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Abstract

The predicting equations for the declines of transmembrane pressure and permeate flux in

hollow-fiber ultrafilters were derived from the complete momentum balance with the consideration of

the rate of momentum transfer by convection, instead of simply applying Hagen-Poiseuille theory

without the consideration of the effect of permeation on fluid flow, resulting in improved prediction.

The assumption of laminar flow in the fiber tubes was examined.
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1. Introduction

Recently, membrane ultrafiltration is applied in a

wide variety of fields, from the chemical industry (such

as electrocoat paint recovery, latex processing, textile

size recovery and recovery of lubricating oil) to medical

applications (such as kidney dialysis operations), and

even to biotechnology applications (such as concentra-

tion of milk, egg white, juice, pectin and sugar, and

recovery of protein form cheese whey, animal blood,

gelatin and glue) [1,2].

Industrial uses of membrane technology have a cho-

ice of four basic designs of equipment: (i) tubular, (ii)

hollow fiber, (iii) plate-type units and (iv) spiral-wound

modules. In the hollow-fiber modules, membrane is

formed on the inside of tiny polymer cylinders that are

then bundled and potted into a tube-and-shell arrange-

ment. The advantages of this arrangement are low cost of

investment and operation, easy flow control and clean-

ing, and high specific surface area per unit volume.

Ultrafiltration is primarily a size-exclusion-based

pressure-driven membrane separation process, the pres-

sure applied to the working fluid provides the driving

potential to force the solvent to flow through the mem-

brane. During operation, solutes that are rejected by the

membrane accumulate on the membrane surface and

form a concentration polarization layer there. At steady

state, the quantity of solutes conveyed by the solvent to

the membrane is equal to those that diffuse back. A num-

ber of mathematic models are available in the literature

that attempt to describe the mechanism of transport

through membranes. Permeate flux is conventionally

analyzed by use of following models: the gel-polariza-

tion model [3�9], the osmotic-pressure model [10�18],

and the resistance-in-series model [19�26].

In the gel polarization model, permeate flux is re-

duced by the hydraulic resistance of the gel layer, and

this model applies only to the system with very high con-

centration of solute accumulated on the membrane sur-

face. In the osmotic pressure model, permeate flux re-

duction results from the decrease in effective transmem-

brane pressure that occurs as the osmotic pressure of the

retentate increases. Accordingly, the analysis is rather

difficult because the variation of concentrations at both

sides of the membrane surface should be known a priori.

In the resistance-in-series model, permeate flux de-

creases due to the resistances caused by fouling or solute

adsorption and concentration polarization/gel layer. This

model easily describes the relationship of permeate flux

with the operating parameters, as described in Section
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2.4. In present study, therefore, the permeate flux in hol-

low-fiber modules was analyzed by the resistance-in-

series model coupled with the use of complete mo-

mentum balance.

2. Theory

Consider a hollow-fiber module with N fibers of

same size, in which the membrane is formed on the in-

side of N tiny porous tubes that are then bundled and pot-

ted into a tube-and-shell arrangement, as shown in Fig-

ure 1, while Figure 2 shows the flows and fluxes in the

fiber tube of radius rm and length L.

2.1 Mass Balance

Let q(z)/N be the volumetric rate of solution in a hol-

low-fiber and J(z) be the permeate flux by ultrafiltration.

Then a mass balance over slice dz of the fiber gives

(1)

2.2 Momentum Balance

For the steady-state operation, the momentum bal-

ance within the differential length dz of a hollow fiber is

[27]

(2)

where �p (= p � ps) denotes the transmembrane pres-

sure, and p(z) and ps are the pressures in fiber tubes and

shell sides, respectively, while the shear stress �s relates

to the friction factor f and bulk velocity ub as

(3)

For laminar flow,

f = 16/(2rmub�/�) (4)

and for flow in a fiber tube

(5)

Finally, Eq. (2) can be rewritten as

(6)

In the previous works [21�25], the momentum balance

was taken inaccurately by neglecting the rate of mo-

mentum by convection, the first term in Eq. (6).

2.3 Pressure Declination

For mathematical simplicity, we define the follow-

ing dimensionless groups:
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Figure 1. Hollow fiber ultrafilter.

Figure 2. Flow and fluxes in a hollow fiber for ultrafiltration.



(7)

(8)

(9)

Since for ultrafiltration, the amount of permeate is ex-

tremely less then the flow rate, i.e.

(10)

Thus, J(z) in Eq. (1) may be taken approximately as its

average value, i.e.

(11)

and Eqs. (1) and (6) become, with the use of Eqs.

(7)�(9)

(12)

(13)

where

(14)

(15)

Integrating Eq. (12) with the inlet conditions:

Q = Qi(q = qi) at Z = 0 (16)

One has

Q = Qi � �Z (17)

Substituting Eq. (17) into Eq. (13) and integrating with

inlet condition:

�P = 1 (�p = �pi) at Z = 0 (18)

this gives

(19)

2.4 Permeate Flux

Since membrane ultrafiltration is a pressure-driven

separation, the pressure applied to the working fluid pro-

vides the driving potential to force the permeate to flow

through the membrane. Therefore,

J = 0, for �p = 0 (20)

For a small applied pressure, the permeate flux through

the membrane is observed to be proportional to the ap-

plied pressure, i.e.

