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Abstract 
 

Although, compared to the use of the conventional straight bridge, 
the adoption of the curved bridge will usually take higher price in 
construction and more sophisticated thinking in designing, this type of 
structures are, however, met frequently at freeway interchanges or 
some spots under changeable terrain. Even subjected to the seismic 
force acting along a fixed direction, nonlinear isolators installed in the 
curved bridge would move in an extremely unpredicted way. 
Accordingly, the proper description for the relationship between force 
and displacement of the isolator hence becomes a crucial work to do. 
In this research, the effective analytical scheme for estimating the 
stressed conditions of isolators including both lead rubber bearing 
(L.R.B.) and friction pendulum system (F.P.S.) will be established first, 
and then the dynamic behavior of a series of isolated curved bridges 
subjected to the earthquake either with a typical low-frequency or 
high-frequency content of acceleration will be investigated in detail 
afterward. It is shown in the results that isolation performance on base 
shear reduction will be closely related to the content of earthquake and 
the curvature angle of structure. 
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1.  Introduction 
Being suitable for the local transportation 

needs and particular terrain conditions, the curved 
bridge has become one of the most significant 
structures in the modern transportation construc- 
tion. Since the effectiveness of isolation elements 
in protecting the straight bridge under earthquake 
loading has been comprehensively recognized, the 
investigation of seismic behaviors for the isolated 
curved bridge would thus not only be rich in 
theoretical challenge but also be crucial in practice. 
Seismic analysis with respect to the straight bridge 
installed with isolators behaving in nonlinearity 
and being subjected to a ground excitation acting 
in a direction not parallel or perpendicular to the 
longitudinal axis of the deck would become quite 
cumbersome since each point of the straight bridge 

considered might exhibit a fairly irregular 2-D 
motion. The complicacy involved would be even 
more profound if the straight bridge is replaced by 
the structure of curved bridge. This is because the 
coupling effect of bending moment and rotational 
torque would always be induced to the curved 
bridge due to the geometric nature of itself. 
Therefore, the difficulties that will be confronted in 
seismic analysis of the isolated curved bridge will 
contain how to determine the precise moving 
trajectories and how to obtain the correct stress 
conditions of the isolator concerned. 

The finite element technique, with the 
employment of a great number of straight beam 
elements spreading densely over the structure, is 
frequently to be used for acquiring the approximate 
solution of the curved bridge. This approach, 
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however, would accompany some significant 
drawbacks such as the high computational cost as 
well as the incapability of taking warping effects 
into account. Consequently, some of the 
researchers have devoted themselves to develop 
effective curved beam elements so as to replace the 
use of conventional straight beam elements. In the 
early age, relevant study was primarily focused 
upon the curved elements incapable of taking the 
transverse load effects into account [1−3]. In 1992, 
Kou, Benzley and Huang proposed a 3-D curved 
thin-walled beam element with seven degrees of 
freedom at each node, in which one of the degrees 
of freedom mentioned is used exclusively for 
describing the warping effects involved [4]. This 
will also be the type of curved beam elements 
utilized in the current research for investigating the 
seismic behaviors of the curved bridge in both 
isolated and un-isolated cases. 

Ever since the successful development of 
laminated rubber bearings in 1977 [5,6], the 
concept for applying the isolation system to 
various patterns of structures for enhancing the 
structural safety under strong ground motion has 
been widely accepted by earthquake engineers. The 
isolator of LRB, installed in William Clayton 
Building of Wellington city in New Zealand as its 
first application to an existing structure [7], and the 
isolator of FPS, proposed and having been 
undertaken an intensive experiment by the 
Earthquake Engineering Research Center at 
University of California in Berkeley [8], will be 
used in this investigation. 

