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Abstract

In this paper, a new approach is proposed to model and control the temperature of a thermal

barrel of a plastic molding machine. Usually the thermal barrel behavior is expressed in terms of a

parameterized linear model to be used in control strategies design. We establish a new model based

on the structure of a Takagi-Sugeno fuzzy system, and utilize the clustering method to generate the

rule base of the fuzzy system. The proposed methodology is shown to be more effective than a

conventional method in constructing system models. Meanwhile, the developed fuzzy model may

provide a more accurate output prediction than conventional linear models suggested in the

literature. In order to evaluate the control performance, the thermal models are integrated into the

Internal Model Controller to control the temperature of a thermal barrel. The system is subjected to a

step input and the responses depict the control performance of the models. The fuzzy model shows

excellent performance in the step response, while the linear model has an oscillatory output at steady

state. The proposed fuzzy model has the capability of application to control temperature in a plastic

molding process.
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1. Introduction

Precision temperature control is a key factor in a pla-

stic molding process in order to manufacture high val-

ued-add products, for example, optical glasses, CDs, and

DVDs etc. In the literature, many researchers have mod-

eled the thermal processes of plastic extrusion and injec-

tion molding by a first-order discrete equation [1�4], and

the temperature distribution was usually expressed in terms

of a parameterized linear model to be used in control st-

rategies design; Kochhar and Parnaby [5] established a

time series equation to model the relationship between

the heat rate of the heater, speed of the rotating screw,

and temperature and pressure of the melted polymer at

the outlet of mold. Tsai and Lu [4] created a linear dis-

crete model for the thermal barrel and identified the coef-

ficients of the model using the Recursive Least-Squared

Error (RLSE) method. Due to the properties of nonline-

arity and complexity in a plastic molding process, the linear

thermal model provides accurate outputs only in some ap-

plication range and is not appropriate for precision process

control. On the other hand, a molding process with a non-

linear model costs too much time in calculation and is not

applicable for on-line control. The paper focuses on the

analysis and modeling of thermal behavior in the thermal

barrel, and a simple and effective model is developed for

the thermal control in plastic molding processes.

Fuzzy systems are simple and approximate models,

which can highly represent nonlinear systems and easily

integrate a priori knowledge of data obtained from the

processes. This research investigates the input-output data

of the thermal barrel, and proposes an approach based on

fuzzy theory to model the thermal behavior of the barrel.

The Takagi-Sugeno (TS) fuzzy system [6,7] is employed
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to represent the system output as a linear combination of

the input data. The number of fuzzy rules in the rule

base of the TS fuzzy model decides the performance of

the system. If the fuzzy system contains too many rules

than required, the system becomes a complex system,

and spends too much time on calculation during on-line

control. On the other hand, if the system has too few

rules, it would not have enough information to model

the real system. Many researchers have proposed tech-

niques to generate rule bases of fuzzy systems [8]. Most

of the procedures first decide the number of rules, and

then determine the system model using a method such

as RLSE, gradient descent, or table look-up. However,

these methods strongly depend on the experience and

knowledge about the system. The paper utilizes another

method named clustering-based method [8,9] to deter-

mine the number of rules using the input and output da-

ta. The basic concept is to divide the input and output

data into several clusters, then assign a fuzzy rule to

each cluster.

Several researchers had proposed algorithms for con-

trol of an injection molding process. Seaman et al. [10]

used the concept of multiobjective optimization to tune a

PID controller and meet multiple objectives in injection

molding processes. Fang and Yao [11] designed a fuzzy

controller to eliminate the couple influence of variables

and showed that the controlled system has a good

set-point characteristic. Zheng et al. [12] employed a fe-

ed-forward compensator and a fuzzy controller to reduce

the coupling between system variables. Tsai and Lu [4]

developed a self-tuning predictive control for improving

set-point tracking performance and disturbance rejection.

