of the golden mean winding number (v/5—1}/2,
15 used with the periodic boundary condition ;1. = z; + 27 P. This winding number is much
more accurate than those used in previous works to approximate the golden mean number,
thus giving us beticr accuracy in the computations of physical quantities related to the ground
state.

Having obtained the values of z; which give the mean positions of the quantum atoms in
the chain, we can compare the results with the classical configuration by plotting the so-cailed
g-function, defined by

g; = Kkl (.‘L‘,’_H — 2.1:; -+ IEi_.l) (9)

versus the actual atomic positions x;. From (6), we also have

g; = exp (‘%Gz‘) sinz; . (10

Here G 1s related to z; by ¢q.(8). We see {rom this equation that quantum fluctuations G will
modily the shape of the classical sine-map.

In Fig. 1 we show the graphs of the g-function for the case K = 5. The curve defined
by (10) with G salislying (8) arc shown here as dashed curves for different /. In the classical
limit (2 = 0) this curve is simply the standard map {sine-curve). As A increases, the amplitude
of the curve decreases. For sulficiently large /i, the curve resembles more closely a “sawtooth”
shape. This is first noted in QMC study in [3]. Here we see that it comes out very naturally
from the cquation of motion (8) and (10). Wc have therefore demonstrated that the sawtooth
map could be recovered in the independent-particle approximation. In the supercritical case
(K = 5), when i < fi, & 6.58, the positions z; of the atoms cover only a subsel of the
g-curves. This is in accord with the fact that the atoms are in the pinning phasc.
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Figures captions

Fig. I g-function plotted against actuat atomic positions for K = § and winding number

P/Q = 610/987 at h = 2 (black dots), 6 (white dots) and 7 (black curve) (the dashed
curves represent eq.(10) with G; satisfying (8).



