PRE-GRÜSS TYPE INEQUALITIES
 IN 2-INNER PRODUCT SPACES

DAH-YAN HWANG AND GOU-SHENG YANG

Abstract

Some pre-Grüss type inequalities in 2-inner product space and applications for determinantal inequalities are given.

1. Introduction

Let f, g be two functions defined and integrable on $[a, b]$. Assume that

$$
\varphi \leq f(x) \leq \Phi \quad \text { and } \quad \gamma \leq g(x) \leq \Gamma
$$

for each $x \in[a, b]$, where $\varphi, \Phi, \gamma, \Gamma$ are given real constant. Then the following inequality is well known in the literature as the Grüss inequality ([9, p.296])

$$
\begin{aligned}
& \quad\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} g(x) d x\right| \\
& \leq \frac{1}{4}|\Phi-\varphi| \cdot|\Gamma-\gamma|
\end{aligned}
$$

In this inequality, G. Grüss has proved that, the constant $\frac{1}{4}$ is the best possible in the sense that it cannot be replaced by a smaller one, and is achieved for

$$
f(x)=g(x)=\operatorname{sgn}\left(x-\frac{a+b}{2}\right) .
$$

In [3], S. S. Dragomir has proved the Grüss type inequality in real or complex inner product spaces. Further, S. S. Dragomir et al. have given some pre-Grüss type inequalities in real or complex inner product spaces [7].

In [8], the authors have proved the Grüss type inequality in 2-inner product spaces. Recently, in [4-6, 11], the authors have further given some refinements, generalizations, extensions and alternative proofs of Grüss type inequality in 2-inner product spaces.

Received June 13, 2006; revised January 16, 2007.
2000 Mathematics Subject Classification. Primary 46C05, 46C99; Secondary 26D15, 26D10.
Key words and phrases. Grüss inequality, pre-Grüss type inequality, 2-inner products, integral inequality, determinatal inequality.

The purpose of this paper, we will establish the corresponding versions of pre-Grüss inequality for both real and complex 2 -inner product spaces. Also, some determinantal inequalities are point out.

2. Preliminaries and Lemmas

The concepts of 2-inner products and 2-inner product spaces have been intensively studied by many authors in the last three decades. A systematic presentation of the recent results related to the theory of 2 -inner product spaces as well as an extensive list of the related references can be found in the book [1]. Here we give the basic definitions and the elementary properties of 2 -inner product spaces.

Let X be a linear space of dimension greater than 1 over the field $\mathbb{K}=\mathbb{R}$ of real numbers or the field $\mathbb{K}=\mathbb{C}$ of complex numbers. Suppose that $(\cdot, \cdot \mid \cdot)$ is a \mathbb{K}-valued function defined on $X \times X \times X$ satisfying the following conditions:
$\left(2 \mathrm{I}_{1}\right)(x, x \mid z) \geq 0$ and $(x, x \mid z)=0$ if and only if x and z are linearly dependent, $\left(2 \mathrm{I}_{2}\right)(x, x \mid z)=\underline{(z, z \mid x)}$,
$\left(2 \mathrm{I}_{3}\right)(y, x \mid z)=\overline{(x, y \mid z)}$,
$\left(2 \mathrm{I}_{4}\right)(\alpha x, y \mid z)=\alpha(x, y \mid z)$ for any scalar $\alpha \in \mathbb{K}$,
$\left(2 \mathrm{I}_{5}\right)\left(x+x^{\prime}, y \mid z\right)=(x, y \mid z)+\left(x^{\prime}, y \mid z\right)$.
$(\cdot, \cdot \mid \cdot)$ is called a 2-inner product on X and $(X,(\cdot, \cdot \mid \cdot))$ is called a 2-inner product space (or 2-pre-Hilbert space). Some basic properties of 2-inner product spaces can be immediately obtained as follows [2]:
(1) If $\mathbb{K}=\mathbb{R}$, then $\left(2 \mathrm{I}_{3}\right)$ reduces to

$$
(y, x \mid z)=(x, y \mid z)
$$

(2) From $\left(2 \mathrm{I}_{3}\right)$ and $\left(2 \mathrm{I}_{4}\right)$, we have

$$
(0, y \mid z)=0, \quad(x, 0 \mid z)=0
$$

and also

$$
\begin{equation*}
(x, \alpha y \mid z)=\bar{\alpha}(x, y \mid z) \tag{2.1}
\end{equation*}
$$

(3) Using $\left(2 \mathrm{I}_{2}\right)-\left(2 \mathrm{I}_{5}\right)$, we have

$$
(z, z \mid x \pm y)=(x \pm y, x \pm y \mid z)=(x, x \mid z)+(y, y \mid z) \pm 2 \operatorname{Re}(x, y \mid z)
$$

and

$$
\begin{equation*}
\operatorname{Re}(x, y \mid z)=\frac{1}{4}[(z, z \mid x+y)-(z, z \mid x-y)] \tag{2.2}
\end{equation*}
$$

