
Surface Tension-Driven Microvalves with

Large Rotating Stroke

Lung-Jieh Yang* and Kuan-Chun Liu

Department of Mechanical and Electro-mechanical Engineering, Tamkang University,

Tamsui, Taiwan 251, R.O.C.

Abstract

The design, the fabrication, and the testing result of a novel microvalve actuated by surface

tension force were described in this work. This device comprises of a parylene microtube for liquid

transportation and a peacock-like SU-8 capillary microstructure for switching the microvalve in a

buckling deformation way without feeding external electrical power. The maximal spreading angles of

the peacock-like structures actuated by water surface tension are experimentally tested as 204� and 15�

for the cases of not integrating and integrating a parylene microtube, respectively.
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1. Introduction

It’s well known that many micro-valves have no

characteristic of zero dead volume [1]. In other words,

micro valves don’t close or open until certain volumetric

amount (the dead volume) of working fluid has been

pumped into or out of the controlled actuators. This de-

ficiency almost intrinsically limits the performance of

microfluidic pumps.

A buckled-type microvalve, based on parylene tech-

nology of good coating characteristics all over 3D geom-

etries, was presented in Transducers’05 [2]. After depos-

iting parylene film conformally around a sacrificial glass

capillary, the authors removed the glass capillary by hy-

drofluoric (HF) acid to obtain a parylene microtube. A

certain portion of the parylene microtube can be assigned

as the buckled region to stop the liquid flow inside the

microtube itself, and there is no need of adding sealing

parts into the buckled-type valve with the characteristic

of almost zero dead volume. SU-8 technology has been

integrated into the parylene microtube to fabricate a test-

ing module for studying the feasibility of the device, and

the turn-on angle of the buckling tube for switching li-

quid flow was verified as 120�. However, there inte-

grated no microactuator in the device then. And no

proper mechanism was proposed for providing sufficient

buckling force and for controlling the buckled angle of

the parylene microvalve, either.

In Transducers’05, a bio-mimicking actuator made

of silicone rubber was reported with a large rotating st-

roke using surface tension (Young-Laplace) force, which

is much more dominant than other body-force effects in

the micrometer scale [3]. The author herein would like to

substitute the material of silicone rubber with the photo-

patternable, high aspect-ratio SU-8 (negative-toned) re-

sist. In other words, we combined the concept of the bio-

mimic peacock-like microstructure shown in Figure 1

with SU-8 technology and with the previously developed

parylene (buckled-type) microtube to develop a com-

plete novel microvalve, shown as Figure 2, to have the

function of switching on and off for the microfluidic

transportation. Figure 2 demonstrates this device and its

functionality of switching flow in the pipe will be de-

picted in the following.

2. Design of the New Actuator Device

The device of Figure 2 shows that the zero position
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of the actuation angle � is assigned as 45� in this work.

The pipe flow connecting the parylene valve tube gets

closed if the angle � is smaller than 60�. (This fact has

been verified in [2].) That is to say, the actuation angle

change subject to the capillary actuation of the filled li-

quid among the peacock-like microstructure should be

greater than 15� to ensure the opening of the pipe flow

connecting the parylene valve tube. Therefore, a proper

geometry design of the peacock-like capillary microst-

ructure as a new actuator should be accomplished before

the device fabrication.

Figure 3 shows a single pair of beam structures of the

new actuator of Figures 1 or 2. The liquid filled inside the

gap between two capillary beam structures deduces a

huge attraction force (the “negative” Laplace pressure)

to pull the neighboring beams close to each other. Sub-

ject to the hydrophilic case of all microstructure surfaces,

the capillary collapsing of the beam structures would not

separate again forever, and it causes the catastrophic sur-

face sticking issue in the micromachinings. However, if

the capillary structures are not really collapsing or not

stuck together due to the hydrophobic characteristic of

the structure surfaces (for example the SU-8 surfaces in

this work), the peacock-like beam structure will restores

to its original shape after the working liquid dries out ex-

actly.

Before the device fabrication, the proper geometry

design of the capillary beam structure is necessary to

make sure the sufficient attraction force actually existing

in the actuation device. In this work, we access the en-

ergy approach to derive the surface tension equation in

the actuator device and estimate the actuation angle

change by the surface tension equation afterward. The

surface energy of the liquid column in Figure 3, denoted

by Es, is formulated as Eq. (1).

(1)

where �la and �sl denote the surface tensions of liquid-air

and solid-liquid interfaces, respectively. With the an-

chored assumption on the right hand side of the beam in

Figure 3, the L-shaped beam hanging on the left hand

side can be regarded as two torsion springs in series.

