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Abstract

The topology synthesis approach can generate a creative initial optimized configuration and

can generate approximately well locations of hinges. It is particularly useful to form a monolithic

compliant mechanism in MEMS application. However, the formation of hinges-like portion is

typically encountered as a major unsolved problem. Such hinges unavoidably exist in the topological

layout but cannot practically manufacture. This paper proposes an approach using the analytic

single-axis flexure hinge integrated with the formal optimization as a post-design process to obtain

optimum flexure hinges and its location for promoting the overall performance. A compliant micro

gripper/magnifying mechanism is adopted as an example to illustrate the presenting approach; and a

multi-objective optimization problem consisting of several constraints are constructed to determine

nine unknowns. The numerical experiment shows the proposed post-optimum design is effective and

can be utilized to other similar design situation.
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1. Introduction

Micro electro-mechanical systems (MEMS) are built

in sub-millimeter scale and integrated with electronic cir-

cuits. Compliant mechanisms are single-piece flexible

structures and well suited for MEMS because of the

small length scale and problems with assembly, friction

and wear that prohibit use of conventional rigid-body

mechanisms [1]. Compliant mechanisms are a relatively

new class of mechanisms that utilize compliance of their

constituent elements to transmit motion and/or force.

They can be designed for any desired input-output force-

displacement characteristics, including specified volume/

weight, stiffness, and natural frequency constraints. As

flexure is permitted in these mechanisms, they can be

readily integrated with unconventional actuation schemes,

including thermal, electrostatic, piezoelectric, and shape-

memory-alloy actuators [2].

Most piezoelectric ceramic materials can only pro-

duce a maximum strain level of 0.1%. Hence, various ap-

proaches have been developed to increase the actuation

stroke in these materials for practical applications. One

approach employs mechanical amplifiers (amplifying me-

chanism) to magnify actuation produced by standard pi-

ezoelectric ceramics. Figure 1 indicates an integration of

a piezoelectric actuator with an amplification transmis-

sion device that was designed to provide 20:1 amplifica-

tion using energy method [2] and is effective to modify

the force-displacement characteristics. As the amplify-
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Figure 1. Piezoceramic actuator integrated with 20:1 stroke
amplification mechanism [2].



ing mechanism is designed to be monolithic, it can be

considered a kind of compliant mechanism. Hence, to-

pology optimization techniques [1,3�5] developed for

compliant mechanisms can be directly applied to the de-

sign of amplifying mechanisms.

Topology optimization has been successfully used to

solve various structural problems. A typical development

of using topology optimization is to systematically design

mechanical amplifiers, such as the force amplifier [6], el-

liptic elastic amplifier and dot-matrix printers [7]. The re-

sults of the topology optimization then are converted to

beam element models that are used for a further modifica-

tion. For the example of the elliptic elastic amplifier, an

optimum topology for the maximum magnification factor

driven at excitation frequencies 30 Hz is shown on Figure

2(a). This topological layout was modified by experiences

that in place of single-node connection or very thin flex-

ures were made of continuum components and with rea-

sonable thickness, as shown in Figure 2(b) [6]. Figure 2(b)

shows the finite element analysis by ANSYS in which the

interpreted mechanism as a broken line and the deformed

mechanism as a full line. In this case, the topology optimi-

zation can provide an initial configuration of the mechani-

cal amplifier. The final design for manufacturing requires

further refined modification by some skilled engineering

drafting. Thus, the final result in Figure 2(b) has no effort

to the critical section design of flexure hinge portion, in

the meanwhile; it is not an optimum design.

There are two major problems arises in numerical to-

pology synthesis. The first problem is checkerboard for-

mation [8] should be carefully dealt with in order to ob-

tain satisfactory results. Another numerical problem en-

countered in the topology optimization of compliant me-

chanisms is the formation of single-node that should not

be the part of final designs especially in the area of MEMS.

Figure 3 shows the topological design of a force inverter

[9] without checkerboard control. One can see the mark

with a circle indicates the portion of hinge-like single-

node. Such the point actually represents the hinge to pos-

sess a localized compliant behavior that is unrealizable in

a real mechanical system. Several works for preventing

hinge formation of single-node have been proposed in re-

cent years [1,10�12]. An alternative procedure by Yoon

et al [9] in which a multi-scale wavelet-based topology

optimization formulation to obtain hinge-free result was

presented. This post-processing can change the portion

of single-node (indicated in Figure 4(a)) to a design (in-

dicated in Figure 4(b)) for a compliant hinge. The design

in Figure 4(b) indeed takes away the singular hinge por-

tion, however, it still not conform to the configuration of

the real mechanical flexure hinge.

A practical mechanically compliant flexure joint is in-

cluded in a flexure-based gripper, as illustrated in Figure 5

[13]. Under a small deflection, the flexure joint can be
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Figure 2. Optimum topology of the elliptic elastic amplifier [7].