2. Formulation of Curved Thin-walled 
Beam Elements 
Figure 1 illustrates the local coordinate 

system associated with the formulation of the 
curved thin-walled beam element, in which x- and 
y-axes are coincident, respectively, with two 
principal axes perpendicular each other over the 
cross section considered, and z-axis is collinear 
with the tangential line formed by connecting the 
centroidal points at various sections together. 
Referring to Figure 2, the internal forces at any 
point k of the curved member may be expressed as 
follows [4]: 
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where Fsx and Fsy = shear forces about x- and 
y-axes respectively; e = eccentricity between shear 
center and centroid of section; κ = decay 
coefficient for non-uniform torsion; L = length of 
element; Mx and My = bending moments about x- 
and y-axes respectively; MωZ = warping force 
moment; NZ = axial force; r = radius of curvature; 
TZ = total torque; α = angle subtended by curved 
member; η = dimensionless parameter; ϕ = angle 
of rotation; µs = warping shear parameter. The 
stiffness matrix of the thin-walled curved beam 
element may be obtained by taking the inverse of 
the flexibility matrix, and the mass matrix of the 
element can be established on the basis of 
Newton’s second law of motion [8]. 
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Figure 1. Local coordinates of curved thin-walled 
beam element. 
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3.  Effective Modal Mass 
The Eqs. of motion for a damped, MDOF 

system subjected to a ground excitation ( )tV g
..  can 

always be expressed in matrix notation as 

( ) ( ) ( ) ( ) ( )tPtVStKVtVCtVM effg =−=++
.....

   (8) 

It can be seen that the distribution of the effective 
seismic force Peff(t) is dependent upon the spatial 
distribution vector S given by 

{ } ∑
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n
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In the above Eq. (1) is the quasistatic displacement 
vector, N is the number of degrees of freedom used 
for the modeling the system, and Sn is the modal 
component of S, defined as 

nnn MS ΦΓ=                            

in which Φn is mode shape vector and Γn is known 
as the modal participation factor. Substituting Eq. 
(10) into Eq. (9) and applying the relations of 
orthogonality leads to 
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in which Mn is generalized modal mass. If C is a 
classical damping matrix then, with the designation 
of qn(t) as modal coordinate, the uncoupled 
equations of motion can be easily derived to be 

( ) ( ) ( ) ( )tVtqtqtq gnnnnnnn Γ−=++ 2
..

2 ωωξ       

Evidently, the stiffness force associated with the 

nth mode caused by Peff(t) will be the product of 
stiffness matrix K and modal displacement 
response vector Vn(t), that is 
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Consequently, the maximum stiffness force 
corresponding to mode n would be 

( ) ( ) ( )npandnnnn SSSStf ,
2

max == ω           (16) 

in which Sdn and Spa,n are spectral displacement and 
spectral pseudo-acceleration respectively. 

According to the relation of Eq. (16), the 
maximum dynamic response contributed by the nth 
mode of the system will equal to the product of the 
modal static response caused by force Sn (having a 
unit of mass) and the dynamic factor Spa,n (having a 
unit of acceleration). Therefore, the maximum base 
shear contributed by mode n with respect to the 
structure modeled as a shear building as shown in 
Figure 3 can be expressed as 
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in which st
bnV  is the modal static response of base 

shear due to Sn. Designating an alternative name, 
called as effective modal mass, as well as an 
alternative notation denoted as Mn

*, to st
bnV  gives 
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Figure 3. Simple MDOF model for computing st
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Figure 2. Element forces of curved thin-wall beam 
element. 

mN 

m2 

m1 

 

 

 

 

 

 

SNn 

S2n 

S1n 

    st
bnV  

(10)

(12)

(17)



 
 
20                                              Ying-Hui Lei and Yu-Lin Chien 

 

Making use of Eqs. (9), (10) and (11) yields 

( )

n

N

j
jnjN

j
jnjnn M

m
mM

∑
∑ =

=

∗ =Γ= 1

2

1

φ
φ            (19) 

In order to measure the importance of effective 
modal mass associated with any mode n, Emm is 
defined as the modal mass percentage given by 
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responses of base shear caused by static nodal 
forces Sn and S respectively, one can thus obtain, 
by making use of Eq. (9), the following relation: 
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As a result, Eq. (20) may be written in an 
alternative form: 
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Following the same derivation procedure as stated 
above, the maximum modal base shear and the 
percentage of effective modal mass resulting from 
the seismic force acting in the direction of, for 
example, the X-axis of global coordinates 
(referring to Figure 11) for the structure modeled 
by any combination of translational and rotational 
degrees of freedom can thus be expressed 
separately as 

( ) npanxxbn SMtV ,max,
∗=                    (23) 

( ) 100%

1

, ×=

∑
=

∗

xN

j
jx

nx
xmm

m

ME                  (24) 

in which 

n

N

j
jx

nx M

m

M

x

xjn

2

1
, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
∑
=∗

φ

                    (25) 

Nx is number of translational degrees of freedom in 

X-direction, mjx and ψjn,x are component elements, 
associated with X-direction, of lumped mass- 
matrix and of mode shape vector respectively. 