J = (constant)�p, for small �p (21)

However, as the pressure is increased, the flux begins to

drop below a linear flux-pressure behavior. Eventually,

a limiting flux, Jlim, is reached where any further pres-

sure increase no longer results in any increase in flux,

i.e.

J = Jlim, as �p � � (or large enough) (22)

According to above description, the following resis-

tance-in-series for permeate flux may be introduced:

(23)

where Rm denotes the intrinsic resistance of membrane,

Rf is the resistance due to fouling phenomena, while

�p/Jlim is the resistance due to the concentration po-

larization, which will be proportional to the compres-

sible layer deposited and may be assumed to be a linear

function of transmembrane pressure with � (= 1/Jlim) as

a proportional constant.

Eq. (23) may be rewritten as

(24)

where

V J
J

�
lim

(25)
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� = (�pi)/[(Rm + Rf) Jlim] (26)

and the average permeate flux, Eq. (11), may be rewrit-

ten as

(27)

Substitution of Eqs. (19) and (24) into Eq. (27) gives

(28)

(29)

(30)

where

(31)

B = � (2�� � 1)Qi (32)

C = 1 + � (33)

3. Determination of Jlim and Rj

It was found that according to Eq. (23) and with the

experimental data at certain flow velocity ui and feed

concentration Ci, a straight line of ( )1
Jexp

versus

1
( )�p exp

could be constructed, as described by Eq. (34),

with the use of the least-squares method [21,22]. There-

fore, the experimental values of (Rm + Rf) and 1/Jlim can

be obtained, respectively, as slope and the intersection

at the ordinate, where ( )�p exp � �. After obtaining the

experimental values of (Rm + Rf) and 1/Jlim at various

feed concentrations, Ci, and velocities, ui. The correla-

tion equations of relating (Rm + Rf) and 1/Jlim with the

operating parameters Ci and ui can be determined by the

least-squares method [21,22].

(34)

4. Comparison of Correlation Prediction for

Permeate Flux

A comparison of permeate flux may be made by us-

ing the experimental data of Dong’s work [28], Table 1,

for ultrafiltration of dextran T500 aqueous solution in an

Amicon model H1P30-20 hollow-fiber cartridge (Ami-

con Corp., Danvers, MS). From the dimensions of mo-

dule used, rm = 2.5 	 10�4 m, L = 0.153 m, and N = 250.

In addition, the viscosity of dextran T500 aqueous solu-

tion at 25 
C may be estimated by [29],

(35)

and the correlation equation for (Rm + Rf) and Jlim were

determined by the method described in the pervious

section with the use of experimental data as

Rm + Rf = 3.67 (1 + 0.45 ui
�0.025 Ci

0.23) 	 109 (Pa � s/m)

(36)

Jlim = 3.66 	 10�6 Ci
�0.375 (s/m) (37)

in which

(38)

Some correlation predictions for average permeate

flux were calculated and the results are compared with

the experimental results, as shown in Figures 3�5. It is

seen from these figures that the predicting values are in

fairly good agreement with the experimental results of

present interest.

5. Discussion and Conclusion

The predicting equations, Eqs. (29) and (30), for the
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average permeate fluxes of membrane ultrafiltration in

hollow fiber modules was derived from mass and mo-

mentum balances based on the resistance-in-series mo-

del with the consideration of momentum fluxes due to

convection (fluid motion). The declines of transmem-

brane pressure and permeate flux along the flow channel

can be predicted from Eqs. (19) and (24), respectively.

Some predicted values for the average permeate fluxes

are presented in Figures 3�5, comparing with the experi-

mental results. It is seen in these figures that the pre-

dicted results are in good agreement with the experi-

mental results at high transmembrane-pressure opera-

tion, but are overestimated at low transmembrane-pres-

sure operation. This may be because that the assumption

of a linear function of transmembrane pressure for the

concentration polarization resistance is not suitable for

the ultrafiltration at the lower transmembrane-pressure

operation. The modification of this term in the resis-

tance-in-series model will be our next research work.