In the real case $\mathbb{K}=\mathbb{R}$, (2.2) reduces to

$$
\begin{equation*}
(x, y \mid z)=\frac{1}{4}[(z, z \mid x+y)-(z, z \mid x-y)] \tag{2.3}
\end{equation*}
$$

and, using this formula, it is easy to see that, for any $\alpha \in \mathbb{R}$,

$$
\begin{equation*}
(x, y \mid \alpha z)=\alpha^{2}(x, y \mid z) \tag{2.4}
\end{equation*}
$$

In the complex case, using (2.1) and (2.2), we have

$$
\operatorname{Im}(x, y \mid z)=\operatorname{Re}[-i(x, y \mid z)]=\frac{1}{4}[(z, z \mid x+i y)-(z, z \mid x-i y)]
$$

which, in combination with (2.2), yields

$$
\begin{equation*}
(x, y \mid z)=\frac{1}{4}[(z, z \mid x+y)-(z, z \mid x-y)]+\frac{i}{4}[(z, z \mid x+i y)-(z, z \mid x-i y)] \tag{2.5}
\end{equation*}
$$

Using the above formula and (2.1), we have, for any $\alpha \in \mathbb{C}$,

$$
\begin{equation*}
(x, y \mid \alpha z)=|\alpha|^{2}(x, y \mid z) \tag{2.6}
\end{equation*}
$$

However, for $\alpha \in \mathbb{R}$, (2.6) reduces to (2.4).
Also, from (2.6) it follows that

$$
(x, y \mid 0)=0
$$

(4) For any three given vectors $x, y, z \in X$, consider the vector $u=(y, y \mid z) x-(x, y \mid$ $z) y$. By $\left(2 \mathrm{I}_{1}\right)$, we know that $(u, u \mid z) \geq 0$ with the equality if and only if u and z are linearly dependent. The inequality $(u, u \mid z) \geq 0$ can be rewritten as,

$$
\begin{equation*}
(y, y \mid z)\left[(x, x \mid z)(y, y \mid z)-|(x, y \mid z)|^{2}\right] \geq 0 \tag{2.7}
\end{equation*}
$$

For $x=z$, (2.7) becomes

$$
-(y, y \mid z)|(z, y \mid z)|^{2} \geq 0
$$

which implies that

$$
\begin{equation*}
(z, y \mid z)=(y, z \mid z)=0 \tag{2.8}
\end{equation*}
$$

provided y and z are linearly independent. Obviously, when y and z are linearly dependent, (2.8) holds too. Thus (2.8) is true for any two vectors $y, z \in X$. Now, if y and z are linearly independent, then $(y, y \mid z)>0$ and, from (2.7), it follows that

$$
\begin{equation*}
|(x, y \mid z)|^{2} \leq(x, x \mid z)(y, y \mid z) \tag{2.9}
\end{equation*}
$$

Using (2.8), it is easy to check that (2.9) is trivially fulfilled when y and z are linearly dependent. Therefore, the inequality (2.9) holds for any three vectors $x, y, z \in X$ and it is strict unless the vectors $u=(y, y \mid z) x-(x, y \mid z) y$ and z are linearly dependent. In fact, we have the equality in (2.9) if and only if the three vectors x, y and z are linearly dependent.

In any given 2-inner product space $(X,(\cdot, \cdot \mid \cdot))$, we can define a function $\|\cdot \mid \cdot\|$ on $X \times X$ by

$$
\begin{equation*}
\|x \mid z\|=\sqrt{(x, x \mid z)} \tag{2.10}
\end{equation*}
$$

for all $x, z \in X$.
It is easy to see that this function satisfies the following conditions:
$\left(2 \mathrm{~N}_{1}\right)\|x \mid z\| \geq 0$ and $\|x \mid z\|=0$ if and only if x and z are linearly dependent,
$\left(2 \mathrm{~N}_{2}\right)\|x|z\|=\| x| z\|$,
$\left(2 \mathrm{~N}_{3}\right)\|\alpha x|z\|=|\alpha|\| x| z\|$ for any scalar $\alpha \in \mathbb{K}$,
$\left(2 \mathrm{~N}_{4}\right)\left\|x+x^{\prime}|z\|\leq\| x| z\right\|+\left\|x^{\prime} \mid z\right\|$.
Any function $\|\cdot \mid \cdot\|$ defined on $X \times X$ and satisfying the conditions $\left(2 \mathrm{~N}_{1}\right)-\left(2 \mathrm{~N}_{4}\right)$ is called a 2-norm on X and $(X,\|\cdot \mid \cdot\|)$ is called a linear 2-normed space [10]. Whenever a 2-inner product space $(X,(\cdot, \cdot \mid \cdot))$ is given, we consider it as a linear 2-normed space $(X,\|\cdot \mid \cdot\|)$ with the 2 -norm defined by (2.10).