4.  Proposed Movable Force Circle 
Two types of isolators, known as LRB and 

FPS, will be installed at the conjunctions of deck 
and piers of the curved bridge considered. The 
idealized hysteretic loops used for describing 
force-displacement relationship of both types of 
isolators are shown in Figure 4 and 5 respectively, 
in which k1 is the lateral stiffness corresponding to 
initial linear deformation for the isolator of LRB 
and, as to the isolator of FPS, being the lateral 
stiffness corresponding to its un-sliding phase, 
while k2 is the stiffness corresponding to the 
subsequent plastic deformation after yielding for 
the isolator in either LRB or FPS series. Since the 
isolators considered would move following an 
extremely irregular path under the ground 
excitation, it is hence desirable to develop an 
effective scheme so that the moving trajectories of 
them, in a form of chaos, can be predicted 
appropriately. The use of so-called “movable force 
circle” is introduced herein for this purpose. In 
accordance with the proposed scheme, each force 
circle with a radius equal to the yielding force of 
the isolator, Fy, is considered to consist of two 
parts, which are the closed circumference line of 
the force circle and the area inside the 
circumference line. Whenever the value of isolator 
stiffness is equal to k2, the isolator concerned is 
taken to be in a phase of yielding, while for the 
cases where isolator stiffness has a value of k1, the 
isolator would be regarded as being in a phase of 
unyielding. The internal force components of the 
isolator lying in the yielding phase will be obtained 
in terms of the closed circumference line of 
movable force circle and in terms of the area inside 
the circumference line if the isolator is in the 
unyielding phase. The procedures followed in the 
applications of the proposed force circle can be 
summarized as follows: 

 

 
 
 Figure 4. Hysteretic loop of LRB. 
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(1) Establish a two-dimensional coordinate system 

with the origin O, the abscissa VX and the 
ordinate VY used for representing the 
components of lateral internal force of the 
isolator in X- and Y-directions respectively, as 
shown in Figure 6. Before applying of seismic 
force, the origin of force circle O′

o is set to be 
coincident with point O. 

(2) Calculate VXi and VYi at current time ti, in 
which the subscript i is denoted as the number 
of time steps and then mark the point (VXi  , VYi) 
on the force circle. 

(3) Calculate the distance between the point (VXi , 
VYi) and the origin of the force circle at time ti-1, 

denoted as O′
i-1 ( 1, −iXr , 1, −iYr ), by using the 

following equation: 

( ) ( )21,
2

1, −−
∗ −+−= iYYiiXXii rVrVV             (26) 

(4) Determine the location of the origin at time it , 
denoted as O′

i (rXi , rYi), by applying the 
scheme in the following : 

(i) If Vi
* > Fy then the isolator will stay in 

yielding phase, and circle’s origin will be 
shifted to a new location at current time. 
The coordinates of the origin can be 
computed by using the equations: 

( )θcos'
1, yYiiXXi FVrr −+= −              (27) 

( )θcos'
1, yYiiYYi FVrr −+= −                 (28) 

in which V′
xi, V′

yi and θ are given, 
respectively, by 

1,
'

−−= iXXiXi rVV                      (29) 

'
1,

'
−−= iYYiYi rVV                       (30) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= −

'

'
1tan

Xi

Yi
V
Vθ                       (31) 

(ii) If Vi
* ≦ Fy then the force circle 

corresponding to time ti would be exactly 
the same as that corresponding to time ti-1. 
Moreover, the isolator would keep 
unchangeable in the unyielding phase at 
current time. 

(5) Proceed to time ti+1, and repeat the sequence of 
calculations from (2) to (4) until the 
earthquake duration has been experienced. 
The determination of the force circles 

correspond to the movement of the isolator along a 
prescribed path a → b → c → d → e → f → g → h 
is illustrated in Figure 6. It is observed that stressed 
conditions represented by points a, b, e, h would be 
associated with the unyielding phase whereas those 
represented by points c, d, f, g would be associated 
with the yielding phase. To facilitate the 
application of the proposed force circle, a 
flowchart is presented in Figure 7. 