In order to compare the proposed fuzzy model with other

approaches in the literature [4,13], the thermal models

are integrated into Internal Model Control (IMC) [14] for

temperature control of a thermal barrel in plastic molding

processes. The system is subjected to a step input and the

response will depict the dynamic performance of the mo-

dels. The concept of IMC is to generate the command

based on the inversion of the system model. If the mathe-

matical model is accurate enough, the difference be-

tween the outputs of the mathematical model and the phy-

sical system will vanish. In this case, the IMC performs

as an open loop controller and the transfer function of the

system is a unity function. Otherwise, if the model is

slightly different from the physical system, a large dif-

ference will exist between the IMC output and the refer-

ence input. Therefore, the IMC is an appropriate tool

that can be used to evaluate the accuracy of a mathemat-

ical model.

This paper is organized as follows: In the second

section, the theoretical basis of the modeling methods

will be discussed. The developed method is applied to

model a thermal barrel of plastic molding processes in

the third section. In section IV, performance evaluation

of the developed methodology is investigated. Some ex-

perimental results are shown to verify the proposed

thermal model and control algorithm. The paper con-

cludes with recommendations for future research work

in the last section.

2. Modeling of Thermal Barrel

In plastic extrusion and injection molding processes,

the particle polymer is fed into the thermal barrel and he-

ated continuously. The configuration of a thermal barrel

in plastic extrusion and injection molding machines are

as shown in Figure 1. Several pairs of heaters are equ-

ipped around the surface of the thermal barrel to supply

energy for the system.

The thermal barrel is divided into four different tem-

perature zones and the thermo behavior of each zone is

analyzed separately. The configuration of the thermal

barrel with four temperature zones is depicted in Figure

2. The thermodynamic equation for each zone can be de-

rived by the concept of thermal equilibrium of the sys-

tem,
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Figure 1. Thermal barrel of plastic product processes.



(1)

where Ci is the thermal capacitance of zone i; Ti(t) is

the temperature of zone i in centigrade (C); qi(t) and

qo(t) represent the input and output power, respec-

tively. Note that Eq. (1) is a nonlinear function in gen-

eral, so it is necessary to develop a simple and efficient

model for the purpose of on-line control. In the litera-

tures [4,13], a linear approximate model is frequently

utilized for Eq. (1). However, the linear model has the

disadvantage of inaccuracy and is not appropriate for

precision process control. A new approach will be de-

veloped based on fuzzy systems to overcome this pro-

blem.

2.1 Linear Thermal Model

A linear discrete model for Eq. (1) can be derived as

the following expression, and the details were shown in

the literature [13].

(2)

where T(k) represents the temperature at time t = k;

U(k) is the power transferred to the thermal barrel, which

includes the power transferred from the heater to the bar-

rel and that transferred from the barrel to the environ-

ment; d is the delay time of the power transferred; E(k) is

the error term. For all four temperature zones in matrix

form, Eq. (2) can be expressed as

(3)

For the linear thermal model, the coefficients aij(k) and

bij(k) in matrices, A, B0, and B1, can be determined by a

parameter estimation method. Two methods can be uti-

lized to identify the parameters, namely, pseudo-inver-

se matrix method [15] and RLSE method [16]. For the

pseudo-inverse matrix method, it defines input, output,

and coefficient vectors and matrices of the system as

the following expressions:

Modeling and Control for a Thermal Barrel in Plastic Molding Processes 131

Figure 2. Model configuration of a thermal barrel.
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Eq. (3) can be rearranged as

Y = Wh (4)

The coefficient vector, h, can be determined by using

the pseudo-inverse matrix method

(5)

On the other hand, the RLSE method also can be

used to determine the system coefficients. Assume

that the estimated values of parameters, aij(k) and

bij(k), are denoted as � ( )a kij and � ( )b kij , respectively.

The RLSE method is described by the following equ-

ations [16],

(6)

where � ( )�i k are the parameter vectors of Zone i to be

identified; 
�(k) are the matrices which contain input and

output variables of Zone i; Pi(k) are diagonal weight

matrices,

The weight matrices have the initial values,

Pi(0) = In

where � is a very large positive constant, and In is an

identity matrix with rank n. � ( )�i k and 
�(k) represent

the parameter vectors of the coefficients and input-out-

put data, respectively. The parameter vectors for all the

four temperature zones can be expressed as

Based on a group of input and output data, the model co-

efficients are estimated by using Eqs. (5) or (6). The es-

timated coefficients � ( )a kij and � ( )b kij can be substituted

into Eq. (3) to get a linear approximate model for a non-

linear physical system. However, the linear approximate

model provides accurate model output only in some

range of the application. We will show the limitation of

the linear model in the later section.