Figure 3. Force inverter topological design [9].



modeled as a rigid hinge joint attached by a linear tor-

sional spring for the analysis and design, as shown in Fig-

ure 6 [13]. This idea inspires us to re-examine the formula-

tion of a mechanical flexure hinge directly applies to the

post-topology optimization of a compliant mechanism de-

sign. This paper presents such the post-processing tech-

nique of optimizing the mechanical flexure hinge and its

surrounding area to promote the overall performance of a

compliant structure. A compliant micro-gripper acting as

a mechanical amplifier is employed as the example to il-

lustrate the proposed post-optimization approach.

2. Mechanics of Flexure Hinge

The geometrical shape surrounding the flexure hinge

is critical for the output performance of a single-piece

compliant mechanism, as recognized by researchers. Fig-

ure 7 shows dimensions that define the hinge, various

forces and moments for which the angular and linear

compliances are calculated. A single-axis flexure hinge

must be flexible about the input axis or sensitive axis.

Usually, the hinge must be as stiff as possible about the

cross axis and along the longitudinal axis.

For an input moment Mz causes the flexure to deflect

through angle �z. The simplified compliance equation can

be derived as:

(1)

For practically any hinge, the error will be less than 1

percent as compared with original complicated formu-

lation [14]. The equivalent torsional spring rate can

be written as:

(2)
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Figure 4. (a) A single-node hinge (b) Compliant hinge by po-
st-processing [9].

Figure 5. Flexure based gripper mechanism [13].

Figure 6. Flexure joint modeling [13]. Figure 7. Hinge dimensions and various forces and moments.
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Linear deflection �y may be caused by moment Mz.

Thus, the simple form of compliance for the case of ap-

plied moment is:

(3)

The equivalent linear spring rate along y-direction can

be written as:

(4)

The hinge height h is not important factor in angular

compliance and linear compliance. This single-axis fle-

xure has been used more popular than two-axis flexure.

3. Topology Synthesis of Compliant Structure

A general compliant mechanism design problem is

sketched in Figure 8. A spring at the output port simu-

lates the resistance from the work-piece. The goal of the

optimization problem is to maximize the work perform-

ed on the spring. A topology optimization solving the

problem of distributing a limited amount of material in

the design domain such that the output displacement is

maximized can be written as:

max f(X) = Uout (�) (5)

(6)

0.001 	 �i 	 1 (7)

where the V is the upper limit of the required material

volume. In the optimization process, the relation of {F}

= [K]{U} must be satisfied. The relative density in each

element, indicated as �i, is a design variable. The N-

vector containing the design variables is denoted as �.

In this paper, the design of a compliant micro-grip-

per/magnifying mechanism is the example for the dem-

onstration. The design domain is sketched in Figure 9.

The grey area denotes the quadratic design domain that is

supported at the left edge. The size of the design domain

is 3.2 
 1.82 mm2 and the thickness is 0.2 mm. The grip-

per is built in PU material that has Young’s modulus

7.775 
 107 Pa and poison ratio 0.4669. An input force

Fin = 0.2 g is applied at the center of 1.06 mm from the

left edge and the output spring (0.031 N/mm) is mounted

at the output of the right edge. The material property and

the overall size is the same as the thesis of Tsao [15]. The

input spring is 46.65 N/mm and the material volume is

restricted to be 30 per cent of the design domain. Due to

symmetry, only the half of the design domain is discre-

tized using 3210 4-node finite elements. The optimized

topology synthesis can be obtained and shown in Figure

10.
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Figure 9. Design domain for the micro gripper amplifying
mechanism.

Figure 10. Topology synthesized micro gripper mechanism.



4. Post-Design Modeling of Optimization for

Compliant Structure

Two elliptic circles are marked on the Figure 11 that

shows hinge-like portions, as enlarged picture shown, re-

quired to be modified in practical application. How can

one modify the hinge-like portion to be a mechanical

compliant flexure-hinge for manufacturing availability

and simultaneously be an optimum compliant mechanism

design? In other words, it is required to modify the situa-

tion of Figure 11 to the state of Figure 12 that conforms to

the model of single-axis flexure in Figure 7. At first, one

needs carefully to measure the size of Figure 10 and re-

sketch it by skilled engineer to be a much smooth config-

uration. Some dimensions are fixed and other dimensions

surrounding the hinge-like portions need to be determin-

ed by the designer. A proposed post-optimization model-

ing is developed in this paper along magnifying the mid-

dle portion of micro-gripper, as shown in Figure 13 and

expressed in a half configuration because of symmetry.

There are two single-axis flexure hinges required to be

design in a half micro-gripper.

Nine parameters written in l1, �, t1, t2, r2, r1, Cx, d1 and

d2 are selected as design variables, represented in X = [x1,

x2, …, x9]
T and can be recognized in Figure 13. The l1 rep-

resents the distance between two flexures centers. The

angle is between l1 and horizontal line. Parameters t1 and

t2 are thickness corresponding two flexures. Parameters

r1 and r2 represent radius of two flexures holes. The dis-

tance Cx is between the center of left hinge and the edge

of output. Parameters d1 and d2 represent the distance be-

tween the periphery of hinge circle to left edge and the

center, respectively.

