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Abstract 
 

We consider the asymptotic quasinormal frequencies of various spin fields in the 
Schwarzschild black holes. The real part of the asymptotic frequencies is ln3 for the spin 0 and 
the spin 2 fields, while for the spin 1/2, the spin 1, and the spin 3/2 fields it is zero. For the 
imaginary parts of the asymptotic frequencies, it is interesting to see that it has a universal 
spacing of M4/1 for all the spin fields in the Schwarzschild case. The implications of these 
results to the universality of the asymptotic quasinormal frequencies are discussed. 
     
Keywords: quasinormal frequency、Schwarzschild black hole 
 

 
中文摘要 
 
    我們考慮在 Schwarzschild黑洞空間中，不同自旋場準正常態頻率的極限值。自旋為 0
和 2的場，其準正常態頻率實部的極限值，都是 ln3；而自旋為 1/2、1和 3/2，其值則為 0。
對於虛部方面，我們發現在 Schwarzschild的情形，所有的自旋場都有同為 1/4M的隔間。
我們也會對於這些結果，進一步討論準正常態頻率極限值的一致性問題。 
     
關鍵詞：準正常態頻率、Schwarzschild黑洞 
 
 
I. Introduction 
   

Hod [1] was the first to conjecture that the highly damped limit of the black hole 
quasinormal frequency was related to the fundamental area unit in the quantum theory of gravity. 
At that time, this limit was known only numerically [2,3], 
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as ∞→n , where M  is the mass of the black hole. He noticed that 0.0437123 is very close to 
ln π8/3 . Using Bohr's correspondence principle, he was able to derive the area spectrum of the 
quantum Schwarzschild black hole to be 

K,3,2,1         ,)3ln(4 == nnAn                                          (2)  
Comparing Hod's result with the expressions of the area and entropy spectra obtained in the 
theory of loop quantum gravity, Dreyer [4] determined the value of the Immirzi parameter, an 
otherwise arbitrary constant in the theory. At the same time, because of the presence of ln3, he 
also suggested that the gauge group should be changed from SU(2) to SO(3). Although this 
connection between the asymptotic quasinormal frequency and the Immirzi parameter has been 
questioned [5,6], it has nevertheless aroused a lot of research interests in this direction.  

The first analytic evaluation of the asymptotic quasinormal frequency was carried out by 
Motl and Neitzke [7,8] using the monodromy method. Subsequently, with this method, the 
calculation has been extended to other kinds of black holes [9]. However, all these calculations 
are done with respect to fields with integral spins. In this paper, we would like to further consider 
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the asymptotic quasinormal frequencies of fields with half-integral spins like the Dirac and the 
Rarita-Schwinger fields, which are lacking so far. On the other hand, we hope our consideration 
will also shed light on the question of universality of the value of ln3 studied by several authors 
[10-12]. It turns out that this value is indeed obtained in most of the cases for single-horizon 
black holes. We would like to see if this universality can be applied to fields with different spins. 
 
In the next section, we consider the case of the Schwarzschild black hole. To deal with different 
spin fields in a unified way, we use the WKB formalism of Andersson and Howls [13], in 
addition to the monodromy method, to evaluate the asymptotic frequencies. Here we also address 
the discrepancy on the value of the imaginary part of the Dirac asymptotic frequency in [14] and 
[15]. Conclusions and discussions are presented in Section III. 
 
 
II. Schwarzschild Black Hole 
   

For the Schwarzschild black hole, the metric can be written as, 
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where )2( Mrr −=∆  and M  is the mass of the black hole. The radial parts of the wave 
equations for different spin fields can all be simplified to the form of a Schroedinger-like 
equation, 
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where ω  is the frequency, V  is the effective potential, and *r  is the so-called tortoise 
coordinate with 
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For integral spins, =s 0,1, and 2 [17], 
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where K 2, 1, 0,=l  is the angular momentum number. For the Dirac field, 2/1=s  [18], 
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where 2/1+= jκ  and K 2, 1, 0,  ,2/1 =±= llj . For the Rarita-Schwinger field, 2/3=s  
[19,20], 
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with K 2, 1, 0,  ,2/3 =+= llj . We have listed the effective potentials for various spin fields here 
for completeness. In the following calculations, we need mainly the asymptotic behaviors of 
these potentials as 0→r , that is, near the black hole singularity. We assume that as 0→r , the 
asymptotic behavior of the effective potential is 
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The values of $\alpha$ for various spin fields are listed in Table I. 
 