In the previous studies, the momentum balance was

taken inaccurately by simply applying Hagen-Poiseuille

theory without the consideration of the effect of per-

meate flux loss on momentum balance, as well as ne-

glecting the loss of momentum flux due to convection. In

present study, however, we analyzed the declines of
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Table1. Experimental data for average permeate flux J (m
3
/m

2
s) [28]

Ci = 0 Ci = 0.1wt � Ci = 0.2wt � Ci = 0.5wt � Ci = 1.0wt �
qi

(	 10
6

m
3
/s)

�pi

(	 10
�5

Pa) �p0

(Pa)
J 	 10

6 �p0

(Pa)
J 	 10

6 �p0

(Pa)
J 	 10

6 �p0

(Pa)
J 	 10

6 �p0

(Pa)
J 	 10

6

5.0 0.3 0.194 6.822 0.190 2.115 0.190 2.218 0.186 1.862 0.190 1.673

0.5 0.388 12.318 0.380 3.682 0.384 3.536 0.376 2.811 0.380 2.252

0.7 0.582 18.116 0.574 4.861 0.574 4.246 0.570 3.366 0.572 2.590

1.0 0.874 23.020 0.862 5.767 0.862 4.755 0.858 3.680 0.854 2.738

1.2 0.964 28.539 1.052 6.114 1.056 4.978 1.048 3.740 1.046 2.782

1.4 1.252 35.997 1.246 6.391 1.246 5.182 1.242 3.842 1.238 2.825

1.6 1.436 6.577 1.438 5.371 1.434 3.955 1.430 2.849

7.5 0.3 0.176 2.067 0.178 2.188 0.176 1.863 0.170 1.704

0.5 0.372 3.623 0.372 3.684 0.366 3.111 0.360 2.487

0.7 0.562 4.919 0.562 4.643 0.558 3.767 0.552 2.864

1.0 0.848 6.175 0.850 5.330 0.846 4.245 0.838 3.148

1.2 1.040 6.745 1.044 5.456 1.040 4.406 0.972 3.206

1.4 1.232 7.012 1.238 5.604 1.230 4.505 1.028 3.277

1.6 1.428 7.282 1.428 5.789 1.422 4.548 1.220 3.381

10.0 0.3 0.166 2.229 0.160 2.036 0.156 2.421 0.148 1.767

0.5 0.356 4.044 0.402 3.721 0.348 3.201 0.338 2.788

0.7 0.548 5.633 0.794 4.816 0.538 3.969 0.524 3.345

1.0 0.840 7.041 0.882 5.702 0.828 4.546 0.812 3.683

1.2 1.030 7.617 1.074 6.026 1.022 4.747 1.004 3.831

1.4 1.222 8.024 1.266 6.228 1.214 4.791 1.196 3.887

1.6 1.414 8.284 1.458 6.388 1.404 4.856 1.388 3.993

Figure 3. Average permeate fluxes for qi = 0.5 	 10�5 m3/s.



transmembrane pressures and permeate flux with the

consideration of the loss of momentum flux due to fluid

motion, as indicated by the first term in Eq. (6). The cor-

relation predictions thus obtained will be more accurate

for the high permeate-flux operations. Further, the resis-

tance-in series model satisfies the three essential condi-

tions of membrane ultrafiltration, Eqs. (20)�(22). There-

fore, the present modeling study easily describes the re-

lationships of permeate flux with operating and design

parameters, and we believe that it will also be suitable for

most membrane ultrafiltration systems including sys-

tems with different kinds of feed solutions, different ma-

terials of membrane tubes and various design and operat-

ing conditions.

Finally, the assumption of laminar flow should be

checked with the maximum value of Reynolds number.

The critical case may be that of Ci = 0.1 wt � and qi = 1 	

10�5 m3/s with rm = 2.5 	 10�4 m, N = 250, � = 1 	 103

kg/m3, and � = 0.894 	 10�3 exp (0.408Ci) (Pa � s or kg/m

� s) Pa [29], The result is

Therefore, the assumption of laminar flow is accept-

able for the system of present interest.

Nomenclature

Ci concentration of feed solution (wt% dextran T500)

J permeate flux of solution (m3/m2s)

Jlim limiting flux (m3/m2s)

L effective length of hollow fiber (m)

N number of hollow fibers in a membrane module

p pressure distribution on the tube side (Pa)

ps uniform permeate pressure on the shell side (Pa)

�p transmembrane pressure, p-ps (Pa)

�P dimensionless transmembrane pressure, �p/�pi

Q dimensionless flow rate, defined by Eq. (12)

q volume flow rate in a hollow-fiber module (m3/s)

Rf resistance due to solute adsorption and fouling

(Pa.s/m)

Rm intrinsic resistance of membrane (Pa.s/m)

rm inside radius of hollow fiber (m)

u fluid velocity in the hollow fiber,q / N( r )m

2 (m/s)

V dimensionless permeate flux, defined by Eq. (25)

�m permeate flux of solution (m3/m2.s)

�m,lim limiting flux (m3/m2.s)

Z dimensionless axial coordinate, z/L

z axial coordinate (m)

Greek letters

� dimensionless group, defined by Eq. (14)

� dimensionless group, defined by Eq. (26)
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Figure 4. Average permeate fluxes for qi = 0.75 	 10�5 m3/s.

Figure 5. Average permeate fluxes for qi = 1.0 	 10�5 m3/s.



� dimensionless group, defined by Eq. (15)

� viscosity of solution (Pa.s)

� a proportional constant, 1/Jlim, defined in Eq. (23)

(m2s/m3)

Subscripts

b bulk

i at the inlet

o at the outlet

Superscript

� average value
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