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The electronic and atomic structures of quasi-one-dimensional blue bropgelo; were
investigated by polarization-dependentkledge x-ray absorption near-edge structt¢&NES)

and Mo K-edge extended x-ray absorption fine structEeXAFS) measurements at various
temperature and applied voltages. TheK@edge XANES spectra suggest that the number of
unoccupied O @—Mo 4d hybridized states increases and decreases with temperature, respectively,
below and above a critical temperature of 180 K. The albfaxis electric current measurements
show a threshold applied voltage, beyond which the current increases rapidly. Thé-ddge
EXAFS measurements show that the Mo—O bond lengths are insensitive to the temperature even
beyond 180 K. €2005 American Institute of PhysidDOI: 10.1063/1.1897437

Blue bronze K 3MoO; exhibits quasi-one-dimensional age and the current—voltage curve was measured in a two-
(1D) electron transport property and a metal—semiconductoprobe setup.
transition to a charge-density-wa(@DW) phase at 180 K Figure 1 displays the normalized ®&-edge XANES
and has been investigated extensiVely.Of particular inter-  spectra of Kk MoO; obtained at temperatures from
ests are the occurrence of the CDW and the corresponding00 to 300 K. The upper part of the inset in Fig. 1 shows the
dynamical properties, which depend strongly on the temperaexperimental geometry, whei is the polarization of the
ture and the driving forc&" The overall dynamical CDW incoming photons and is the incidence angle. The inset of
characteristics were specified in the order of increasing drivFig. 1 presents magnified near-edge features at temperatures
ing force as(i) deformed solid at resti) plastic flow or  of 100, 180, and 300 K a#=0°. The dotted line in Fig. 1 is
creep, andiii) sliding®* Thorn€ and Scheidl and Vinokfir  a best-fitted Gaussian curve representing the background in-
reported dynamic phase diagrams with respect to temperaensity. The OK-edge XANES spectra reflect transitions
tures and external fields. The anisotropic electrical resistivitfrom the O % core state to the unoccupied (p-Berived
of Koq3MoO; has been found to be an order of magnitudestates and states of neighboring atoms, which have
larger in the plane of the layers than in thelirection/ and
to depend strongly on temperatdrén this work, a system-
atic study of local electronic and atomic structures at various
temperatures and driving forces has been performed to elu-
cidate the dynamic property of 1DgkMoOs.

The polarization-dependent R-edge x-ray absorption
near-edge structuréXANES) and Mo K-edge extended
x-ray absorption fine structurdEXAFS) spectra at various
temperatures and dc electrical voltages were obtained using a
high-energy spherical grating monochromator beamline at
the National Synchrotron Radiation Research Center, Hsin-
chu, Taiwan, and a BL12B2 beamline at Spring-8, Japan,
using the fluorescence mode, respectively. TheNoO4
single crystal was grown using a temperature gradient flux
technique. The orientation was characterized by x-ray
diffraction® A rectangular piece of the crystal with an area of
~2X3 mn? was prepared. The sample was mounted in a
continuous-flow-type helium cryostat for temperature-
dependent measurements. The longer side of the rectangle
was aligned with thé axis of the crystal. Two platinum wire =0 o 50
electrodes were attached to the surface of the sample in the Photon Energy (eV)
contact regions using silver pastes. A Keithely 2400 source

meter was applied to generate the driving dc electrical volt¥IG. 1. This figure displays polarization-dependeri{@dge XANES spec-
tra of Ky sMoO; between 100 and 300 K. The dotted line represents a best-

fitted Gaussian shape background. The upper part of the inset presents the
dauthor to whom correspondence should be addressed; electronic maiKANES experimental geometry. The inset shows magnifiéénd ¢ fea-
wfpong@mail.tku.edu.tw tures atT=100, 180, and 300 K after background subtraction.
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FIG. 2. This figure displayd/-dependent OK-edge XANES spectra of FIG. 3. This figure plots the integrated intensitiessofando” features in O

K sM0O; at 100 K. The upper part of the inset shows XANES experimental K-edge XANES spectra as functions Bf

geometry and the electrical circuit. The inset shows magnifieéind o

features at 100 K#=0° andV=2.3 V) after background subtraction. Solid . .

lines are fitted with two Gaussian peaks indicated by open rectangles andires increase less rapidly from 100 to 180 K and then re-

triangles. Filled circles represent experimental data. main almost constant up to 300 K.
The rapid increase ofr' - and o” -feature intensities for