The deformed angle of the base structure (w in length, b

in width, H in thickness) with a spring constant of K� is

denoted by �; whereas the actuation angle of the longer
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Figure 1. A SU-8 peacock-like microstructure actuated by
(liquid) surface tension. Working liquid will be
filled into the gaps of the peacock-like microst-
ructure. The lower end of the structure is fixed on
the base; the upper end is freely levitated.

Figure 2. A SU-8 peacock-like microstructure switching the
parylene buckled tube. The spreading angle change
is denoted by �.

Figure 3. A single pair of beam structures of the new actuator
driven by surface tension force. The base structure
is with the dimension of w in length, b in width, and
H in thickness. The capillary structure is with the
length of R.
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capillary structure with a spring constant of K� is deno-

ted by �. The strain energy stored in the deformed struc-

ture subject to the actuation of liquid surface tension is

shown in Eq. (2).

(2)

By the principle of least action (minimum value) of

the total energy for the equilibrium system depicted in

Figure 3, the derivative of the total energy (sum of sur-

face energy and strain energy herein) with respect to the

actuation angle � should be vanished, i.e.,

(3)

Mo is the bending moment induced by the surface

tension between two beam structures. The actuation an-

gle � for one pair of the peacock-like microstructure is

expressed as follows.

(4)

(5)

and the spreading angle change � for the N-pair of the

peacock-like structures before collapsing is defined as

(6)

From the qualitative aspect of the actuator design,

the working liquid with larger surface tension (larger �la)

or the longer capillary structure (larger R) or the finer gap

(larger N and smaller w) of capillary structures are bene-

ficial to the prominent rotating actuation of the SU-8 de-

vice. Therefore, we chose R as 2700 	m and 3400 	m, N

as 210 and 175, respectively. The calculated value of the

actuation angle is large enough to get the two neighbor-

ing beams close firmly.

Another interesting qualitative aspect for the surface

tension-driven device is that the actuation angle change

� is no matter with the wetting behavior (contact angle)

of the capillary structure. That is, even using the hydro-

phobic SU-8 resist as the capillary structure (the contact

angle of water on SU-8 surface is larger than 90�) in this

work, we still found that water stays among the gaps of

the peacock-like structures and don’t deteriorate the ac-

tuating performance of the new device anymore. There is

actually no problem for us in practical experiment to fill

liquid into the gaps of the peacock-like structure made of

hydrophobic SU-8.

3. Fabrication of the New Actuator Device

Besides the excuses of anti-sticking during the liquid

drying and not deteriorating the capability of absorbing

working liquid during operation, the using of SU-8 resist as

the material for the peacock-like structures in Figures 1 and

2 has several advantages additionally. With Young’s modu-

lus of 4.4 GPa, much larger than silicone rubber in the prior

art [3], SU-8 resist as the mechanical material here is good

for sustaining enough strength for transferring the actuation

force from the surface tension effect in this work. Even we

take the risk of the intrinsic fragile property SU-8, there still

exists a success window for us to access if the maximum

stress in the SU-8 not exceeding its fracture limit.

Moreover, the convenient photo-patterning of SU-8

resist with high aspect-ratio and high spatial resolution

convinces us of choosing it as the more advantageous

candidate over other materials. The simplified fabrication

process of the valve device is demonstrated in Figure 4.

With alignment marks defined on the substrate in

advance, the multi-layer SU-8 technology [4] is used to

make the peacock-like structure (the 1st layer) as well as

the holding grooves (the 2nd layer) for the parylene mic-

rotube. After proper control of UV exposure and post-

exposure-baking on the two SU-8 layers (steps (a) and

(b) of Figure 4), this semi-3D HARMS (high-aspect-

ratio microstructure) of Figure 1 can be achieved by only

one developing process concisely. We additionally mo-

unted the parylene microtube on the SU-8 HARMS by

adhesive in step (c), and finally release the complete val-

ve device from the silicon substrate in step (d). The de-

vice size is about 8 mm.

4. Actuation Test

Herein we used a very simple testing setup shown in
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Figure 5 to observe the actuation angle cased by the li-

quid surface tension. A tweezers (the type of normally

clamped or with closing beaks, instead of the opening

type) mounted in a steel housing with black back-plate is

used to grasp the SU-8 actuator device in the air firmly.

The black back-plate provides nothing but a good con-

trast to the white color of SU-8 microstructures subject to

good illumination aside. Such an experimental setup is

proper enough for us to take pictures or video recording

easily during the device operation by an ordinary camera

or a video-cam.