 

 
 
 

Going back to Eq. (4), the solutions at infinity, ±∞→*r , are 
,)( *rierZ ω±≈                                                       (12) 

because 0→V  in this limit. The quasinormal modes correspond to the solutions with the 
boundary conditions of outgoing wave, *rie ω , at ∞== rr* , and ingoing wave, *rie ω− , at the 
horizon, −∞=*r or Mr 2= . The corresponding spectrum of these modes are complex and 
discrete. 

In order to use the WKB method of Andersson and Howls to evaluate the asymptotic 
quasinormal frequencies as ∞→ωIm , we define a new function [13], 

),()(
2/1

rZ
r

r ∆
=ψ                                                   (13) 

From Eq. (4), one can write the wave equation for ψ  as 
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The WKB solutions to this equation are [13], 
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where t  is a reference point and 
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Here )(rQ  is chosen in such a way to match the behavior of the solutions of )(rψ  near 0=r . 
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The zeros and the poles of )(rQ  are important to the behaviors of the WKB solutions 
)()(

2,1 rf t . In the Schwarzschild case, as shown in Fig. 1, )(rQ  has four zeros. From each zero, 
three Stokes lines and three anti-Stokes lines emanate. Along the anti-Stokes lines drrQ )(  is 
purely real, so )()(

1 rf t  and )()(
2 rf t  are oscillatory functions of comparable magnitudes. 

Between anti-Stokes lines are regions on the complex r -plane in which one of the two WKB 
solutions dominates. We have also indicated this in Fig. 1. On the Stokes lines drrQ )(  is purely 
imaginary. There are also two poles at 0=r  and at Mr 2= . The solution to the wave equation 
in the WKB approximation is represented by an appropriate combination of )()(

1 rf t  and )()(
2 rf t . 

The behavior of this solution changes as one crosses the Stokes lines. This is the so-called Stokes 
phenomenon. By incorporating these changes, one can derive the asymptotic behavior of the 
solution on the whole complex plane. 

To start the calculation, we consider the boundary condition of the quasinormal mode at 
spatial infinity. Assuming that 0Re >ω , one can analytically continue this boundary condition to 
the anti-Stokes line labelled a  in Fig. 1. With the definition of the WKB solutions in Eq. (16), 
the boundary condition at a  becomes 

,)(
1

1t
a f=ψ                                                         (18) 

where we have indicated explicitly from which zero the anti-Stokes line emanates. Going to b  
in the clockwise direction, we cross a Stokes line. Since this Stokes line locates in a region where 

1f  dominates, the 1f  part of aψ  will not change but there will be an additional 2f  part with 
the coefficient of 1f  in aψ  (which is 1 here) multiplying i−  for crossing the line in the 
clockwise direction. (If we had crossed the Stokes line in the counterclockwise direction, we 
would have to multiply by i  instead.) Hence, at b , 
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Next, we have to change the reference point from 1t  to 2t . 
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Now near the zeros, r  is small because −∞→ωIm , 
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from Eq. (17). Taking αωξ += 4/2 My , we have 
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One can also show that γγγγ ==−= 342312 . The value of γ  here is crucial in the derivation of 
the asymptotic quasinormal frequency. They are also listed in Table I. 

After changing the reference point to 2t , 
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Going to c , we cross another anti-Stokes line, so 
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Going to d , we cross yet another anti-Stokes line. However, we are in a region where 2f  
dominates. Hence, 
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Changing the reference point to 3t , with γγ −=23 , 
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Going to e , 
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Going to f  and changing the reference point to 4t , we have 
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Going to g , 

.)()1(     

)1(
)(

2
33)(

1
22

)(
2

22

44

4

tiiiitiii

tiii
fg

feeeeifeee

feeei
γγγγγγγ

γγγψψ
−−−

−

++++++−=

−−−−=
               (30) 

