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Abstract

We systematically analyze the biased and unbiased minimum mean square error (MMSE)

equalizers of finite as well as infinite length, with and without decision feedback sections. New

closed-form expressions of optimum equalizer weights, the MMSE, and symbol error probabilities

(SEP), solely in terms of channel response parameters and noise power, are derived for the above

receivers. These new expressions have not appeared in the literature and should be included for

completeness. We also prove analytically that the biased and unbiased MMSE equalizers have the

same optimum weights and that an infinitely long unbiased MMSE equalizer approaches the optimum

minimum error probability equalizer. Performance curves are presented and compared for all the

receivers discussed. Moreover, for all the infinite length equalizers presented, alternative error

probability expressions are provided to best suit computer simulations.

Key Words: Minimum Mean Square Error (MMSE), Channel Equalization, Unbiased Estimate,

Symbol Error Probability, Decision Feedback Equalizers (DFEs)

1. Introduction

Although MMSE equalization has been well studied

and has become an old subject in today’s research, there

are still certain areas we feel that need be perfected for

more completeness such as those presented in this paper.

Conventional MMSE equalizers adopt a biased deci-

sion for signal estimation. That is, the desired signal term

in the output estimate is multiplied by a proportionality

factor that is the main cursor tap weight coefficient of the

total system response [1�3]. As a result, the estimate er-

ror is biased. The error probability performance can ac-

tually be improved if we multiply the output estimate by

the inverse of the above-mentioned proportionality fac-

tor, thus obtaining an unbiased MMSE equalizer. In the

past, the unbiased MMSE equalizer has not been widely

studied. To the author’s knowledge, the earliest work of

unbiased MMSE is due to Saltzberg [4] who derived a

theoretical error bound for the unbiased linear MMSE

equalizer. Although Saltzberg corrected the biased part

in the equalizer output estimate, he did not use the term

‘unbiased’ just as no one today refers to the conventional

MMSE receiver as biased. Then, until this last decade,

Lee and Messerschmitt [5, Ch.10] started to mention about

the unbiased MMSE/DFE equalizer. Concurrently, Ci-

offi, et al. [6] also treated the unbiased MMSE/DFE re-

ceiver. Both Lee and Cioffi et al. worked in the frequ-

ency domain to deal with the problem (Cioffi used the

D-transform approach). They essentially addressed the

output signal-to-noise ratio (SNR) and capacity issues.

Other than the three mentioned above, no one else has

ever since touched the problem of unbiased equalizers

(at least to the author’s knowledge).

There have been many versions of error probability

expressions for the well-known biased linear MMSE

equalizer dated back to 1960’s [1,4,7�12] and many are

only error bounds [1,4,10,12]. Perhaps the most recent

exact error probability expression for the linear MSE

equalizer is the brute force expression given in [1] in

terms of all possible information symbol sequences, no-
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ise power, and system (channel and equalizer in cascade)

parameters [1, (10.2-62)]. That expression proves to be

cumbersome and too time consuming. Thus an upper

bound is given in terms of system parameters [1, (10.2-

64)]. However, the system parameters (qk’s in [1]) are

still not explicitly provided. For decision feedback equ-

alizer (DFE) performance, only Monte Carlo simulations

are given in [1] for particular channels. As to unbiased

MMSE receivers, error probability expressions are not

available in the literature. In any case, an error proba-

bility expressed mainly in terms of the channel re-

sponse should be more desirable. Furthermore, expres-

sions for optimum equalizer weights and the MMSE

mainly in terms of the channel response are also desir-

able and should be made available. But these expres-

sions have not been systematically derived or presented

in the literature.

In this work, we systematically analyze the biased

MMSE and unbiased MMSE receivers of finite and in-

finite length, with and without DFE for baseband M-ary

PAM transmission. We derive exact expressions of op-

timum MMSE equalizer weights, the MMSE, and the

SEP for the various receivers addressed, altogether

eight different MMSE cases. All these expressions will

be found to be solely in terms of channel response pa-

rameters and noise power. We will also present perfor-

mance comparisons between all the receivers. Further-

more, we prove analytically two important facts that

have also not appeared in the literature. (a) The biased

and unbiased MMSE equalizers have the same opti-

mum weights. (b) An infinitely long unbiased MMSE

equalizer approaches the optimum minimum error pro-

bability equalizer.

