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Abstract

In this paper, the dynamic behavior of a group of transmission towers linked together

through electrical wires and subjected to a strong ground motion will be investigated in detail. In

performing the seismic analysis, the wires and the towers concerned are modeled, respectively, by

using the efficient cable elements and the 3-D beam elements considering both geometric and

material nonlinearities. In addition, to enhance the practical usage of the analytical scheme, the

strength capacities and the fracture occurrences for the main members of the transmission tower

will be examined with the employment of the appropriate strength interaction equations. It is

expected that by aid of this investigation, those who are engaged in code constitution or practical

designing of transmission towers may gain a better insight into the roles played by the interaction

force between towers and wires and by the configuration of the transmission towers under strong

earthquake.
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1. Introduction

The importance of the transmission tower on na-

tional economy and people’s living has been well recog-

nized. During the attack of the Ji-Ji earthquake, with a

size of 7.3 in Ritcher magnitude, in Taiwan on Sept. 21,

1999, over two thousand four hundred residents were

killed. Besides, the strong vibration of the ground motion

has caused the collapse of a main transmission tower lo-

cated in the central region of the state. As a result, the

government was forced to take measures of reducing

electricity supply for more than six weeks. During this

period, a great living inconvenience was brought to the

people, and a huge commercial loss was incurred in the

high-tech industry of the island.

To achieve the aim of supplying electricity every-

where in a country, many transmission towers are hence

built in the rugged circumstances of climbing mountains

or crossing rivers. Accordingly, the elevation at which

some tower structures are located may differ from that

associated with other transmission towers. Moreover, the

marching route of the tower procession in such circum-

stances may exhibit in an extremely irregular manner.

This variation on either the elevation or the orientation of

the geometric configuration for a group of transmission

towers would certainly affect the interaction force be-

tween electrical wires and tower structures.

The conventional seismic analysis of transmission

towers is usually undertaken by taking each of towers as

an isolated structure without taking the strong traction

given by high-voltage electrical wires lining up in vari-

ous directions in the air into account. Furthermore, many

of structural engineers were used to simply ignore all

wire mass or to take the wire mass as the lumped mass af-

filiated with the tower in seismic analysis. The results

obtained from such analytical schemes would not be able

to reflect effectively the actual forced conditions of the

tower structure itself as well as the base foundation be-
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neath it.

To describe properly the deformed behavior of the

structural joints connecting tower members together is

probably one of the most complicated tasks in tower

analyses. The complicacies are mainly due to (1) the

flexibility of joints behaving nonlinearly from the very

onset of loading [1], (2) the joint slippage resulting

from the providence of erection tolerance in the course

of producing the bolt holes throughout tower members

[1�3] and (3) the flexural deformations of the primary

leg member, introduced from the secondary diagonal

members jointed with the leg member by using bolted

connections [2,4]. Since the transmission tower is usu-

ally constructed by using the rolled steel angles which

are eccentrically connected one another, nonlinear seis-

mic analysis with respect to such a structure is widely

known extremely difficult when the flexural deforma-

tions of the angle-section members are intended to be

taken into account. In consequence, a proof-loading or

full-scale testing combined with a linear elastic analysis

in which the assumption of axially loaded conditions is

applied to all the component members has formed an in-

tegral part of the tower design in practice [4]. To sim-

plify the calculations involved, the effects due to joint

flexibility and bolt slippage will be neglected and each

component member of the transmission tower is as-

sumed to have a square shape of cross section in this pa-

per. It is expected that the adoption of these assump-

tions would not lessen much the value of the findings

regarding the variation tendency of the internal forces

acting on tower members under various configurations

of a group of transmission towers.

Being slender and tall in appearance, the transmis-

sion tower is destined to be susceptible to the effect of

geometric nonlinearity. On the other hand, the phenome-

non of material nonlinearity is often observed on the pri-

mary leg members especially for those in the lowermost

part of the tower subjected to a strong ground motion.

Accordingly, a sophisticated seismic analysis consider-

ing both geometric and material nonlinearities will be

performed in this research.