 

 
 
 
 

 
 
 

 

Figure 5. Hysteretic loop of FPS.

Figure 6. Description for the determination of movable 
force circle. 

Figure 7. Flowchart for estimating the stressed conditions 
of isolator.
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It is worth mentioning here that describing the 
stress conditions of the isolator by using a movable 
force circle but not a movable displacement circle 
having a radius of yielding displacement of the 
isolator is mainly due to that the isolators in FPS 
series having been adopted in the current 
investigation for earthquake resistance. During 
un-sliding phase, varied internal forces of FPS 
would usually correspond to a unique lateral 
displacement hence poor results might be obtained 
if one attempts to estimate the stressed conditions 
of FPS by using a movable displacement circle. 

5.  Results and Discussion 
The curved bridges considered herein would 

be in a form of three spans and two round piers as 
sketched in Figure 8, in which a fixed length of 
span measured along the line created by 
connecting the centroidal points at various sections 
of the deck is chosen to be 78.54 m, and each pier 
will be 10.0 m height and 1.8 m in diameter. Figure 
9 shows the cross section of box girders adopted 
and Table 1 specifies the material properties for 
both deck and piers. The relevant design 
parameters for each type of isolators are specified 
in Table 2, in which the isolators of LRB-1, LRB-2 
and LRB-3 are classified into LRB series, and 
those of FPS-1, FPS-2 and FPS-3 are classified 
into FPS series. Since it is recognized that the 
performance of seismic force isolation will be 
closely dependent upon the frequency content of 
the external seismic force, El Centro earthquake of 
May 18, 1952 in U.S. and Taipei A05323L 
earthquake of May 20, 1986 in Taiwan are chosen 
respectively as the typical high-frequency and 
low-frequency seismic forces acting on the 
structures. Pseudo-acceleration response spectra of 
these two earthquakes are indicated in Figure 10. 
During the calculations of the numerical examples 
indicated in the following, peak values of both 
earthquakes will be adjusted to 30% the gravity 
acceleration (0.3 g) for comparison purposes. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Notation Box girder Piers 

E (kN/m2) 2.4525 E07 2.4525 E07 
G (kN/m2) 1.0700 E07 1.0700 E07 

A (m2) 3.929 2.0105 
Ix (m4) 1.4563 0.3217 
Iy (m4) 8.392565 0.3217 
J (m4) 3.47953 0.6434 
e (m) 0.06632 -------- 
µs 0.506098 -------- 

 
 
 

Notation LRB-1 LRB-2 LRB-3 

K1 (kN/m) 15696 18639 21582 
K2 (kN/m) 2354 2845 3335 
Ky (kN/m) 184.65 277.85 371.30 

Notation FPS-1 FPS-2 FPS-3 

R (m) 2.23 2.23 2.23 
K2 (kN/m) 1928 1928 1928 

µ 0.03 0.04 0.05 
W (kN) 4300 4300 4300 
Fy (kN) 172 301 430 
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Figure 8. Structural pattern of curved bridge. Figure 10. Pseudo-acceleration of two earthquakes. 

Figure 9. Dimensions of box girder section. 
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Table 1  
Material properties of curved bridge 

Table 2  
Design parameters of LRB and FPS 



 
 

Applications of LRB and FPS to 3-D Curved Box Bridges                           23 
 

 

The analytical model of the isolated curved 
bridge is shown in Figure 11, in which the 
direction of X-axis of the global coordinate system 
is set to be parallel to the symmetric axis of deck 
plane, and the thin-walled beam element and the 
3-D straight beam element will be used for the 
modeling of the deck and piers respectively. To 
describe the boundary constraints more realistically, 
the horizontal movements both in tangential and 
transverse directions at each end of the deck are 
assumed to be limited by two elastic springs 
perpendicular each other. The stiffness of 
transverse springs, kl, is taken equal to the initial 
stiffness k1 of the isolator in LRB series, while the 
stiffness of tangential springs, kt, is taken equal to 
ten times the value of kl. 