Section 2 reviews the biased linear MMSE receivers

of finite and infinite length. Section 3 analyzes the un-

biased linear MMSE receivers of finite and infinite

length. The proofs of the two important facts mentioned

above are provided in this section. Then, Section 4 dis-

cusses the biased and unbiased MMSE/DFE receivers of

finite and infinite length. Section 5 presents simulated

SEP results of various receivers given in previous sec-

tions with performance comparisons. Finally, Section 6

draws conclusions.

2. Biased MMSE Receivers

2.1 Finite Length Equalizers

We consider baseband M-ary PAM transmission. The

source signal symbol xk at any kth time instant randomly

takes values with equal probabilities from the set {�m =

(2m – 1 – M)d, m = 1, 2, …, M}. The constant d is useful

for power control. The signal power is thus � x kE x2 2� ( ) =

(M2 � 1)d2/3. The cascaded connection of the transmitter,

the channel, a sampler, and a whitened matched filter [1]

constitutes an equivalent discrete-time channel response

hk, k = –L1, …, –1, 0, 1, …, L2. The channel noise se-

quence nk is additive Gaussian with zero mean and vari-

ance� n

2. The equalizer weights are wk, k = –N1, …, –1, 0,

1, …, N2. The output estimate is given by

(1)

where * denotes convolution and qk = hk*wk. Notice that

the desired term in (1) is q0xk rather than xk and this is

why we call the estimate to be biased. It is more conve-

nient to use vector formulation for analysis. Therefore,

we define the following vectors:

Source data vector x = [xk+L1+N1…xk…xk–L2–N2]
T

Noiseless received signal vector r = [rk+N1…rk…

rk–N2]
T

Noise vector n = [n–N1…n0…nN2]
T

Equalizer weight vector w = [w–N1…w0…wN2]
T

Channel response matrix of size (N1+N2+1) � (L1+

L2+N1+N2+1)

Total system response vector

(2)

where T denotes transpose. With the above vector defi-
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nitions, (1) can now be written as

(3)

The receiver estimate error is

(4)

(1) Optimum Equalizer Weights for the Biased MMSE

Receiver:

The mean square error (MSE) for the biased equal-

izer can be obtained from (4) as

(5)

where q and w are respectively the norms of the vec-

tors q and w, and N n x0

2 2' /� � � . We note that

(6)

(7)

where hB = [0…0 hL2…h0…h–L1 0…0]T is the backward

vector of h with padded zeros on both sides to fit into

the size of N1+N2+1 corresponding to the size of w.

Now, setting the gradient of JB with respect to w to zero,

i.e., �w JB = 0, we get

(8)

whence, the optimum equalizer weight vector is ob-

tained as

(9)

and the corresponding optimum q and q0 are

(10)

(11)

(2) Biased MMSE:

Substituting the optimum wo of (9) into q of (2) and

q0 of (6), then into (5), it is straightforward to show that

the biased MMSE is given by

(12)

It should be noted that (9) through (12) are all expressed

in terms of the channel parameters h and N 0

' .

(3) Biased SEP:

We consider a given signal vector x = [xk+L1+N1…

xk…xk–L2–N2]
T. Then, ek is a Gaussian random variable

with mean � B k j k j

j L N
j

L N

q x q x� � � �
�� �

�

	


( )1 0

1 1
0

2 2

and variance

� �B n

2 2 2
� w . The signal vector x has D = ML1+L2+N1+N2+1

possible outcomes, so does the mean �B. It is therefore

proper to use an additional subscript i for distinctive

outcomes. Thus, we shall now use xi = [xk+L1+N1,i…xk,i…

xk–L2–N2,i]
T and �B,i for the ith outcome, i = 1, 2, …, D. As-

sume p(xi) = 1/D for all i. We need to consider 3 situations.

Situation 1: If the component xk,i in a given vector xi is

xk,i = �m = (2m – 1 – M)d, m � 1, M, the SEP is

(13)

whereQ x e dxx

x
( ) /� ��

�
1

2

2 2


. There are D(1–2/M) such

errors out of D possibilities, each with probability 1/D.