Let $(X ;(\cdot, \cdot \mid \cdot))$ be a 2 -inner product space over the real or complex number field \mathbb{K}. If $\left(f_{i}\right)_{1 \leq i \leq n}$ are linearly independent vectors in the 2 -inner product space X, and, for a given $z \in X,\left(f_{i}, f_{j} \mid z\right)=\delta_{i j}$ for all $i, j \in\{1, \ldots, n\}$ where $\delta_{i j}$ is the Kronecker delta (we say that the family $\left(f_{i}\right)_{1 \leq i \leq n}$ is z-orthonormal), then the following inequality is the corresponding Bessel's inequality (see for example [2]) for the z-orthonormal family $\left(f_{i}\right)_{1 \leq i \leq n}$ in the 2-inner product space $(X ;(\cdot, \cdot \mid \cdot))$:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left(x, f_{i} \mid z\right)\right|^{2} \leq\|x \mid z\|^{2} \tag{2.11}
\end{equation*}
$$

for any $x \in X$. For more details on this inequality, see the recent paper [2] and the references therein.

The following result can be found in [4, Corollary 1]:
Let $x, z, e \in X$ with $\|e \mid z\|=1$ and $\varphi, \Phi \in K$ with $\varphi \neq \Phi$. Then

$$
\operatorname{Re}(\Phi e-x, e-\varphi e \mid z) \geq 0
$$

if and only if

$$
\left\|\left.x-\frac{\varphi+\Phi}{2} \cdot e\left|z \| \leq \frac{1}{2}\right| \Phi-\varphi \right\rvert\, .\right.
$$

We shall use the following lemma:
Lemma 1.([4]) Let $x, z, e \in X$ with $\|e \mid z\|=1$. Then one has the following representation

$$
0 \leq\left\|x\left|z\left\|^{2}-|(x, e \mid z)|^{2}=\inf _{\lambda \in \mathbb{K}}\right\| x-\lambda e\right| z\right\|^{2}
$$

In [6], the following result and lemma hold.
Let $\left\{e_{i}\right\}_{i \in I}$ be a family of z-orthornormal vectors in X, F a finite part of I and φ_{i}, $\Phi_{i}(i \in F)$, real or complex numbers. The following statements are equivalent for $x \in X$.
(i) $\operatorname{Re}\left(\sum_{i \in F} \Phi_{i} e_{i}-x, x-\sum_{i \in F} \varphi_{i} e_{i} \mid z\right) \geq 0$,
(ii) $\left\|\left.x-\sum_{i \in F} \frac{\varphi_{i}+\Phi_{i}}{2} \cdot e_{i} \right\rvert\, z\right\| \leq \frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{1 / 2}$.

Lemma 2. If (i) or (ii) hold, then we have the inequality

$$
\begin{aligned}
0 & \leq\left\|\left.x\left|z \|^{2}-\sum_{i \in F}\right|\left(x, e_{i} \mid z\right)\right|^{2}\right. \\
& \leq \frac{1}{4} \sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}-\operatorname{Re}\left(\sum_{i \in F} \Phi_{i} e_{i}-x, x-\sum_{i \in F} \varphi_{i} e_{i} \mid z\right) \\
& \leq \frac{1}{4} \sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}
\end{aligned}
$$

We also need the following lemma.
Lemma 3.([5]) Let $\left\{e_{i}\right\}_{i \in I}, F, \varphi_{i}, \Phi_{i}, i \in F$ and $x, z \in X$ so that either (i) or (ii) hold. Then we have the inequality

$$
\begin{aligned}
0 \leq & \left\|\left.x\left|z \|^{2}-\sum_{i \in F}\right|\left(x, e_{i} \mid z\right)\right|^{2}\right. \\
\leq & \frac{1}{4} \sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}-\sum_{i \in F}\left|\frac{\varphi_{i}+\Phi_{i}}{2}-\left(x, e_{i} \mid z\right)\right|^{2} \\
& \left(\leq \frac{1}{4} \sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)
\end{aligned}
$$

3. Pre-Grüss Inequalities in 2-Inner Product Spaces

We start with the following result.
Theorem 1. Let $(X,(\cdot, \cdot \mid \cdot))$ be an 2 -inner product space over $\mathbb{K}(\mathbb{K}=R, C)$, and e, $z \in X,\|e \mid z\|=1$. If φ, Φ are real or complex numbers and x, y are vectors in X such that the condition

$$
\begin{equation*}
\operatorname{Re}(\Phi e-x, x-\varphi e \mid z) \geq 0 \tag{3.1}
\end{equation*}
$$

holds or, equivalently, the following assumption

$$
\begin{equation*}
\left\|\left.x-\frac{\varphi+\Phi}{2} \cdot e\left|z \| \leq \frac{1}{2}\right| \Phi-\varphi \right\rvert\,\right. \tag{3.2}
\end{equation*}
$$

is valid, then one has the inequality

$$
\begin{equation*}
|(x, y \mid z)-(x, e \mid z)(e, y \mid z)| \leq \frac{1}{2}|\Phi-\varphi| \cdot \sqrt{\left\|y \left|z \|^{2}-|(y, e \mid z)|^{2}\right.\right.} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{align*}
& |(x, y \mid z)-(x, e \mid z)(e, y \mid z)| \\
\leq & \frac{1}{2}|\Phi-\varphi| \cdot\left\|y\left|z \|-(\operatorname{Re}(\Phi e-x, x-\varphi e \mid z))^{1 / 2} \cdot\right|(y, e \mid z) \mid\right. \tag{3.4}
\end{align*}
$$