Once a horizontal input force toward left applies to

the gripper, an obviously vertical output displacement can

be resulted. From the structure in Figure 13, the effects of

both equivalent torsional springs stiffness should be small

in order to create a maximum output motion. Therefore,

the equivalent torsional spring rate K�1 and K�2, as ex-

pressed in Eq. (8�9), require to be minimized.

(8)

(9)

The linear stiffness of outside hinge requires a mini-

mum stiffness, as written in Eq. (10).
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Figure 11. Hinge-like portion of micro gripper by topology
synthesis.

Figure 12. Compliant flexure hinge.
Figure 13. Design model of magnifying middle-sketch of mi-

cro gripper.
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(10)

Similarly, the linear stiffness of inside hinge requires a

maximum stiffness, as written in Eq. (11), in shear di-

rection for no flexure motion generated.

(11)

The input-output relation can be derived by a small

geometrical motion analysis expressed in Figure 14. The

relation of output displacement �Ox and �Oy to input dis-

placement �i can be written as:

(12)

(13)

To maintain the stable grasping effect, the output ver-

tical displacement should be large and the output hori-

zontal displacement should be small, as compare to input

horizontal displacement. This means that magnification

factor (MF) of
�

�

O

i

x requires to be maximized and MF of

�

�

O

i

y
requires to be minimized.

For a reasonable layout of two flexure hinges are ar-

ranged side by side, the center distance between circular

holes of flexure are geometrically considered as:

(14)

For preventing the relative position among r2 and d1 that

is restricted as:

(15)

For the distance of two flexure hinges has to be larger

than the radius of outside circle, the constraint is written

as:

l1 cos � � r1 � 0 (16)

For controlling the outside circle of flexure hinge is

within the boundary, a constraint can be formulated as:

(17)

To control the relation of two flexures, the following

constraint is:

(18)

Similarly, for defining the horizontal relation between

two flexure hinges, the following constraint is:

l1 cos �1 � (r1 � r2) 	 0 (19)

The length along flexure is restricted in the initial con-

figuration of previous topology synthesis:

(20)

Some specified parameters in constrained function are

measured and obtained from the topology optimization of

the first design phase. Therefore, from the above descrip-

tion, this optimization problem is formulated as: deter-

mine nine design variables, six objective performances
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Figure 14. Geometrical motion analysis of the half gripper
structure.
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(Eqs. 8�13), six inequality constraints (Eqs. 14�19) and

one equality-constraint (Eq. 20). A multi-objective opti-

mization technique is used for solving current problem.

5. Post-Optimum Result and Analysis of

Mechanical Amplifier

This problem formulation is a multi-objective opti-

mization that has been solved by Global criterion ap-

proach [16] in this paper. The optimum result is written

as: [l1, �, t1, t2, r2, r1, Cx, d1, d2]
T = [0.2336, 72.85�, 0.0400,

0.0503, 0.0400, 0.0690, 0.3274, 0.0261, 0.0026]T. The

final configuration of optimum micro-gripper is sketched

in Figure 15. The optimum half portion surrounding the

flexure hinge is clearly expressed in Figure 16.

Finite element analysis software ANSYS has been

used to evaluate the performances of micro gripper de-

sign. Figure 17 shows the finite element model where the

arrow is the input load direction. Figure 18 is the result

after finite element analysis. The input displacement is

19.64 �m and output displacement is 139.01 �m, thus the

magnification factor (MF) is 7.077. The same finite ele-

ment analysis applied to the design before post-optimi-

zation to obtain the input displacement is 6.22 �m and

output displacement is 35.99 �m, thus, the value of MF is

5.788. Therefore, the post-design treatment after topol-

ogy optimization increases the MF with 22.3%. It is no-

ted in original work that Tsao’s thesis used pseudo-ri-

gid-body-model (PRBM) and parametric size optimiza-

tion to obtain 3.593 of MF. One compares both results

and finds that the presenting design tremendously in-

creases the MF of 97%. Furthermore, topology synthesis

A Post-Design of Topology Optimization for Mechanical Compliant Amplifier in MEMS 221

Figure 15. Post-optimum design after topological synthesis of
the micro gripper.

Figure 16. Optimum design surrounding flexure hinges.

Figure 17. Finite element model for micro gripper design.

Figure 18. The result of finite element analysis for micro grip-
per design.



has a larger MF than PRBM with 61%. Thus, topology

synthesis is an effective approach to generate an initial

configuration for monolithic compliant mechanism.

6. Conclusion

The presenting paper introduces a post-optimization

of handling flexure hinges design for monolithic compli-

ant mechanism after the topology synthesis. The geome-

try and mathematical model of the post-design are on the

basis of analytical mechanics of single-axis mechanical

flexure hinge. A one-piece compliant amplifying micro-

gripper has been adopted to represent the design model

further illustrated the presenting approach. The final per-

formance shows that magnification factor of output dis-

placement to input displacement is apparently improved.

The performance of topology synthesis also has been ve-

rified to be an effective approach for generating mono-

lithic compliant structure. In this paper, we conclude that

the combination of flexure hinges and structural optimi-

zation in a phase for design one-piece micro compliant me-

chanism is practically success. The presenting concept and

post-design approach after topology optimization can be

applied to general compliant mechanism synthesis.
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