2. Modeling of Structural System

All seismic analyses in this paper are undertaken

with respect to the structural system composed of various

portions including electrical wires, tower structures and

end-restraint springs, as indicated in Figure 1. The for-

mulation involved in the modeling of each portion of the

system will be described in the following.

2.1 Electrical Wires and End-restraint Springs

Being highly flexible and undergoing significant de-

formations, the electrical wire should therefore be ana-

lyzed by taking the effect of geometric nonlinearity into

account. The cable element proposed by Jayaraman and

Knudson and having been verified to be accurate and ef-

ficient in acquiring the stiffness matrix and elemental

nodal-forces will be used for the modeling of electrical

wires [5].

Consider a cable element in the local coordinate sys-

tem composed of YL- and ZL-axes, with its two ends be-

ing denoted by I and J respectively, as sketched in Figure

2. The YLZL-plane is defined as the vertical stretched
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Figure 1. Analytical model of tower system.



plane containing the vector IJ and the force vector repre-

senting the self-weight of the element, and the positive

direction of YL-axis is defined to be the same as that of

Z-axis, namely the vertical axis of the global coordinate

system. Letting F1 and F2 be the nodal-force components

at end I in YL and ZL directions respectively and F3 and F4

be those quantities at end J in YL and ZL directions re-

spectively, H and V be the distances between two ends

measured along horizontal and vertical directions re-

spectively, Lu and L be the unstressed and stressed

lengths of the element respectively, TI and TJ be the ten-

sile forces acting at ends I and J respectively, w be the

weight of the cable element per unit unstressed length,

one can thus express the stressed shape of the cable ele-

ment by using the following Eqs. [5�7]:

(1)

where

(2)

(3)

(4)

(5)

(6)

The variables F1, F2, F3, F4, TI and TJ are related by

the following equations.

F4 = �F2 + wLu (7)

F3 = �F1 (8)

TI = ( ) /F F1

2

2

2 1 2� (9)

TJ = ( ) /F F3

2

4

2 1 2� (10)

It is observed from the above equations that H and V

can be written in terms of F1 and F2 only. The infinitesi-

mal variations in H and Vcan thus be approximated by

their first order differentials as follows:

(11)

(12)

in which i represents the ith cycle of iteration. To update

the values of F1 and F2, the following iterative equations

can be used:

(13)

(14)

in which �i
1, �

i
2, �

i
3, �

i
4 are correction factors. The iter-

ative process is repeated until the error vector JiJ (refer-

ring to Figure 3) converges to a value lower than the

prescribed tolerance limit. By making use of the rela-

tionship between elemental nodal-force and incremen-

tal-displacement, the stiffness matrix of the cable ele-

ment can be written as [5]
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Figure 2. Cable element in local coordinate system.
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Figure 3. Schematic presentation of error vector JiJ.



(15)

The matrix C is in the following form:

(16)

where

l = sin � ; m = cos � (17)

and � is the inclination of the local YLZL-plane with the

global YZ-plane.

The end-restraint springs in Figure 1 are used for

modeling the tensile restraints provided by a series of

transmission towers located beyond either end of the sys-

tem. In the current study, the stiffness of any end-restraint

spring placed along certain direction will be chosen as 1.5

times the stiffness of a single tower, measured in the same

direction as that of the end-restraint spring.

2.2 Tower Structures

2.2.1 Formulation for Material Nonlinearity

The component members of each transmission

tower in the system will be modeled by using the 3D

beam-column elements. To account for the material

nonlinearity, the stress-strain relationship of all these

elements will be assumed following the relationship as

exhibited in an elastic-strain hardening model (refer-

ring to Figure 4). In Figure 4, �cy and �ty are the yielding

stresses corresponding to tensile and compressive de-

formations respectively and � is called strain-hardening

parameter.

Observing the strain distribution along the depth of

the beam-column element, as illustrated in Figure 5, one

can get the strain � at a distance � from the centroidal

axis of the cross section considered by using the follow-

ing equation:

� = �� + �0 (18)

where � is the curvature of the cross section and �0 is

the strain along centroidal axis. Furthermore, having

recognizing that the neutral axis won’t be coincident

with the centroidal axis due to the existence of internal

axial force in the current cases, one can obtain the un-

yielding depths corresponding to tensile and compres-

sive deformations, denoted as �ty and �cy respectively,

by making use of the relations in the following.