Proof. If we apply Schwarz's inequality in 2 -inner product space for the vectors $x-(x, e \mid z) e, y-(y, e \mid z) e$, then it can be easily shown that

$$
\begin{equation*}
|(x, y \mid z)-(x, e \mid z)(e, y \mid z)| \leq\left[\left\|x | z \| ^ { 2 } - | (x , e | z) | ^ { 2 }] ^ { \frac { 1 } { 2 } } \left[\left\|y\left|z \|^{2}-|(y, e \mid z)|^{2}\right]^{\frac{1}{2}}\right.\right.\right.\right. \tag{3.5}
\end{equation*}
$$

for any $x, y, z \in X$ and $e \in X,\|e \mid z\|=1$.
Using Lemma 1 and condition (3.2) we have

$$
\left[\left\|x\left|z \|^{2}-|(x, e \mid z)|^{2}\right]^{\frac{1}{2}}=\inf _{\lambda \in \mathbb{K}}\right\| x-\lambda e\left|z\|\leq\| x-\frac{\varphi+\Phi}{2} \cdot e\right| z \| \leq \frac{1}{2}|\Phi-\varphi|,\right.
$$

and so, by (3.5), the desired inequality (3.3) is obtained.
By simple computation, we also observe that the following identities are valid.

$$
\begin{align*}
0 & \leq\left\|x \left|z \|^{2}-|(x, e \mid z)|^{2}\right.\right. \\
& =\operatorname{Re}[(\Phi-(x, e \mid z))(\overline{(x, e \mid z)}-\bar{\varphi})]-\operatorname{Re}(\Phi e-x, x-\varphi e \mid z) \tag{3.6}
\end{align*}
$$

Using the elementary inequality for complex numbers.

$$
\begin{equation*}
4 \operatorname{Re}(a \bar{b}) \leq|a+b|^{2}, \quad a, b \in \mathbb{K}(\mathbb{K}=R, C) \tag{3.7}
\end{equation*}
$$

we have

$$
\operatorname{Re}((\Phi-(x, e, \mid z))(\overline{(x, e \mid z)}-\bar{\varphi})) \leq \frac{1}{4}|\Phi-\varphi|^{2}
$$

Consequently, by (3.1), (3.5), (3.6) and (3.7), we have

$$
\begin{align*}
& |(x, y \mid z)-(x, e \mid z)(e, y \mid z)|^{2} \\
& \quad \leq\left[\left(\frac{1}{2}|\Phi-\varphi|\right)^{2}-\left([\operatorname{Re}(\Phi e-x, x-\varphi e \mid z)]^{\frac{1}{2}}\right)^{2}\right] \cdot\left[\left\|y\left|z \|^{2}-|(y, e \mid z)|^{2}\right]\right.\right. \tag{3.8}
\end{align*}
$$

Finally, using the elementary inequality for positive real numbers

$$
\begin{equation*}
\left(m^{2}-n^{2}\right)\left(p^{2}-q^{2}\right) \leq(m p-n q)^{2} \tag{3.9}
\end{equation*}
$$

we have

$$
\begin{align*}
& {\left[\left(\frac{1}{2}|\Phi-\varphi|\right)^{2}-\left([\operatorname{Re}(\Phi e-x, x-\varphi e \mid z)]^{\frac{1}{2}}\right)^{2}\right]\left[\left\|y\left|z \|^{2}-|(y, e \mid z)|^{2}\right]\right.\right.} \\
& \quad \leq\left[\frac{1}{2}|\Phi-\varphi|\left\|\left.y\left|z \|-[\operatorname{Re}(\Phi e-x, x-\varphi e \mid z)]^{\frac{1}{2}} \cdot\right|(y, e \mid z) \right\rvert\,\right]^{2}\right. \tag{3.10}
\end{align*}
$$

The desired inequality (3.4) follows immediately from (3.8) and (3.10).

4. Pre-Grüss Inequalities Associated to Orthonormal Families in 2-Inner Product Spaces

Theorem 2. Let $\left\{e_{i}\right\}_{i \in I}$ be family of z-orthonormal vectors in X, F a finite part of $I, \varphi_{i}, \Phi_{i} \in K, i \in F$ and x, y are vectors in X such that either the condition

$$
\begin{equation*}
\operatorname{Re}\left(\sum_{i \in F} \Phi_{i} e_{i}-x, x-\sum_{i \in F} \varphi_{i} e_{i} \mid z\right) \geq 0 \tag{4.1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left\|\left.x-\sum_{i \in F} \frac{\Phi_{i}+\varphi_{i}}{2} e_{i} \right\rvert\, z\right\| \leq \frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}} \tag{4.2}
\end{equation*}
$$

holds. Then we have the following inequalities:

$$
\begin{align*}
& \left|(x, y \mid z)-\sum_{i \in F}\left(x, e_{i} \mid z\right)\left(e_{i}, y \mid z\right)\right| \\
& \leq \frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}} \sqrt{\left\|\left.y\left|z \|^{2}-\sum_{i \in F}\right|\left(y, e_{i} \mid z\right)\right|^{2}\right.} \tag{4.3}\\
& \left|(x, y \mid z)-\sum_{i \in F}\left(x, e_{i} \mid z\right)\left(e_{i}, y \mid z\right)\right| \\
& \leq \frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}}\|y \mid z\| \\
& -\left(R e\left(\sum_{i \in F} \Phi_{i} e_{i}-x, x-\sum_{i \in F} \varphi_{i} e_{i} \mid z\right)\right)^{\frac{1}{2}}\left(\sum_{i \in F}\left|\left(y, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}} \tag{4.4}\\
& \left|(x, y \mid z)-\sum_{i \in F}\left(x, e_{i} \mid z\right)\left(e_{i}, y \mid z\right)\right| \\
& \leq \frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}}\|y \mid z\| \\
& \quad-\left(\sum_{i \in F}\left|\frac{\Phi_{i}+\varphi_{i}}{2}-\left(x, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i \in F}\left|\left(y, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}} \tag{4.5}
\end{align*}
$$

and

$$
\begin{align*}
& \left|(x, y \mid z)-\sum_{i \in F}\left(x, e_{i} \mid z\right)\left(e_{i}, y \mid z\right)\right| \\
& \quad \leq \frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}}\left\|\left.y\left|z \|-\sum_{i \in F}\right| \frac{\Phi_{i}+\varphi_{i}}{2}-\left(x, e_{i} \mid z\right)|\cdot|\left(y, e_{i} \mid z\right) \right\rvert\, .\right. \tag{4.6}
\end{align*}
$$

Proof. It is obvious that

$$
\begin{align*}
& (x, y \mid z)-\sum_{i \in F}\left(x, e_{i} \mid z\right)\left(e_{i}, y \mid z\right) \\
& \quad=\left(x-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}, y-\sum_{i \in F}\left(e_{i}, y \mid z\right) e_{i} \mid z\right) . \\
& \quad=\left(x-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}, y-\sum_{i \in F}\left(y, e_{i} \mid z\right) e_{i} \mid z\right) . \tag{4.7}
\end{align*}
$$

Using (2.9), we have

$$
\begin{align*}
& \left|\left(x-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}, y-\sum_{i \in F}\left(y, e_{i} \mid z\right) e_{i} \mid z\right)\right|^{2} \\
& \quad \leq\left\|x-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}\left|z\left\|^{2} \cdot\right\| y-\sum_{i \in F}\left(y, e_{i} \mid z\right) e_{i}\right| z\right\|^{2} \\
& \quad=\left(\| x | z \| ^ { 2 } - \sum _ { i \in F } | (x , e _ { i } | z) | ^ { 2 }) \left(\left\|\left.y\left|z \|^{2}-\sum_{i \in F}\right|\left(y, e_{i} \mid z\right)\right|^{2}\right) .\right.\right. \tag{4.8}
\end{align*}
$$

Using the third inequality of Lemma 2, we have

$$
\begin{equation*}
\left\|\left.x\left|z \|^{2}-\sum_{i \in F}\right|\left(x, e_{i} \mid z\right)\right|^{2} \leq \frac{1}{4} \sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right. \tag{4.9}
\end{equation*}
$$

the inequality (4.3) follows from (4.7), (4.8) and (4.9).
Using the second inequality of Lemma 2, we also have

$$
\begin{align*}
& \left|\left(x-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}, y-\sum_{i \in F}\left(y, e_{i} \mid z\right) e_{i} \mid z\right)\right|^{2} \\
& \leq\left(\left[\frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}}\right]^{2}-\left(\left[\operatorname{Re}\left(\sum_{i \in F} \Phi_{i} e_{i}-x, x-\sum_{i \in F} \varphi_{i} e_{i} \mid z\right)\right]^{\frac{1}{2}}\right)^{2}\right) \\
& \quad \times\left(\|y \mid z\|^{2}-\left[\left(\sum_{i \in F}\left|\left(y, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}}\right]^{2}\right) . \tag{4.10}
\end{align*}
$$

By the elementary inequality (3.9) and (4.10), we have

$$
\begin{aligned}
\mid(x & \left.-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}, y-\sum_{i \in F}\left(y, e_{i} \mid z\right) e_{i} \mid z\right)\left.\right|^{2} \\
\leq & {\left[\frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\|y \mid z\|\right.} \\
& \left.-\left(\operatorname{Re}\left(\sum_{i \in F} \Phi_{i} e_{i}-x, x-\sum_{i \in F} \varphi_{i} e_{i} \mid z\right)\right)^{\frac{1}{2}}\left(\sum_{i \in F}\left|\left(y, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}}\right]^{2}
\end{aligned}
$$

which gives the desired result (4.4).
Similarly, applying Lemma 3 we have

$$
\begin{align*}
& \left|\left(x-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}, y-\sum_{i \in F}\left(y, e_{i} \mid z\right) e_{i} \mid z\right)\right|^{2} \\
& \quad \leq\left(\left[\frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}}\right]^{2}-\left[\left(\sum_{i \in F}\left|\frac{\Phi_{i}+\varphi_{i}}{2}-\left(x, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}}\right]^{2}\right) \\
& \quad \times\left(\|y \mid z\|^{2}-\left[\left(\sum_{i \in F}\left|\left(y, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}}\right]^{2}\right) \tag{4.11}
\end{align*}
$$