Two kinds of liquid, water and IPA, are used to acti-

vate the new device. Figure 6 shows the dramatic spread-

ing phenomena of the fabricated SU-8 peacock-like st-

ructure of Figure 1. No more than 5 gaps of the structure

with the total gap number of 175 and 210 were observed
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Figure 4. Fabrication process: (a)UV exposure on the 1st SU-8
layer (peacock-like structure); (b) UV exposure on
the 2nd SU-8 layer (holding grooves); (c)SU-8 de-
veloping and parylene-tube mounting; (d)device
releasing from the substrate.

Figure 5. Testing setup for observing the actuation angle of
the new SU-8 device. The picture of the actuation
movement of the SU-8 device is taken by an ordi-
nary camera.

Figure 6. SU-8 peacock-like microstructure (a)without pary-
lene tube; (b) actuated by working liquid (water.)



not collapsing together. The maximal angle subject to

water driving is 204�. All the testing data were plotted on

Figure 7. This wonderful performance of surface tension

driving for the peacock-like microstructure encourages

us to apply to activate the buckling deformation of the

parylene microtube in the next step.

Figure 8 shows the angle changes of the SU-8 pea-

cock-like structures integrated with parylene microtubes

subject to water driving. Even the mechanical resistance

of the parylene microtube against liquid surface ten-

sion makes the angle change more confined; however,

the maximal angle change subject to water driving is 15�

herein, just meets the minimum actuation requirement of

a buckled microtube if the initial angle is less than 135�

(zero position of the actuation angle � is assigned as 45�

in Figure 1.) In other words, if we regard the design of

Figure 2 as a valve device of enhancement-mode (nor-

mally stops flow, as shown in Figure 8(a)), the surface

tension force will pull back the buckled angle smaller

than 120� (switch on the valve and let flow go, as shown in

Figure 8(b)). Other testing data were plotted on Figure 9.

5. Discussion

After the working feasibility of the buckled valve was

approved in the previous section, the qualitative compari-

son between the experiment results and theoretic predic-

tion will be issued and discussed preliminarily as below.

� Surface tension effect of different working fluids

In this work, two working fluids were used. The sur-

face tensions of DI water and IPA are 0.073 and 0.020

N/m, respectively. As the linear relation to surface ten-

Surface Tension-Driven Microvalves with Large Rotating Stroke 145

Figure 7. Actuation angles of different peacock-like micro-
valves (without parylene tube) subject to different
working liquids.

Figure 8. SU-8 peacock-like microvalve (a)with parylene-
tube; (b)actuated by working liquid (water.)

Figure 9. Actuation angles of different peacock-like struc-
tures (with parylene tube) subject to different work-
ing liquids.



sion �la shown in Eq. (6), the actuation angle (N�) acti-

vated by IPA should be only 27% of the case of DI water.

However, the experimental data of IPA in Figure 7 ex-

pand to 62~74% of DI water! It might be explained by

the fact that the capillary beam structures collapsing

together to deactivate the effective pulling force for the

case of DI water driving.

� The influence of number N and gap w of capillary

beams

We can hardly find the apparent performance dif-

ference between two device designs of N = 175 and 210 in

Figure 7. This observation results from the fact that the

multiplying product of N and w in Eq. (6) is the total arc

length of the capillary base structure. Such an invariant

quantity of arc length clarifies the blurred change of the ac-

tuation angle for devices with different gaps in principle.

� The influence of the length R of capillary beams

According to Eq. (6), the actuation angle should be

proportional to the square of the capillary beam length R.

Again, the collapsing of the capillary beam structures li-

mits the effective angular deformation of the device. In

other words, a more appropriate theoretical formulation

considering the collapsing phenomena of the Figure 6

needs to be done to predict the experimental data accor-

dantly.

Due to the much stronger stiffness of the device in

Figure 8 than Figure 6, the collapsing of the actuator with

parylene microtubes is less serious. Therefore, the actua-

tion angles of IPA driving is about 20~33% of the case of

water driving, just around the theoretical value (27%)

predicted by Eq. (6). We hope to collect more experi-

mental data of Figure 9, and to develop its correspond-

ing physical model to justify the optimum design in the

future.

6. Conclusion

A new surface tension-driven device made of pary-

lene and SU-8 in a hybrid way is demonstrated. The suc-

cessful test of large actuation angle of the device for

switching buckled-valves shows its potential in micro-

fluidics and micro actuators with less electrical power

supply.
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