Thus, the total SEP for Situation 1 is

(14)
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The latter two equalities in (14) arise from the symme-

try property of the M-PAM constellation.

Situation 2: There are D/M possibilities that xk,i = �1 =

–(M–1)d, each with probability 1/D. The total SEP in

this situation is

(15)

Situation 3: There are D/M possibilities that xk,i = �M =

(M–1)d, each with probability 1/D. The total SEP in this

situation is

(16)

It is easy to see that (15) = (16) due to constellation

symmetry. Thus, adding (14), (15), and (16) together, we

obtain the total SEP as

(17)

Now, using vector notations, we write

(18)

We thus obtain the biased SEP as

(19a)

or

(19b)

Equation (19a) or (19b) are valid for any weight vector

w. If we use the optimum wo of (9) for w, we get the ex-

act SEP for the biased MMSE equalizer of finite length.

Although (19a) and (19b) are still pretty much brute

force expressions, but the number of terms has been dra-

stically reduced as compared to (10.2-62) in [1]. More-

over, with the replacement of wo, only channel para-

meters in addition to the noise power are involved in

the SEP expression rather than the unspecified system

parameters involved in (10.2-62) of [1].

2.2 Infinite Length Equalizers

For a biased MMSE equalizer of infinite length, the

optimum equalizer weight vector and the MMSE respec-

tively take the same forms of (9) and (12) except that H

and qo are now of infinite size (by filling in more zeros)

and I is an infinite size identity matrix. As to the SEP, the

infinite length equalizer will yield an expression slightly

different as will be seen below.

If the equalizer is of infinite length, we have N1, N2

� � in (4) and the signal vector x is also infinitely long.

In (4), we shall hold xk fixed and treat all other compo-

nents xj, j � k, in x as random variables. Then, the ek in (4)

is composed of infinite number of independent random

variables. By the central limit theorem, ek approaches (or

approximates) a Gaussian random variable with mean �B

= (1 – q0)xk and variance � � �B x nq2 2 2

0

2 2 2
� � 	[ ( ) ]q w .

The xk has M possible values. Therefore, by the similar

fashion in arriving at (19a) and (19b), we can obtain the

SEP for the biased equalizer of infinite length as

(20a)

(20b)

Replacing the w, q, and q0 within �B by the infinite size

optimum wo of (9) and the optimum qo and q0,o given by

(10) and (11), we get the SEP in terms of channel infor-

mation for the biased MMSE equalizer of infinite length.

However, (20a) or (20b) is not practical for computer

simulations since the quantity �B contains the infinitely

long vectors q and w. To overcome this difficulty, we

can carry one step further by noting that, under the opti-
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mum MMSE condition, we can apply (5) and (12) to get

(21)

Substituting (21) into (20) and replacing d
M

x�
�

�
3

12
,

we get the alternative SEP expressions for the biased

MMSE equalizer of infinite length as

(22a)

(22b)

These expressions become useful for computer simula-

tions as will be explained below.

It is well known that the frequency domain solution

for an infinite length MMSE equalizer (biased) is given

by [1]

(23)

where * denotes complex conjugation, � is the discrete-

time frequency in radians, and W(�) and H(�) are re-

spectively the discrete-time Fourier transform (DTFT)

of wk and hk. Further, we know that

(24)

where Q(�)is the DTFT of qk. The integral term in (24)

is in terms of the channel frequency response H(�) and

can certainly be evaluated by computer simulation. We

note here that, by experience, if using a sufficiently

long equalizer, using the optimum q0,o in (21) and then

in (20) or simply using the optimum q o B

T T

0, (� 	h HH

N B0

1' )I h
� of (11) in (22) will give quite satisfactory re-

sults, almost undetected by eye but actually less accu-

rate than the results obtained by substituting (24) into

(22). Moreover, computing q0,o by (11) in the time do-

main will take much longer time than computing q0,o by

(24) in the frequency domain. This is because comput-

ing the inverse of an extremely large matrix will take

much time. For our system examples, computing q0,o

using (10) for the extremely long equalizer system

takes about 40�80 times longer time than using (24).