(19)

(20)

Accordingly, the stress at any depth of cross section

can be written as

(21)
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Figure 4. Model of elastic-strain hardening.

Figure 5. Strain distribution along element depth.
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in which E is the modulus of elasticity, � is the nor-

mal stress corresponding to �0, and �y is the yielding

strain.

To make the expressions of � be more concise, the

symbol  S! is introduced, with the use of the definition

given by

(22)

Consequently, Eq. (21) can be rewritten as

(23)

Equating the total axial force P with the resultant of

the components for axial force, and also equating the to-

tal moment M with the resultant of the components for

flexural force leads to

(24)

(25)

in which B is the width of cross section.

With further calculations, the above two equations

can be expressed in more concise forms:

(26)

(27)

Introducing the dimensionless parameters p, m, "
and � 0 into Eqs. (26) and (27) leads to

(28)

(29)

in which

(30)

The subscript y in Eq. (30) is used to denote the state

of yielding. Eliminating the parameter � 0 by solving Eq.

(28) and Eq. (29) simultaneously gives p�m�" relation-

ships in various conditions:

(i) The tensile and compressive zones are all in ini-

tial elastic range, namely in the case of " � "et

and " � "ec:

m = " (31)

(ii) The compressive zone is all in initial elastic range

whereas a portion of the tensile zone has been de-

formed into the subsequent strain-hardening range,

namely in the case of "et � "ec and "et � " � "tc:

(32)

where

(33)

(iii) The tensile zone is all in initial elastic range whereas

a portion of the compressive zone has been de-

formed into the subsequent strain-hardening range,

namely in the case of "ec � "et and "ec � " � "ct:

(34)

where
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(35)

(iv) Both a portion of tensile and a portion of com-

pressive zones have been deformed into the

strain-hardening range, namely in the case of "tc

� " or "ct � ":

(36)

where

(37)

In the above discussion, each of the boundary cur-

vatures "et, "ec, "tc and "ct will be associated with a

specific stress distribution as described in the fol-

lowing.

(a) When the whole compressive zone is still in elas-

tic range but the tensile zone has been just begin-

ning to yield, the curvature of the cross section,

denoted as "et, would be

"et = 1 � p (38)

(b) When the whole tensile zone is still in elastic

range but the compressive zone has been just be-

ginning to yield, the curvature of the cross sec-

tion, denoted as "ec, would be

"ec = 1 + p (39)

(c) When a portion of the tensile zone has come to

yield already but the compressive zone is at the

moment just beginning to yield, the curvature of

the cross section, denoted as "tc, would be

(40)

(d) When a portion of the compressive zone has

come to yield already but the tensile zone is at the

moment just beginning to yield, the curvature of

the cross section, denoted as "ct, would be

(41)

Figure 6 shows the m�" relationships under vari-

ous values of p with � = 0. It can be seen that the varia-

tion of the slope for the curves in the figure consists of

three main stages: (1) a considerably large value of

slope kept constant until the outer fiber of the section

is on the edge of yielding (2) a medium value of slope

varied gradually until the whole section has come to

yield (3) a value of slope kept being zero lastingly.

Since the slope of any m�" curve is also the flexural ri-

gidity of the cross section, EI, corresponding to certain

axial force, a modified flexural rigidity, (EI)ave, ob-

tained by taking the average of the sum of the rigidities

corresponding to five equally spaced sections, will be

adopted as the flexural rigidity of a single beam-col-

umn element.

2.2.2 Formulation for Geometric Nonlinearity

In taking the effect of geometric nonlinearity into

account, a Cartesian coordinate system composed of x-,

y- and z- axes as illustrated in Figure 7 is adopted as the

local coordinate system of the beam-column element.

The longitudinal direction of the element will be as-
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sumed to be coincident with the x-axis, and the two

principal axes perpendicular each other over the cross

section would be set in y- and z-directions respectively.