2.2 Fuzzy System Model

In order to improve the disadvantage of inaccu-

racy in the linear approximation model, A TS fuzzy

system model is proposed based on the clustering met-

hod [8].

2.2.1 Takagi-Sugeno Fuzzy System

Assume that there are a group of input-output data

pairs, {x = (x(1), x(2),…,x(p � 1)); y(p) = x(p)}, in which

x(1), x(2),…,x(p � 1) represent (p-1) input variables of

the system, and x(p) is the output variable. For a TS fuzzy

system with c fuzzy rules, the rule base of the system can

be described as the following expression [8]:

Rule m: if x is Am(x) then
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(7)

where Am(x) is the antecedent of the fuzzy rule; bmj are

coefficients; ym is the consequent of the fuzzy rule. The

multidimensional membership function Am(x) can be

viewed as the fuzzification from the original input data;

while the consequent of the fuzzy rule, ym, is set to be a

linear combination of the input variables. If the fuzzy

system has c fuzzy rules, the output of the TS fuzzy sys-

tem can be obtained by the weighted average method

[8],

(8)

2.2.2 Clustering Method

As mentioned in the preceding section, the number

of rules, c, in the rule base of the TS fuzzy model affects

the performance of the system. If the fuzzy system con-

tains more rules than it needs, the system becomes a com-

plex system. On the contrary, if the system has too few

rules, it would not have enough information to model the

real system. By the clustering method, the number of rules

is decided by adjusting the relational grade of the clus-

ters. It will be defined latterly, the relational grade as a

Gaussian function, which is based on the distance be-

tween two vectors. In the procedure of clustering meth-

ods, the collected data is divided into several subsets or

strings of data according to the relational grades between

these data. Therefore, each string of data has its own cha-

racteristics that can be distinguished from other data st-

rings. The procedures to determine the structure of the

fuzzy system are described as follows.

Assume a set of n vectors in a p-dimensional space,

X = {x1, x2,…,xn}

where xi = (xi(1), xi(2),…, xi(p)) is a vector with p vari-

ables, in which (xi(1), xi(2),…, xi(p-1)) and xi(p) are in-

put and output variables of ith data point, respectively.

Among these n vectors, the vectors which have a high

relational grade can be collected to be a string named

cluster. In this paper, the concept of similarity proposed

by Wong [9] is utilized to determine the relational grade.

According to the method, first select a data point as a

reference vector, and then find a comparative vector

that has a high relational grade with the reference vec-

tor. Further, choose the comparative vector with high

relational grade as a new reference vector, and repeat

the procedure. By this recursion method, the reference

vector can be replaced during each cycle of the proce-

dure, and eventually converges to the center of a cluster.

The procedure is summarized in five recursive steps

[9]:

Step 1.

Define n movable vectors vi (i = 1,2,…., n) and let vi

= xi, where xi is the initial value of vi;

Step 2.

Calculate the similarity by the following equation,

(9)

where rij represents the relational grades between the ref-

erence vector vi and the comparative vector vj; v vi j�
is the Euclidean distance between vi and vj; and � is the

width of the Gaussian function in Eq. (9);

Step 3.

Modify the relational grades between the reference

vector vi and the comparative vector vj according to the

following rule,

where � is a small constant set up to be 0.01 in this

paper;

Step 4.

Calculate a new vector set v v vi i i

' ' '( ( ), ( ), ....� 1 2 vi

' (p)),

i = 1,2,....,n,
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Step 5.

If all the vectors vi

' are the same as vi, i = 1, 2, …, n,

then stop; otherwise let vi = vi

' , i = 1, 2, …, n, and go to

Step 2.