3. Unbiased MMSE Receivers

Figure 1 presents the configuration of an unbiased

equalizer system. The major difference of an unbiased

system from a biased system is the multiplication by 1/

q�0 at the equalizer output. Note also that, in Figure 1, �xk ,

wk, and q0 have been replaced by � �xk , w�k, and q�0 to distin-

guish unbiased quantities from the biased counterparts.

3.1 Finite Length Equalizers

For an unbiased equalizer, (3) must be modified as

(25)

As in Figure 1, we have used a prime superscript on the

relevant quantities to distinguish them from the biased

counterparts. Note now that the desired term in (25) is

xk and hence the estimate is unbiased. The unbiased es-

timate error and MSE are then given by

(26)

(27)
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(1) Optimum Weighs for the Unbiased MMSE Equalizer:

To obtain optimum weight vector of the unbiased

MMSE equalizer, we note that to minimize JU with re-

spect to w� is the same as to minimize the following quan-

tity with respect to w�

(28)

Setting the gradient of (28) with respect to w� to equal

zero, we get

(29)

or

(30)

A solution to (29) can be found by inspection as

(31)

where C is an arbitrary constant. The reader can verify

(31) by substituting (31) into (30). Thus, the unbiased

MMSE receiver has infinitely many solutions as C can

have infinitely many values. Simply choose C = 1. Then,

the optimum weights of the unbiased MMSE equalizer is

exactly the same as those of the biased MMSE equalizer

as given by (a).

(2) Unbiased MMSE:

Choosing, C = 1, � �w wo o , � �q qo o0 0, , , and q�o = qo =

H
T
wo, we can easily prove that the unbiased MMSE is

(32)

where, in terms of channel response information, q0,o =

h HH I hB

T T

BN( )'	 �
0

1 as given by (11). Since q0,o < 1

[see (24)] and q0,o is the same for both biased and unbi-

ased MMSE receiver as indicated above, comparing

(32) with (12), we find that JB,min/JU,min = q0,o < 1. Hence,

the unbiased MMSE is greater than the biased MMSE.

(3) Unbiased SEP:

Starting with (26) and following the same procedure

as for the biased receiver case, we can easily derive the

SEP for the unbiased receiver. First, we find the mean

and variance of the unbiased random error variable e�k
for an ith outcome of signal vector xi as

(33)

(34)

Then, the unbiased SEP is calculated as

(35a)

(35b)

Replacing the w in the above equations by the optimum wo,

we get the exact SEP in term of channel response para-

meters for the unbiased MMSE equalizer of finite length.

3.2 Infinite Length Equalizers

For an unbiased MMSE equalizer of infinite length,

the optimum equalizer weight vector and the MMSE

take the same forms of (31) and (32) respectively. As to

SEP, the infinite length unbiased equalizer will yield an

expression much neater.

From (26) and (27), we see that, for any fixed xk with

all other components xj, j � k treated as random vari-

ables, the e�k approximates a Gaussian random variable

with zero mean and variance� �U x
q

q2

0

2

2 2

0

21
� � 	[ ( )q

� n UJ2 2
w ] � . Thus, for all M possible values of xk, we

have the identical e�k. Following the same fashion in de-
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riving (35), we obtain the SEP for the infinite length un-

biased equalizer as

(36)

Notice that, instead of a sum of Q functions, we now

have only one Q function term. This offers another ad-

vantage. We can now minimize the SEP by simply max-

imizing the argument within the Q function. Moreover,

this argument is simply
3

1

2

2

� x

UM J( )�
, i.e., the argu-

ment of the Q function is inversely proportional to the

square-root of the unbiased MSE. We conclude that the

minimum error probability is

(37)

where q No B

T T

B0 0

1

,

'( )� 	 �
h HH I h . We thus found that

an unbiased MMSE receiver of infinite length approaches

the minimum error probability receiver. Again, for com-

puter simulations, q0,o is better expressed in frequency-

domain as given by (24) to avoid dealing with infinite

size vectors.

4. Biased and Unbiased MMSE/DFE

Receivers

A considerable gain in SEP performance can be

achieved relative to the linear equalizer by use of DFE

[1]. Essentially, a DFE can help reduce spectral null ef-

fect to mitigate noise enhancement [1]. We shall now

perform similar analysis on biased and unbiased MMSE/

DFE receivers as done for the linear MMSE receivers in

the previous sections.