In Figure 7, u1, u2 and u3 represent the translational dis-

placements at the left end of the element in x-, y- and

z-directions respectively; u7, u8 and u9 represent the

translational displacements at the right end of the ele-

ment in x-, y- and z-directions respectively; u4, u5 and u6

represent the rotational displacements at the left end of

the element around x-, y- and z-axes respectively; u10,

u12 and u6 represent the rotational displacements at the

right end of the element around x-, y- and z-axes respec-

tively. Besides, the nodal force corresponding to the

nodal displacement ui (i = 1, 2, ….., 12) will be denoted

by using the symbol Fi. The stiffness matrix of the ele-

ment in Figure 7 would be in the form as written in the

following.

(42)

With the application of the beam-column approach,

the stiffness coefficient k(i, j) (i, j = 1, 2, …, 12) which

includes the effect of both material and geometric

nonlinearities can be obtained as follows:

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

where E is the modulus of elasticity; A and L are the

cross-sectional area and length of the beam-column ele-

ment respectively; Iy and Iz are the moments of inertia

corresponding to y- and z-axes respectively; J is the polar

moment of inertia; G is the shear modulus of elasticity; Rt

is the axial stiffness coefficient used for taking the bow-

ing effect, that is the effect of the axial deformation

caused by flexural force, into account. The stability func-

tions Sjy and Sjz (j = 1, 2, 3, 4) in the above equations, used

for taking the effect of the interaction between axial and

flexural forces into consideration, are derived to be:

(i) When the internal axial force is in compression

(F1 = �F7 ) 0):

(52)

(53)

(54)

(55)
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Figure 7. Nodal displacement of 3-D beam-column element.
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Figure 8. Flowchart of acquiring the nonlinear stiffness matrix.



in which

(56)

(ii) When the internal axial force is in tension (F1 =

�F7 + 0):

(57)

(58)

(59)

(60)

Replacing Iy in Eqs. (52)-(55) & (57)-(60) with Iz

leads to the shifting of the quantities on the left-hand side

of these equations from Sjy (j = 1,2,3,4) to Sjz. In under-

taking the seismic time-history analysis, Newton-Raphson

method will be adopted as the iterative scheme for modi-

fying the stiffness coefficients in Eqs. (43)�(51) repeat-

edly at each time step until the attainment of conver-

gence. The procedure for acquiring the nonlinear ele-

mental stiffness matrix is illustrated by the flowchart

shown in Figure 8.

3. Numerical Examples

The acceleration of Ji-Ji earthquake, recorded at

TCU084 station in Taichung, Taiwan, with the peak value

of 1.00834 g is taken as the ground excitation acting on the

structural system. Figure 9 shows the Fourier spectrum for

the acceleration. As indicated in Figure 1, each of the

structural systems investigated in the following will in-

clude three tower structures, in which the towers M and N

are located at two ends, and the tower O is located in the

middle of the system. The distance between adjacent tow-

ers is chosen to be 350 meters. The electrical wires sus-

pending between two towers is prescribed by a length of

360 meters and will be modeled by using four cable ele-

ments aforementioned. Figure 10 shows the structural pat-

tern of each tower in the system. Table 1 specifies the

cross-sectional properties of tower members and wires.

For simplification of calculations, all the investigations re-

garding to the internal-force variation of structural ele-

ments will be mainly focused upon the four leg members,

named Leg A, Leg B, Leg C and Leg D respectively (re-

ferring to Figure 11), at the bottom of tower N. Further-
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Table 1. Sectional properties of tower members & electric wires