By this procedure, the data points with high relational

grades are collected as a cluster. The relational grade is

modified in Step 3 to prevent the movable vector from be-

ing affected by the vectors with low relational grades. The

movable vectors will gradually converge to a vector of va-

lues. Therefore, the number of convergent vectors is the

number of clusters, and the convergent vector is viewed as

the center of the corresponding cluster. By the clustering

method, n input-output data are divided into c clusters,

cm = {cm(1), cm(2),…, cm(p)}, m = 1,2,...,c

Once the cluster centers are determined, the anteced-

ent proposition, Am(xi), of the ith input, xi, can be arranged

according to the relationship between ith input data and

mth cluster center. A Gauss function [8] is chosen to rep-

resent the membership function,

(10)

where cm is the mth clustering center;  m indicates the

width of the Gaussian function in Eq. (10); xm

* is the

most far away data point of the mth clustering data; ! is a

constant between 0 and 1.

2.2.3 Coefficient Estimation

Using the procedure of the clustering method, n data

points are distributed into c clusters. According to Eq.

(8), the output of the TS fuzzy system with n input-output

data points and c cluster centers can be expressed as the

following equations,

(11)

Define the vectors and matrices containing input and

output variables as the following equations,

The coefficient vector, h, can be determined using

the pseudo-inverse matrix method in Eq. (5) or the RLSE

method in Eq. (6). Once the coefficients are determined,

the fuzzy system in Eq. (11) can be used to model a non-

linear system.

3. Comparison of Model Accuracy

Output prediction of the mathematical models in Eqs.

(3) and (11), namely the linear model and TS fuzzy mo-

del, are compared in this section. A representative model

is established by measuring the temperature distribution

with respect to the input power. These measured input-

output data, i.e. the sampled temperature and the corre-

sponding input power, are utilized to estimate the coeffi-

cients of models in Eqs. (3) and (11). By the definition of

model accuracy, the difference between a mathematical

model and the representative model should be as small as

possible.

3.1 Sampled Temperature Data

In order to construct a representative model for the

real process, an experiment was prepared for measur-

ing the temperature in the thermal barrel of the plastic

molding process as shown in Figure 3. In the setup,
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four thermocouples are equipped to measure tempe-

rature at each temperature zone of the thermal barrel.

Then the measured signal is converted to a digital sig-

nal by an ADC interface, PCL-818HG [17], and fed ba-

ck to the PC-based controller. In order to increase the

efficiency of the heating device, the heat rate com-

mand is sent to the heater using a pulse width modula-

tion (PWM) format through a PWM interface

PCL-836 [18]. In this experiment, the sampling time

of this system is set to be 5 seconds, and the delay

time of heat transferred is measured to be eight sam-

pled periods (d = 8).

The temperature increment of the barrel is measured

according to each specified input power, u(k-d) and

u(k-1-d), which are ranged from 0 to 1400 Watts at the

first three temperature zones and ranged from 0 to 640

Watts at Zone 4. The reference temperature of the barrel

ranges from room temperature (25 #C) to 235 #C. The

range of the input power is divided into 8 sampling in-

tervals, and the range of reference temperature is par-

titioned into 21 sampling intervals. Therefore, there are

totally 1782 (= 9 $ 9 $ 22) samples of measurements. To

display the results of measurement, the sampled temper-

ature data at Zone 4 is plotted in Figure 4, in which the

initial temperature, T(k-1), is set to be 200 #C. This figure

depicts the temperature variation corresponding to a pair

of specified input power, u(k-d) and u(k-1-d). It exhibits

that the temperature drops when both u(k-d) and u(k-1-d)

are closed to zero Watts. The temperature drop is cau-

sed by heat transferred from the system to the environ-

ment. It is noted that the maximum temperature incre-

ment occurs both u(k-d) and u(k-1-d) approach 640

Watts. The result expresses that the relationship between

the temperature and the power supply rate is a nonlin-

ear function.

3.2 Linear Thermal Model

Now the linear approximate model in Eq. (3) is uti-

lized to model the physical system depicted in Figure 4.

The sampled temperature data and the corresponding in-

put power are known quantities in the preceding subsec-

tion, and can be used to identify the coefficients of the

model. By using the method in Eq. (5) or (6), the coeffi-

cients of the linear approximate model are estimated

[13]. These coefficient matrices determined by the RLSE

method are listed as the following expression:
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Figure 3. Temperature control setup.