By the elementary inequality (3.9) and (4.11), we have

$$
\begin{aligned}
\mid(x & \left.-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}, y-\sum_{i \in F}\left(y, e_{i} \mid z\right) e_{i} \mid z\right)\left.\right|^{2} \\
\leq & {\left[\frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\|y \mid z\|\right.} \\
& \left.-\left(\sum_{i \in F}\left|\frac{\Phi_{i}+\varphi_{i}}{2}-\left(x, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{i \in F}\left|\left(y, e_{i} \mid z\right)\right|^{2}\right)^{\frac{1}{2}}\right]^{2}
\end{aligned}
$$

which gives the desired result (4.5).
Further, on utilizing (4.11) and the Aczél's inequality [9, p.117]

$$
\left(a_{1}^{2}-a_{2}^{2}-\cdots-a_{n}^{2}\right)\left(b_{1}^{2}-b_{2}^{2}-\cdots-b_{n}^{2}\right) \leq\left(a_{1} b_{1}-a_{2} b_{2}-\cdots a_{n} b_{n}\right)^{2}
$$

provided $a_{1}^{2}-a_{2}^{2}-\cdots-a_{n}^{2}>0$ or $b_{1}^{2}-b_{2}^{2}-\cdots-b_{n}^{2}$, we have

$$
\begin{aligned}
& \left|\left(x-\sum_{i \in F}\left(x, e_{i} \mid z\right) e_{i}, y-\sum_{i \in F}\left(y, e_{i} \mid z\right) e_{i} \mid z\right)\right|^{2} \\
& \quad \leq\left(\frac{1}{2}\left(\sum_{i \in F}\left|\Phi_{i}-\varphi_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\left\|\left.y\left|z \|-\sum_{i \in F}\right| \frac{\Phi_{i}+\varphi_{i}}{2}-\left(x, e_{i} \mid z\right)|\cdot|\left(y, e_{i} \mid z\right) \right\rvert\,\right)^{2}\right.
\end{aligned}
$$

which gives the desired result (4.6). This completes the proof.
Remark 3. Taking $F=\{1\}$ in Theorem 2, we note that (4.3) and (4.4) reduce to (3.3) and (3.4), respectively. Also, both (4.5) and (4.6) reduce to

$$
\begin{aligned}
& \left|(x, y \mid z)-\left(x, e_{1} \mid z\right)\left(e_{1}, y \mid z\right)\right| \\
\leq & \frac{1}{2}\left|\Phi_{1}-\varphi_{1}\right| \cdot\left\|\left.y\left|z \|-\left|\frac{\Phi_{1}+\varphi_{1}}{2}-\left(x, e_{1} \mid z\right)\right| \cdot\right|\left(y, e_{1} \mid z\right) \right\rvert\,\right.
\end{aligned}
$$

which is a new pre-Grüss type inequality in 2 -inner product spaces.

5. Determinantal Integral Inequalities

Let $\left(\Omega, \sum, \mu\right)$ be a measure space consisting of a set Ω, \sum be a σ-algebra of subsets of Ω and be μ a countably additive and positive measure on \sum with value in $\mathbb{R} \cup\{\infty\}$.

Denote by $L_{\rho}^{2}(\Omega)$ the Hilbert space of all real-valued functions f defined on Ω that are 2- ρ-integrable on Ω, i.e., $\int_{\Omega} \rho(s)|f(s)|^{2} d \mu(s)<\infty$, where $\rho: \Omega \rightarrow[0, \infty)$ is a measurable function on Ω.

We can introduce the following 2-inner product on $L_{\rho}^{2}(\Omega)$ by formula

$$
(f, g \mid h)_{\rho}:=\frac{1}{2} \int_{\Omega} \int_{\Omega} \rho(s) \rho(t)\left|\begin{array}{ll}
f(s) & f(t) \tag{5.1}\\
h(s) & h(t)
\end{array}\right|\left|\begin{array}{ll}
g(s) & g(t) \\
h(s) & h(t)
\end{array}\right| d \mu(s) d \mu(t)
$$

where by

$$
\left|\begin{array}{ll}
f(s) & f(t) \\
h(s) & h(t)
\end{array}\right|
$$

we denote the determinant of the matrix

$$
\left[\begin{array}{ll}
f(s) & f(t) \\
h(s) & h(t)
\end{array}\right]
$$

Define the 2-norm on $L_{\rho}^{2}(\Omega)$ expressed by

$$
\|f \mid h\|_{\rho}:=\left(\frac{1}{2} \int_{\Omega} \int_{\Omega} \rho(s) \rho(t)\left|\begin{array}{l}
f(s) f(t) \tag{5.2}\\
h(s) h(t)
\end{array}\right|^{2} d \mu(s) d \mu(t)\right)^{\frac{1}{2}}
$$