Region I Region II Region III
Sectional

Parameter
Leg

Member
Diagonal

Member

Leg

Member
Diagonal

Member

Leg

Member

Diagonal

Member

Conduct

Wire

Ground

Wire

A (m
2
) 4.47 � 10

-3
2.75 � 10

-3
4.30 � 10

-3
2.75 � 10

-3
3.50 � 10

-3
2.49 � 10

-3
4.69 � 10

-4
1.59 � 10

-4

E (N/m
2
) 2.00 � 10

11
2.00 � 10

11
2.00 � 10

11
2.00 � 10

11
2.00 � 10

11
2.00 � 10

11
8.90 � 10

4
1.05 � 10

5

G (N/m
2
) 7.69 � 10

10
7.69 � 10

10
7.69 � 10

10
7.69 � 10

10
7.69 � 10

10
7.69 � 10

10
-- --

P (kg/m
3
) 7,850 7,850 7,850 7,850 7,850 7,850 -- --

, (kg/m) -- -- -- -- -- -- 1.628 1.062

Iy or Iz (m
4
) 1.82 � 10

-6
6.29 � 10

-7
1.54 � 10

-6
6.29 � 10

-7
1.02 � 10

-6
5.16 � 10

-7
-- --

J (m
4
) 3.63 � 10

-6
1.26 � 10

-6
3.09 � 10

-6
1.26 � 10

-6
2.04 � 10

-6
1.03 � 10

-6
-- --

Py (N/m
2
) 1,116,500 686,500 1,076,000 686,500 874,750 622,250 -- --

Mpy or Mpz

(N-m)
18,653.40 8,993.54 17,647.71 8,993.54 3,233.97 7,760.99 -- --

Figure 9. Fourier spectrum of acceleration.



more, in order to investigate the load effects due to the act-

ing direction of earthquake, the term “input angle of seis-

mic force”, denoted by using the symbol �, is defined as

the angle of seismic force, measured counterclockwise

from the positive direction of X-axis, as illustrated in Fig-

ure 11. In actual calculation, � will range from zero to 180

degrees with the angle increment of 15 degrees.

3.1 Configurations of Transmission Towers

In the following numerical examples, seismic analy-

ses will be performed with respect to a group of towers

exhibited in various configurations. To describe the posi-

tion of tower N relative to that of towers M and O in a

tower group, the parameters of - and *, called horizontal

and vertical angles respectively, will be introduced in

this study. Figures 12 and 13 show the illustration of

these parameters.

3.2 Failure Index

The failure of the transmission tower can be trig-

gered by the fracture of any component main-member in

the structure. This member fracture is usually not caused

by the action of single type of internal force, but by the

combined action resulting from various kinds of internal

forces including axial, flexural and shear forces. Accord-

ing to the theory proposed by Chen and Atsuta, the

beam-column element exhibiting an elastic-perfectly

plastic behavior (that is the case of � = 0) and having a

cross section in rectangle will reach its ultimate strength

if the interaction-strength equations expressed in the fol-

lowing are satisfied [8].
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Figure 10. Structural pattern of transmission tower.

Figure 11. Legs at tower bottom and input angle of seismic
force.

Figure 12. Description of horizontal angle �.

Figure 13. Description of vertical angle *.



(61)

(62)

(63)

In Eqs. (61)-(63), the dimensionless parameters of p,

my and mz are defined, respectively, as

(64)

in which P is the axial force acting on the cross section;

My and Mz are the applied moments around the principal

y- and z-axes respectively; Py is the axial yielding

strength; Mpy and Mpz are the ultimate plastic moments

around the principal y- and z-axes respectively.

Since being a useful index in the judgment of mem-

ber fracture, the quantities on the left-hand side of Eqs.

(61)-(63) will be given the name “failure index”, which

is denoted by using the symbol �. Accordingly, the

curved surface indicated in Figure 14 will be the envel-

oped surface of fracture, and each point on the surface

would correspond to an identical value of � = 1. In addi-

tion, the shaded area in the figure would represent the in-

teraction plane associated with the loading conditions in

which the axial ratio p has a fixed value of 0.5. In under-

taking the seismic analysis for the cases described in nu-

merical examples, it is assumed that the global failure of

a transmission tower arises whenever the failure index

corresponding to any component member of this tower is

found equal or greater than unity.

4. Results and Discussion

To inspect the effect of wire action on the dynamic

behavior of transmission towers, the variation of � for

Legs C and D in the cases of the structures being either

connected or not connected with electrical wires (Both

wire action and wire mass are neglected in the latter case)

is shown in Figure 15. It is observed that the difference

between the curves corresponding to these two cases is

considerably significant.