Figure 4. Distribution of sampled temperature output.
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Note that the initial constant of the weight function

in the RLSE method is set to be � = 10000. The complete

linear thermal model for the thermal barrel of a plastic

molding process can be written as

(12)

where � ( )T ki indicate the estimated values of tempera-

ture. The temperature distribution of the linear model in

Eq. (12) for Zone 4 is plotted in Figure 5. The figure de-

picts the temperature distribution of Zone 4 with respect

to corresponding input power u(k-d) and u(k-1-d), and

the initial temperature of Zone 4 is set to be 200 #C.

There is a temperature increment when both u(k-d) and

u(k-1-d) approach to zero value. This phenomenon vio-

lates the thermal behavior of the real model as shown in

Figure 4. It concludes that the linear model can predict

the temperature approximately only in some range but

not in the whole spectrum.

3.3 Fuzzy Thermal Model

In this subsection, the concept of TS fuzzy system is

utilized to model the physical system as shown in Figure

4. According to Eq. (7), the rule base of TS fuzzy system

for the thermal barrel is defined as the following state-

ment:

Rule m: if x is Am(x) then

As expressed in Eq. (11), the outputs of the fuzzy

system are determined by using the average weighting

method,

(13)

To complete the fuzzy model, it proceeds to identify

the rule base, Cm, and estimate the coefficient vector, h.

By the clustering method with the selected width of Ga-

ussian function, �, those 1782 sampled input-output data

are divided into c clusters. For different values of �, the

numbers of fuzzy rules are determined and listed in Table

2. Also, those 1782 input-output data are utilized to esti-

mate the coefficient vector by the RLSE method with � =

10000. The resultant temperature distribution of the fuz-

zy system model of Eq. (13) is plotted in Figure 6. The
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Figure 5. Temperature distribution of linear model at 200 #C.
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Table 2. Comparison of model results

Models �, � Values Rules MSE

Linear model [13] � = 104 01 1.287

� = 0.45 09 0.028

� = 0.35 16 0.026

Fuzzy model

� = 0.25 60 0.021



figure depicts the temperature distribution of Zone 4

according to the corresponding input power u(k-d) and

u(k-1-d), and the initial temperature is set to be 200 #C. In

this case, temperature drops as both u(k-d) and u(k-1-d)

approach zero values. This phenomenon matches the ther-

mal behavior of the real model. Therefore, the fuzzy mo-

del provides a better temperature prediction than that by

the linear approximate model.

3.4 Model Comparison

In order to evaluate the accuracy of these models, the

paper defines Mean Squared Error (MSE) by the follow-

ing equation,

(14)

where Ti are the sampled temperature outputs of the real

model, and �Ti are the estimated outputs of a model. The

MSE value can be used to evaluate the accuracy of the

corresponding model. In this section, the proposed fuz-

zy model is compared with the linear approximate mo-

del, and the results are listed in Table 2. In the second

column of the table, � represents the initial value of esti-

mated data in RLSE method; � is the width of Gaussian

function in relational grades. The number of rules in the

third column represents the number of clusters and indi-

cates the complexity of the model. The fuzzy models

have multiple rules and a complex function, while the

linear model has one single rule. On the point of model

accuracy, the fuzzy model with 60 rules has a MSE as

low as 0.021, while the linear model with single rule in-

volves with a large MSE value of 1.287.

4. Internal Model Control

In order to evaluate the control performance of the

developed thermal models, an internal model controller

(IMC) [14] is constructed as shown in Figure 7. In the

block diagram, T*(k) and � ( )T k represent the reference

temperature input and the estimated temperature, respec-

tively. The controller calculates the temperature differ-

ence, %T, between the temperature measured from the

thermal barrel and that estimated from model. This tem-

perature error represents the inaccuracy of the tempera-

ture model. This error value is fed back to the controller

to compensate the command. In the controller, an inverse

model is utilized to generate the command of the heater,

and the command is sent into the heater of the thermal

barrel and the mathematical model simultaneously. A

new temperature output can be obtained at the outlets of

the system and the model. If the temperature difference

Modeling and Control for a Thermal Barrel in Plastic Molding Processes 137

Figure 6. Clustering-based fuzzy system model.
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between thermal barrel and the model vanishes, i.e. the

mathematical model matches the real system exactly,

there is no signal feedback, and the IMC become an

open-loop feedforward controller. On the other hand, if

the model and the system are slightly different, the tem-

perature difference, %T, will not disappear. According to

the characteristic of IMC, the temperature output, T(k),

will not follow the reference temperature exactly. In the

following subsections, the inverse models are derived for

the linear and fuzzy models, which are needed in the IMC

control loop.