Finally we go from g  back to a  in the counterclockwise direction at infinity completing the 
trip around the singularity point at Mr 2= . Since 1f  is dominant in this region, the 1f  part of 
ψ  does not change. However, there will be an additional phase contribution, that is, 
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with the contour 
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where Γ  is the closed contour integral around Mr 2=  (in the counterclockwise sense), 
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With this phase taken into account, the 1f  part of ψ  at a  (back to a  after a round trip) is, 
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In the monodromy method of Motl and Neitzke [8], the boundary condition at the horizon is 
translated into the monodromy requirement of the solution around the singular point at Mr 2= , 

a
i

a e ψψ Γ−= .                                                      (35) 
Considering only the 1f  part of the solution ψ , and using the value of Γ  in Eq. (33), we have 
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As we can see from Table I, we have 0=γ  and π−  for the scalar and the tensor fields, 
respectively. In both cases, we have 
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as ∞→n . For the Dirac, the Maxwell, and the Rarita-Schwinger fields, we have 2/πγ −= , 

n
M
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18 −=⇒= ωωπ                                             (38) 

with zero real part as ∞→n . This result is consistent with [15] and [21], but in contradiction 
with that in [14], where the imaginary part of the asymptotic quasinormal frequency is found to 
be Min 8/− . In [21], the subleading contribution of ωIm  is also calculated. Finally, we note 
that the spacing of the imaginary parts of the asymptotic frequencies is M4/1  for all the spin 
fields. 
 
 
III. Conclusions and Discussions 
 

We have evaluated the asymptotic quasinormal frequencies for various spin fields in the 
Schwarzschild black holes, using a combination of the monodromy method of Motl and Neitzke 
[8] and the WKB formalism of Andersson and Howls [13]. In the Schwarzschild case, the real 
part of the asymptotic frequency for the spin 0 and the spin 2 fields is ln3. This value has inspired 
a lot of interesting in its relation to the black hole area and entropy spectra [1]. However, the real 
part of the frequency for the spin 1/2, the spin 1, and the spin 3/2 fields is zero. This result casts 
doubts on the universality of the value of ln3, even for single-horizon black holes. On the other 
hand, the imaginary parts of the frequencies all have spacings M4/1  or STπ2 , where ST  is 
the Hawking temperature of the Schwarzschild black hole. This value is thus universal for all the 
spin fields [22,23]. 

Our result for the imaginary part of the Dirac quasinormal frequency agrees with [15] and 
[21], but in contradiction with that of [14]. In [14], the imaginary part of the frequency is 
calculated in two different ways, one analytical and the other numerical. For the analytical 
calculation, the authors there follow the method of [22] and [23] in which the imaginary part is 
derived by identifying the locations of the poles of the scattering amplitude in the Born 
approximation. This calculation is criticized in [15] where it is shown that the method of 
[22] and [23] for the integral spin fields cannot be extended directly to the Dirac case. Hence, the 
validity of the analytical calculation is in question. As for the numerical analysis, the authors use 
the continued fraction method of Leaver [24] which converges much slower than the modified 
method of Nollert [2]. It seems that the method of Nollert cannot be applied to the effective 
potential of the Dirac field. It is therefore possible that the correct answer has not been reached 
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numerically there. In any case, the conclusion on the spacing of the imaginary part of the 
frequencies in [14] is not at all reliable. 

We can see from above that the universality of ln3 is indeed in question even for the 
single-horizon black holes. In addition, the relevancy of the asymptotic quasinormal frequency to 
the microstate description of the black hole entropy is not clear [25] because this frequency 
depends crucially on the behavior of the effective potential near the black hole singularity as well 
as that near the event horizon. In spite of this, we still think that the black hole quasinormal 
spectrum should be important in the understanding of the quantum properties of the black hole 
[26,27]. The quasinormal modes represent the characteristic oscillations of the black hole. If they 
are quantized in an appropriate way, which would involve the problem of how to quantize an 
open system, we should be able to obtain more information on the entropy of the quantum black 
hole [28]. 

Finally, it would be desirable to extend our consideration to the case of the Kerr black hole 
in order to have a further understanding of the universality question of the asymptotic 
quasinormal frequencies. Up to now, the evaluations of the Kerr asymptotic frequencies are 
mostly numerical (see, for example, [29-34]). This is because one has to deal with the asymptotic 
behaviors of the radial equation as well as the angular equation, which involves the spheroidal 
harmonics. Recently there are a number of studies on the asymptotic behaviors of the spheroidal 
harmonics [35,36]. Hopefully one would soon be able to carry out a more complete study of the 
asymptotic quasinormal frequencies in the Kerr black hole case. 
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