A simple calculation with integrals reveals that

$$
(f, g \mid h)_{\rho}=\left|\begin{array}{ll}
\int_{\Omega} \rho f g d \mu & \int_{\Omega} \rho f h d \mu \tag{5.3}\\
\int_{\Omega} \rho g h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right|
$$

and

$$
\left\|f \left|h \|_{\rho}=\left|\begin{array}{ll}
\int_{\Omega} \rho f^{2} d \mu & \int_{\Omega} \rho f h d \mu \tag{5.4}\\
\int_{\Omega} \rho f h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right|^{\frac{1}{2}}\right.\right.
$$

where, for simplicity, instead of $\int_{\Omega} \rho(s) f(s) g(s) d \mu(s)$, we have written $\int_{\Omega} \rho f g d \mu$.
We recall that the pair of functions $(q, p) \in L_{\rho}^{2}(\Omega) \times L_{\rho}^{2}(\Omega)$ is called synchronous if

$$
(q(x)-q(y))(p(x)-p(y)) \geq 0
$$

for a.e. $x, y \in \Omega$.
We note that, if $\Omega=[a, b]$, then a sufficient condition for synchronicity is that the functions are both monotonic increasing or decreasing. This condition is not necessary.

Now, suppose that $h \in L_{\rho}^{2}(\Omega)$ is such that $h(x) \neq 0$ for a.e. $x \in \Omega$. Then, by the definition of 2-inner product $(f, g \mid h)_{\rho}$, we have

$$
\begin{equation*}
(f, g \mid h)_{\rho}=\frac{1}{2} \int_{\Omega} \int_{\Omega} \rho(s) \rho(t) h^{2}(s) h^{2}(t)\left(\frac{f(s)}{h(s)}-\frac{f(t)}{h(t)}\right)\left(\frac{g(s)}{h(s)}-\frac{g(t)}{h(t)}\right) d \mu(s) d \mu(t) \tag{5.5}
\end{equation*}
$$

and thus a sufficient condition for the inequality

$$
\begin{equation*}
(f, g \mid h)_{\rho} \geq 0 \tag{5.6}
\end{equation*}
$$

to hold, is that, the pair of functions $\left(\frac{f}{h}, \frac{g}{h}\right)$ are synchronous. It is obvious that, this condition is not necessary.

Using the representations (5.3), (5.4) and the inequalities for 2 -inner products and 2norms established in the previous sections, one may state some interesting determinantal integral inequalities as follows.

Proposition 4. Let $f, g, h, u \in L_{\rho}^{2}(\Omega)$ with $h \neq 0$ a.e. and

$$
\int_{\Omega} \rho u^{2} d \mu \int_{\Omega} \rho h^{2} d \mu-\left(\int_{\Omega} \rho u h d \mu\right)^{2}=1 .
$$

If M and m are real numbers with the property that

$$
\left(M \cdot \frac{u}{h}-\frac{f}{h}, \frac{f}{h}-m \cdot \frac{u}{h}\right)
$$

is synchronous on Ω, then we have the following determinantal integral Pre-Grüss type inequality

$$
\left|G_{\rho}(f, g)\right| \leq \frac{|M-m|}{2}\left(\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho g^{2} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho g h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]-\left|\operatorname{det}\left[\begin{array}{ll}
\int_{\Omega} \rho g u d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho u h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right|^{2}\right)^{\frac{1}{2}}
$$

and

$$
\begin{aligned}
\left|G_{\rho}(f, g)\right| \leq & \frac{|M-m|}{2}\left(\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho g^{2} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho g h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right)^{\frac{1}{2}} \\
& -\left(\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho(M u-f)(f-m u) d \mu & \int_{\Omega} \rho(M u-f) h d \mu \\
\int_{\Omega} \rho(f-m u) h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right)^{\frac{1}{2}} \\
& \times\left|\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho g u d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho u h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right|
\end{aligned}
$$

where

$$
\begin{aligned}
G_{\rho}(f, g)= & \operatorname{det}\left[\begin{array}{ll}
\int_{\Omega} \rho f g d \mu & \int_{\Omega} \rho f h d \mu \\
\int_{\Omega} \rho g h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right] \\
& -\operatorname{det}\left[\begin{array}{lll}
\int_{\Omega} \rho f u d \mu & \int_{\Omega} \rho f h d \mu \\
\int_{\Omega} \rho u h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right] \cdot \operatorname{det}\left[\begin{array}{lll}
\int_{\Omega} \rho g u d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho u h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right] .
\end{aligned}
$$

The proof follows by applying for the 2-inner product $(\cdot, \cdot \mid \cdot)_{\rho}$ defined in (5.1) and Theorem 1.

If one applies Theorem 2 for the same 2-inner product, then one can state the following interesting determinantal integral inequalities.