The mode shapes corresponding to the first 
four modes of the curved bridge with an angle of 
curvature, denoted as β, equal to 90o (referring to 
Figure 12) under both un-isolated and isolated 
cases are expressed schematically in Figure 13 and 
14. Table 3 specifies the percentage of effective 
modal mass of the first four modes in X-, Y- and 
Z-directions respectively for the curved with β = 
90° in both isolated and un-isolated cases. It can be 
seen that as far as the un-isolated cases are 
concerned, the percentage of effective modal mass 
would have dominant value in X-direction for the 
first mode and in Z-direction for the second mode. 
The variation of these two dominant values with β 
is indicated in Figure 15. Contrarily, dominant value 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the percentage of effective modal mass in 
isolated cases would be shifted from X-direction to 
Z-direction for the first mode and from Z-direction 
to X-direction for the second mode. Moving 
trajectories in XZ-plane for the isolators of LRB-2 
and FPS-2 installed at the conjunction of deck and 
the left pier of the curved bridge, subjected to the 
earthquake of El Centro, with β =90o are indicated 
in Figure 16, in which ξ is defined as the input 
angle of seismic force, that is the angle measured 
clockwise in XZ-plane from X-axis to seismic 
force vector. Quite a chaos motion caused by both 
types of isolators will be easily found in the sketch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Top view 

(b) Elevation 

Figure 11. Finite-element idealizations of isolated curved 
bridge. 

　 

Figure 12. Schematic plot of curved bridges under various 
angles of curvature. 

Figure 13. Mode shapes in un-isolated case underβ= 90°.

( a1 ) 1s t mode

X - Z  plane

( a2 ) 2nd mode

( a3 ) 3rd mode

( a4 ) 4th mode

( b1 ) 1s t mode

Y - Z  plane

( b2 ) 2nd mode

( b3 ) 3rd mode

( b4 ) 4th mode

X

Z 

ktkt 

klkl 

1

2

3

4
5 10 11 12 13

18 21

19

20
Pier 1 Pier 2 

Isolation Element 5 

6 

7 
8 

9 17 

13 
14 

15 

16 

Y

Z 

Pier 1 Pier 2

β = 45° 

β = 90° 

β = 135° 
β = 180° 

Curvature center 

X−Z plane Y−Z plane 

(a1) 1st mode 

(a2) 2nd mode 

(a3) 3rd mode 

(a4) 4th mode 

(b2) 2nd mode

(b3) 3rd mode

(b4) 4th mode

(b1) 1st mode



 
 
24                                              Ying-Hui Lei and Yu-Lin Chien 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

50

60

70

80

90

100

0 30 60 90 120 150

β( ° )

E
m

m
,x

 a
nd

 E
m

m
,z

  
(%

)

Emm,x (1st mode)

Emm,z (2nd mode)

 
 
 

 
 

 
 

Un-isolated 

Mode Period (s) X-dir. Y-dir. Z-dir. 

1 0.759242 85.5273 0 0 
2 0.611926 0 0 78.821 
3 0.383471 0 27.3217 0 
4 0.269353 0 0 11.0837

 

FPS-1, FPS-2, FPS-3 

Mode Period (s) X-dir. Y-dir. Z-dir. 

1 0.838781 0 0 78.7664
2 0.752976 86.6858 0 0 
3 0.302866 0 36.2146 0 
4 0.274152 0 0 11.5176

 

LRB-1 

Mode Period (s) X-dir. Y-dir. Z-dir. 

1 1.266563 0 0 75.834 
2 1.004483 83.6585 0 0 
3 0.302755 0 36.1407 0 
4 0.284384 0 0 10.966 

 

LRB-2 

Mode Period (s) X-dir. Y-dir. Z-dir. 

1 1.183468 0 0 75.9889
2 0.962107 83.7981 0 0 
3 0.302754 0 36.1407 0 
4 0.282565 0 0 11.0048

 

LRB-3 

Mode Period (s) X-dir. Y-dir. Z-dir. 

1 1.118099 0 0 76.1334
2 0.926582 83.9272 0 0 
3 0.302754 0 36.1407 0 
4 0.280881 0 0 11.0407

Figure 14. Modal shapes in isolated case under β = 90°. 

Figure 15. Dominant components of percentage of 
effective modal mass in un-isolated case. 