4.1 Variation of � due to �

In the condition of * = 0., the bases of towers M, N

and O would lie on the XY-plane and be symmetric with

respect to the X-axis (referring to Figure 13), so the in-

vestigation of � will be focused upon Legs C and D only.

It is observed in Figures 16 and 17 that with a few excep-

tions only, the larger the value of - is the larger the failure

index will usually be. In addition, since the peak value of

� for Leg D is found greater than unity, the fracture of

this member can then be expected according to the inter-

pretation of the interaction equations in Sec. 3.2.
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Figure 14. Failure surface of beam-column elements.
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Figure 15. Effect on failure index caused by cable action (� =
* = 0.).



4.2 Variation of � due to �

In the condition of - = 0., the failure index corre-

sponding to � = �* for Legs A and C would be equal to

that corresponding to � = � - �* for Legs B and D respec-

tively (referring to Figures 11-13), so the investigation of

� will be focused upon Legs B and C only. It is observed

in Figures 18 and 19 that no matter what value the param-

eter * is, the peak values of failure index on each curve

would occur at � = 135. and 45. for Legs B and C respec-

tively. This implies that under certain prescribed value of

*, the peak failure index would occur at the time when

the seismic force is parallel to the diagonal, which passes

through Leg B or C, of the base of tower N. In addition, it

is noticed that the peak failure index corresponding to * =

0. for Leg B would be larger than those corresponding to

other values of *; this specific value of * will be shifted

from 0. to 40. for Leg C, however.

4.3 Variation of � under Various Combinations of

� and �

To investigate the safety of tower members under

all kinds of configurations of transmission towers,

Figures 20-23 are presented for this purpose. It is ob-

served in the first two figures that under a varied - and

a prescribed *, the larger the value of * is, the larger the

peak failure index and the higher the probability of

member fracture will usually be. Similar phenomenon

will also be observed under a varied * and a prescribed

-, as indicated in Figures 23 and 24. To get a better un-

derstanding to the variation tendency of the curves in

Figures 20-23, a plot of average failure index, �ave,

versus input angle of seismic force, �, is presented in

Figures 24 and 25, in which the ordinate coordinate of

any point on a curve is obtained by taking the average

of the failure-index values corresponding to an identi-
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Figure 17. Failure index of Leg D with * = 0. under varied -.

Figure 18. Failure index of Leg B with - = 0. under varied *.

Figure 19. Failure index of Leg C with - = 0. under varied *.

Figure 16. Failure index of Leg C with * = 0. under varied -.



cal �. Except for a few cases, the phenomenon ob-

served in both figures matches fairly well with that ob-

served in Figures 20-23.

5. Conclusions

Having undertaken the seismic analysis in consider-

Seismic Analysis of Transmission Towers Considering Both Geometric and Material Nonlinearities 41

Figure 20. Failure index of Leg C with * = 10. under varied -.

Figure 21. Failure index of Leg C with * = 40. under varied -.

Figure 22. Failure index of Leg C with - = 15. under varied *.

Figure 23. Failure index of Leg C with - = 45. under varied *.

Figure 24. Average failure index of Leg C with * = 10. and
40..

Figure 25. Average failure index of Leg C with - = 15. and 45..



ation of both material and geometric nonlinearities, with

respect to the structural system modeled by using beam-

column elements, cable elements and end-restraint ele-

ments, one may recognize that ignoring the wire-action

effect on the dynamic behavior of transmission towers

may cause significant errors in the results of member

forces.

In the condition of * = 0., the larger the value of - is

the larger the failure index will usually be. On the other

hand, in the condition of - = 0., the peak failure index

would occur at the time when the seismic force is parallel

to the diagonal, which passes through the leg member

considered, of the tower base.

Under a varied - and a prescribed *, the larger the

value of * is, the larger the peak failure index and the

higher the probability of member fracture will usually

be. Similar phenomenon will also be observed under a

varied * and a prescribed -.
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