4.1 Inverse Linear Model

Rearranging Eq. (3), the inverse model of the linear

approximate model is derived as the follows,

(15)

For a consistent expression in time, the sampling time

is shifted d steps in advance. Meanwhile the initial tem-

perature, Ti(k+d), is replaced by the temperature com-

mand, T ki

* ( ). If the model is accurate, the temperature

difference %T(k) = 0 and T k T ki i

* *( )
~

( )� . Eq. (15) is

changed to be

(16)

The PWM command in the IMC block diagram of

linear approximate model can be generated by Eq. (16).

4.2 Inverse Fuzzy Model

The inverse fuzzy model can be derived directly from

Eq. (13). Considering the estimated temperature after d

sampling periods, Eq. (13) is expressed as

(17)

Rearrange Eq. (17) and replace the estimated tempera-

ture, � ( )T k d� , by the reference temperature,
~

( )*T k ,

(18)

This provides the inverse fuzzy system model. In the

experiment example, Tm(k+d-1) is a future data and re-

placed by the temperature, Tm(k-1), at previous time step.

4.3 Control Results

The IMC algorithms developed in the preceding sec-

tions are applied to temperature control for the experi-

ment. One example of a step response is exhibited and

the performance between the linear approximate model

and the fuzzy model is compared in this subsection. In

the example, four temperature zones are subjected to spe-

cified temperature inputs, which are 100 #C, 165 #C, 210

#C, and 210 #C for temperature zones from Zone 1 to

Zone 4. The step responses are depicted in Figures 8-11.

The dashed line and solid line represent the responses of

the linear model and fuzzy model, respectively. From the

results, the IMC with fuzzy model has shorter settling

time than that with linear model in Figure 8. Meanwhile,

the control with linear model also involves oscillatory

outputs as shown in the plots for Zone 2 and 3. It con-
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cludes that the IMC with fuzzy model provides more ac-

curate temperature prediction and have better step re-

sponse than that with the linear model. Therefore, the

fuzzy models are more appropriate than the linear model

in control strategies design.

5. Conclusion Remarks

In this research, a thermal model is established based

on Takagi-Sugeno fuzzy system and applied to model and

control the temperature distribution of a thermal barrel in

plastic molding processes. In conventional industry ap-

plications, the thermal barrel behavior is expressed in terms

of a parameterized linear model to be used in control

strategies design. However, the linear model is only ap-

plicable in some range of the application and is not ap-

propriate for precision process control. A simple and ef-

fective fuzzy model is proposed to overcome the disad-

vantage of the linear model. The fuzzy model can repre-

sent the nonlinear behavior of the thermal barrel and pro-

vide accurate output in all application ranges. The clus-

tering method is employed to generate the rule base of

the fuzzy system by dividing the original input-output

data into several clusters according to the similarity of

the data. The proposed methodology is shown to be more

effective in constructing the model than the methods in

the literatures [8].

In order to evaluate the control performance, the
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Figure 8. IMC control for Zone 1.

Figure 9. IMC control for Zone 2.

Figure 10. IMC control for Zone 3.

Figure 11. IMC control for Zone 4.



thermal models are integrated into the internal model

controller to control the temperature of a thermal barrel.

The system is subjected to a step input and the response

depicts the control performance of the models. The con-

troller with fuzzy models shows an excellent performan-

ce in step response, while the controller with linear mo-

del has a large settling time and an oscillatory output for

2 out of the 4 temperature zones. Note that, the paper

evaluates the control performance of the proposed model

by using an internal model controller, which is more like

a feedforward controller or an inverse dynamic control-

ler. We believe that, in the case of large temperature

range, an accurate system model and an IMC will be more

easily implemented in injection molding processes than

other controllers [4,10,11] which have complicated com-

putation algorithms. The proposed fuzzy model can pro-

vide accurate input-output data in a large temperature

range and has the capability of applications in precision

process controls in plastic molding processes.
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