) ) #=0° and for T<180 K indicates a rapid increase of the
p-symmetry components projected on the O sites. The tWeyymper of unoccupied Ostates or a rapid decrease of the

prominent features near 530.2 and 534.1 eV are known to bgmber of occupied Ostates, which indicates an increase
associated with unoccupied ando” bands formed by hy-  of hole concentration and implies thag 100 is semicon-
bridization between O[2, and Mo 4lt,, states and between ducting below 180 K. Since photon polarizations are parallel
O 2p, and Mo 4le, states,”“respectively. A weak feature, with the b axis for #=0°, the decrease af - and o’ -feature

o,, attributable to a theoretical energy level of #1005 is intensities beyond 180 K shows that the number of unoccu-
also found™” Figure 1 indicates that the intensity of thé  pied O 2 states oriented along theaxis decreases, which
(0") feature atd=0° is always largefsmalley than that at may be due to an increase of the chemical potential because
0=70° for the various temperatures considered. The WoOthese states are in the vicinity of the chemical potential/
octahedron chains are parallel to the monocliniexis in ~ Fermi level. Another possibility is the decrease of Mo-O
K.sM00s. Four Mo—O bonds lie in the central plane and two hybridization resulted from an increase of the Mo—-O bond
Mo—-O bonds are along thie axis, which can be callee-  length. However, the M&-edge EXAFS results to be de-
bonds(or central-plane bondsand thes bonds(or b-axis scribed later show that Mo—-O bong Iength§ are insensitive to
bonds, respectively. Ther and ¢ bonds are preferentially the temperature. The near constant and o -feature inten-
probed at small and large incidence angles, respectively, be-
cause the polarization of photons is paralleitando bonds

at small and large incident angles, respectively. Thus, the
dependence of the intensity on the incident angle is an evi-
dence of high anisotropy in the electronic structure.

Figure 2 displays polarization-dependent K-edge
XANES spectra of I§ ;M0O3 obtained at various dc electri-
cal voltagesy, from 0 to 2.3 V afT=100 K. The upper part
of the inset schematically depicts the experimental setup.
The inset of Fig. 2 presents a magnified view to better re-
solve 7 and¢” features at=0°, V=2.3 V andT=100 K.
Two best-fitted Gaussian functions are used to represent
and ¢’ features in the inset of Fig. 2 using the spectrum of
V=2.3V andT=100 K as an example. Here, the feature
is not considered. Figures 3 and 4 plot the integrated inten-
sities of 7~ and o™ features as functions of temperature and
dc electrical voltage at=100 K, respectively. Figure 4 also
plots the electrical current as a function of applied voltage.
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.The mtegrated intensities of ando features increase rap- FIG. 4. This figure plots the integrated intensitiesrofando” features in O
idly from 100 to 180 K and then decrease slowly up tOk_edge XANES spectra as functions \#fat T=100 K, #=0° and 70°. The

300 K for #=0°. At §=70° the intensities ofr ando” fea- electrical current data are shown by filled triangles.
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by previous researchers to be the cause of the CDW forma-
tion and CDW-metal phase transition. TWalependent mea-
surements were intended to understand the dynamic property
of the CDW, which is supposedly associated with the change
of the local atomic structure in §gMoO3. The positions of
HE 3 the first main peaks in the FT spectra shown in Figa) &nd

k(&) 5(b) correspond to a mixture of two nearest-neighbor Mo-O

M
M,\ bond lengthgapproximately 1.9—2.0 &% along theb axis.

All the peaks in the FT spectra shown in Figapappear to
W\\ANWHHE Aﬁﬁ = be located approximately at the same position and their
g ﬂ,\/\f"//\\,\ : heights and full widths at half maximum are insensitiverto

L { I from 100 to 300 K. This finding shows that Mo—O bond
lengths remain almost the same. TWelependent FT spectra
presented in Fig. ®) show that Mo—O bond lengths in

@) K(.3M0O; are insensitive td/ up to 1.9 V. These EXAFS
spectra differ noticeably only for radial distances beyond

Mo K-edge - ~3.3 A. Under an applied electric field,g§MoOz was pro-
:‘:;ﬂoox posed to undergo deformation-to-creep-to-slide dynamic
< phase transitions.” Deformation, creeping, and sliding all
involve modification of local atomic structure and Mo-O
AN bond lengths. In the sliding process, bond length distribution

M was envisioned to be periodically alteréf€ig. 3 of Ref. 3.
o //\\N". N~ T Thus, the observed similarity of the EXAFS spectraTarp
_QL_/\N_M/\NJ\_ to 300 K andV up to 1.9 V suggest that either the periodic

W\/\,\W distortion of the MoQ octahedron-chain along theaxis be
W\'\Mm_.,.____/\./\ small or the distortion be mainly on the bond angles.
l;’!/\/ VV TN e

In summary, polarization-dependentOedge XANES
0 2 4 6 8 measurements reveal that the electronic structure of
() Radial Distance (4) K.aM0O; is anisotropic and that the number of @-2Mo
4d hybridized states increases and decreases with tempera-
FIG. 5. (a) and §b) show the magnitudes of the Fourier transform of ture, respectively, below and above 180 K. The albreaxis
EXAFS kx(k) spectra fronk=3.5 to 12.5 A* at various temperatures and electric current measurements show a threshold voltage, be-
various dc voltages, respectively. The inset plots the Kledge EXAFS ond which the current increases rapidl Mg-edae
oscillationk3y data. y pialy. g
EXAFS measurements show that the Mo—O bond lengths are

. _ insensitive to the temperature even beyond the critical tem-
sities for #=70° above 180 K is understandable because th‘f)erature of 180 K.
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