4.1 Biased MMSE/DFE Receivers

Let the decision feedback section have tap weights

bk, k = 1, 2, …, K, and K = L2 + N2 [13]. Then the esti-

mate output �xk is given by

(38)

We further define a feedback weight vector of size (L1+

L2+N1+N2+1) � 1 as

(39)

Assuming prior decisions are correct, (38) can now be

written as

(40)

The receiver estimate error is given by

(41)

The MSE can be obtained from (41) as

(42)

We want to find the optimum weight vectors bo and wo.

We will first define two vectors of size (L1+N1+N2+

L2+1) � 1 as

(43a)

(43b)

Then, define HL as the left (N1+N2+1) � (L1+N1+1)

sub-matrix of H and HR as the right (N1+N2+1) � (L2+

N2) sub-matrix of H. Further note that [see definition of

b in (39)]
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(44)

Now, by setting the gradients �b JB = 0, �w JB = 0, we get

(45)

(46)

so

(47)

and

(48a)

(48b)

Equations (45) and (47), (48a), (48b) can all be ex-

pressed in terms of channel response parameters and are

applicable to biased DFE of both finite and infinite length.

Now, substituting (45) and (47), (48a), (48b) into

(42), we get

(49)

This result is similar to that of the biased linear equal-

izer given by (12) and is applicable to the biased DFE of

both finite and infinite length except that now q0,o =

h H H I hB

T

L L

T

BN( )'	 �
0

1 as given by (48b). For the infi-

nite length case, the vectors in (48b) are of infinite size.

In (49), we have used the facts

(50)

(51)

Finally, by the same fashion as done for the biased

linear equalizer, we can find the SEP for the finite length

biased DFE as

(52a)

(52b)

For the infinite length biased DFE, the SEP is

(53a)

(53b)

where � � �B x nq2 2 2

0

2 2 2
� � � 	[ ( ) ]q b w . Note that al-

though (53a) and (53b) look like (20a) and (20b), but

the �B is different. Now, using the optimum q0,o, qo, bo,

and wo obtained above in (52) and (53), we get the cor-

responding SEP’s in terms of channel information for

the biased MMSE/DFE receivers. Again, as for the bi-

ased linear MMSE equalizer of infinite length, alterna-

tive expressions for (53) can be also obtained where

only q0,o (not bo and wo) needs be computed. It has been

shown by Salz [13] that, for MMSE/DFE receivers (bi-

ased), the MMSE is given by

(54)

Hence, by (49), we can obtain q0,o in frequency domain

expression as

(55)

Then, by noting that � �B B o xJ q2

0

2 21� � �,min ,( ) = q0,o(1

� q0,o)� x

2, we can modify (53a) and (53b) into the forms

just like (22a) and (22b) but with q0,o in terms of chan-
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nel frequency response given by (55) for computer sim-

ulations.

4.2 Unbiased MMSE/DFE Receivers

Using the same procedure as done before, we can

readily obtain the optimum feedback and feedforward

weight vectors for the unbiased MMSE/DFE receivers of

both finite and infinite length to be the same as given by

(45) and (47). The MMSE is

(56)

where q No B

T

L L

T

B0 0

1

,

'( )� 	 �
h H H I h . Equation (56) also

holds for finite as well as infinite length MMSE/DFE

receivers.

The SEP for the finite length unbiased DFE can be

found as

(57a)

(57b)

If optimum bo and wo given by (45) and (47) are used

for (57), we will get the MMSE SEP.

For the infinite length unbiased DFE, the SEP is

(58)

The minimum error probability for the infinite length

unbiased DFE receiver (also MMSE) is

(59)

which bears the exact resemblance to (37) for the in-

finite length unbiased linear MMSE receiver except

that q0,o is now different. Here, q0,o = h B

T (HLHL

T +

N B0

1' )I h
� . Since the unbiased q0,o and biased q0,o are

the same, we can also express the q0,o in (59) by the fre-

quency-domain expression of (55) for computer simu-

lations.