Figure 16. Moving trajectories under β = 90°. 
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Percentage of effective modal mass underβ= 90° 
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Figure 17 and 18 show the variation of the 
maximum relative displacement for the isolators 
in LRB series and the variation of the quantity 
for the isolators in FPS series respectively under 
the action, in X-direction, of both high- 
frequency and low-frequency earthquakes, in 
which the term “relative displacement” is 
defined as the difference between top and bottom 
displacements of the isolator considered. It can 
be observed in these figures that except for a few 
cases, either higher stiffness of isolators in LRB 
series or higher frictional coefficient of isolators 
in FPS series would usually induce a larger 
relative displacement. Figures 19 and 20 show 
the variation of the maximum base shear at the 
left pier for the curved bridge installed with 
isolators in LRB series, subjected to earthquakes 
of El Centro and Taipei A05323L, respectively, 
acting in X-direction, and Figures 21 and 22 
show the variation of the quantity for the curved 
bridge installed with isolators in FPS series 
under the same earthquakes mentioned 
respectively. It can be observed that using the 
isolator with smaller stiffness in LRB series or 
with lower frictional coefficient in FPS series 
would induce a better performance on base shear 
reduction. Furthermore, it can be found that the 
lines representing the maximum base shear of 
un-isolated cases in the above figures would vary 
in a similar way with the lines representing Emm,x 
of the first mode as shown in Figure 15. 
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Figure 17. Relative displacement of isolator in LRB 
series under various earthquakes. 

Figure 18. Relative displacement of isolator in FPS series 
under various earthquakes. 

Figure 19. Base shear of curved bridges isolated by LRB 
and subjected to El centro earthquake. 

Figure 20. Base shear of curved bridges isolated by LRB 
and subjected to Taipei A05323L earthquake.
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To get a better understanding to the 
isolation effects of the structure under different 
circumstances, a series of plots of Vr versus β 
are shown in Figures 23−26, in which the base 
shear ratio, Vr, is defined as the ratio of the base 
shear in any case to that corresponding to 
un-isolated case, that is Vr = Vb/Vb,un-isolated. 
According to the definition, one may expect that 
except for un-isolated cases, in which the value 
of Vr is kept consistently to be unity, the lower 
Vr is, the more efficient in seismic force 
isolation will be the isolator. It is indicated in 
Figures 23−26 that for a given type of isolators, 
either in LRB or FPS series, structural base shear 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
would be reduced to a greater extent if the 
structure considered is subjected to the 
earthquake characterized by its low-frequency 
content of acceleration than that characterized 
by its high-frequency content of acceleration. 
Since the use of the isolators in LRB or FPS 
series would result in the decrease on 
fundamental frequency of the structure, the 
reduction extent of base shear will thus be more 
significant for the cases where the structures 
considered are subjected to an earthquake 
characterized by its high-frequency content of 
acceleration than by its low-frequency content 
of acceleration. 
 

Figure 21. Base shear of curved bridges isolated by FPS 
and subjected to El centro earthquake.

Figure 22. Base shear of curved bridges isolated by LRB 
and subjected to Taipei A05323L earthquake. 

Figure 23. Base shear ratio of curved bridges isolated by 
LRB and subjected to El centro earthquake.

Figure 24. Base shear ratio of curved bridges isolated by 
LRB and subjected to Taipei A05323L earth- 
quake. 
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6.  Conclusion 
Owing to the property of material 

nonlinearity existing in both types of isolators 
adopted, also owing to the coupling effects of 
bending moment and rotational torque resulting 
from the geometric nature of the curved bridge 
itself, each point of the isolated curved-bridge 
might exhibit an extremely complicate 2-D 
motion even though the external disturbance 
aims at a fixed direction. Consequently, to 
predict the moving trajectories of isolators 
properly, a so-called “movable force circle” is 
introduced herein. With the application of the 
proposed scheme, some crucial points are 

observed as follows. 

(1) The percentage of effective modal mass can 
be served as a useful parameter for 
estimating the importance of modal static 
base-shear response associated with certain 
vibration mode shape. 

(2) In general, either higher stiffness of isolators 
in LRB series or higher frictional coefficient 
of isolators in FPS series would usually 
induce a larger relative displacement to the 
isolator itself. 

(3) The use of the isolator with smaller stiffness 
in LRB series or with lower frictional 
coefficient in FPS series would induce a 
better performance on base shear reduction. 

(4) For a given type of isolators, base shear 
would be reduced to a greater extent if the 
structure considered is subjected to an 
earthquake characterized by its low- 
frequency content of acceleration than by its 
high-frequency content of acceleration. 
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