5. Simulation Results

We now compare the performances of the various

equalizers discussed in previous sections by computer

simulations. We will present two channel models for 4-

PAM transmission, one with length 2 and one with length

4. Although length 2 is short, we purposely select a high

sub-cursor so that it will give rise to high intersymbol

interferences. This will be sufficient for the demonstra-

tion purpose. To make it more convincing, the channel of

longer length of 4 is given for the second example. In the

literature of channel equalization, it is standard practice

to choose channel lengths between 2 and 5 in simulations

[14�20]. Usually, these lengths are sufficient to demon-

strate the purposes. Longer channel lengths require lon-

ger equalizers thus increase simulation time and serve no

better purpose, Hence, unless necessary, there is no need

to use long length channels for demonstration purposes.

In the field of minimum error rate equalization, channels

of length 2 have been used in [14,15,19]; channels of

length 3 have been adopted in [16�20]; channels of length

4 have been taken in [17,21,22] and length 5 in [14,19].

Figure 2 presents SEP vs. SNR curves for MMSE

and MMSE/DFE receivers of finite length, with biased

and unbiased decisions for the channel h = [1, 0.46]. Fig-

ure 3 presents the same curves for the infinite length

counterparts for the same channel. As expected, unbi-

ased receivers always outperform biased receivers, DFE

receivers always outperform linear receivers, and infinite

length receivers outperform finite length receivers. How-

ever, for the MMSE/DFE receivers, the biased and unbi-

ased curves seem to coincide with each other. In fact, the

unbiased receiver still is better than the biased counter-

part by a very slight amount undetectable by eye. This

means the DFE has already improve the performance to a

degree that will leave very little room for the unbiased
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decision operation to improve further. Then, Figure 4

and Figure 5 show various MMSE receivers of finite and

infinite length respectively for a longer channel h =

[0.3482, 0.8704, 0.3482]. For this longer channel, we ob-

serve a somewhat unusual phenomenon in the finite

length linear MMSE cases of Figure 4. We deliberately

provide these cases to show this unusualness as it is un-

seen ever before. For the biased linear MMSE receiver,

the SEP stops to fall sharply after SNR increases beyond

about 40 dB, while for the unbiased linear MMSE re-

ceiver, the curve also turns around at about 40 dB but

then again falls sharply after about 50 dB. This is because

the chosen equalizer lengths for both are not long enough.

As a result, the equalizers cannot eliminate ISI effici-

ently. The best a biased linear MMSE receiver can do is

to get the SEP down to about 10–4. However, an unbiased
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Figure 2. Symbol error rate curves for various finite length
MMSE equalizers for 4-PAM transmission in chan-
nel h = [1, 0.46]. For Linear MMSE, equalizer
length = 3. For MMSE/DFE, feedforward filter
length = 3 and feedback filter length = 2.

Figure 3. Symbol error probability curves for various MMSE
equalizers for 4-PAM transmission in channel h =
[1, 0.46].

Figure 4. Symbol error rate curves for various finite length
MMSE equalizers for 4-PAM transmission in chan-
nel h = [0.3482, 0.8704, 0.3482]. For linear MMSE,
equalizer length = 5. For MMSE/DFE, feedforward
filter length = 5 and feedback filter length = 3.

Figure 5. Symbol error probability curves for various MMSE
equalizers for 4-PAM transmission in channel h =
[0.3482, 0.8704, 0.3482].



linear MMSE receiver will overcome the difficulty caused

by the short equalizer length again around 50 dB SNR.

We have tried to use longer equalizers for this second

channel. Then, this unusual phenomenon disappears.

6. Conclusion

We analyze biased and unbiased MMSE equalizers

of finite length as well as infinite length, with and with-

out decision feedback sections. For all these equalizers,

new closed-form expressions of optimum equalizer wei-

ghts, the MMSE, and SEP solely in terms of channel in-

formation and noise power are derived. Then, SEP per-

formance curves for all receivers are presented and com-

pared. The results meet all expectations. Moreover, we

have reached two interesting conclusions: (a) The biased

and unbiased MMSE equalizers have the same optimum

equalizer weights. This is true whether the equalizers are

of finite or infinite length, with or without decision feed-

back sections; (b) When the equalizer length approaches

infinity, an unbiased MMSE receiver, with or without de-

cision feedback section, approaches the optimum mini-

mum error probability receiver. SEP expressions best su-

ited to computer simulations for various presented equal-

izers of infinite length are also provided.
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