Proposition 5. Let $f, g, h \in L_{\rho}^{2}(\Omega)$ with $h(x) \neq 0$ a.e. $x \in \Omega$ and $\left(f_{i}\right)_{i \in I}$ a family of functions in $L_{\rho}^{2}(\Omega)$ with the property that

$$
\left|\begin{array}{cc}
\int_{\Omega} \rho f_{i} f_{j} d \mu & \int_{\Omega} \rho f_{i} h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right|=\delta_{i, j}
$$

for any $i, j \in I$, where $\delta_{i, j}$ is the Kronecker delta.
If we assume that there exist real numbers $M_{i}, m_{i}, i \in F$, where F is a given finite part of I, such that the functions

$$
\left(\sum_{i \in F} M_{i} \cdot \frac{f_{i}}{h}-\frac{f}{h}, \frac{f}{h}-\sum_{i \in F} m_{i} \cdot \frac{f_{i}}{h}\right)
$$

are synchronous on Ω and define

$$
\begin{aligned}
F_{\rho}(f, g)= & \operatorname{det}\left[\begin{array}{l}
\int_{\Omega} \rho f g d \mu \\
\int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho f h d \mu \\
\\
\end{array}\right. \\
& -\sum_{i \in F} \operatorname{det}\left[\begin{array}{ll}
\int_{\Omega} \rho f f_{i} d \mu & \int_{\Omega} \rho f h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right] \cdot \operatorname{det}\left[\begin{array}{lll}
\int_{\Omega} \rho g f_{i} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right] .
\end{aligned}
$$

Then we have the inequalities

$$
\begin{aligned}
& \left|F_{\rho}(f, g)\right| \leq \frac{1}{2}\left(\sum_{i \in F}\left|M_{i}-m_{i}\right|^{2}\right)^{\frac{1}{2}} \\
& \times\left(\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho g^{2} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho g h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]-\sum_{i \in F}\left|\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho g f_{i} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right|^{2}\right)^{\frac{1}{2}}, \\
& \left|F_{\rho}(f, g)\right| \leq \frac{1}{2}\left(\sum_{i \in F}\left|M_{i}-m_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho f g d \mu & \int_{\Omega} \rho f h d \mu \\
\int_{\Omega} \rho g h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right)^{\frac{1}{2}} \\
& -\left(\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \sum_{i \in F} \rho\left(M_{i} f_{i}-f\right)\left(f-m_{i} f_{i}\right) d \mu & \int_{\Omega} \sum_{i \in F} \rho\left(M_{i} f_{i}-f\right) h d \mu \\
\int_{\Omega} \rho\left(f-m_{i} f_{i}\right) h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right)^{\frac{1}{2}} \\
& \times\left(\sum_{i \in F}\left|\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho g f_{i} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right|^{2}\right)^{\frac{1}{2}}, \\
& \left|F_{\rho}(f, g)\right| \leq \frac{1}{2}\left(\sum_{i \in F}\left|M_{i}-m_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho f g^{2} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho g h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right)^{\frac{1}{2}} \\
& -\left(\sum_{i \in F}\left|\frac{M_{i}+m_{i}}{2}-\operatorname{det}\left[\begin{array}{ll}
\int_{\Omega} \rho f f_{i} d \mu & \int_{\Omega} \rho f h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right|^{2}\right)^{\frac{1}{2}} \\
& \times\left(\sum_{i \in F}\left|\operatorname{det}\left[\begin{array}{cc}
\int_{\Omega} \rho g f_{i} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|F_{\rho}(f, g)\right| \leq & \frac{1}{2}\left(\sum_{i \in F}\left|M_{i}-m_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\operatorname{det}\left[\begin{array}{ll}
\int_{\Omega} \rho g^{2} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho g h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right)^{\frac{1}{2}} \\
& -\sum_{i \in F}\left|\frac{M_{i}+m_{i}}{2}-\operatorname{det}\left[\begin{array}{lll}
\int_{\Omega} \rho f f_{i} d \mu & \int_{\Omega} \rho f h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right| \cdot\left|\left[\begin{array}{lll}
\int_{\Omega} \rho g f_{i} d \mu & \int_{\Omega} \rho g h d \mu \\
\int_{\Omega} \rho f_{i} h d \mu & \int_{\Omega} \rho h^{2} d \mu
\end{array}\right]\right| .
\end{aligned}
$$

References

[1] Y. J. Cho, C. S. Lin, S. S. Kim and A. Misiak, Theory of 2-Inner Product Spaces, Nova Science Publishers, Inc., New York, 2001.
[2] Y. J. Cho, M. Matić and J. E. Pečarić, On Gram's determinant in 2-inner product spaces, J. Korean Math. Soc. 38(2001), 1125-1156.
[3] S. S. Dragomir, A generalization of Grüss inequality in inner product spaces and applications, J. Math. Anal. Appl., 237(1999), 74-82.
[4] S. S. Dragomir, Y. J. Cho, S. M. Kang, S. S. Kim and J. S. Jung, Some Grüss type inequalities in 2-inner product Spaces and applications for determinantal integral inequalities, Panamer. math. J. 15(2005), 79-94.
[5] S. S. Dragomir, Y. J. Cho, S. S. Kim and Y.-H. Kim, On Bessel's and Grüss' inequalities for Orthornormal families in 2-inner product spaces and applications, RGMIA Research Report Collection, 6(4)(2003), Article 8. [ON LINE http://rgmia.vu.edu.au/v6n4.html]
[6] S. S. Dragomir, Y. J. Cho, S. S. Kim and J. Roumeliotis, A reverse of Bessel's inequality in 2 -inner product spaces and some Grüss type related results with applications, Appl. Math. Comput. 20(2006), 279-292.
[7] S. S. Dragomir, J. E. Pečarić and B. Tepeš, Pre-Grüss type inequalities in inner product spaces, Nonlinear Funct. Anal. Appl. 9(2004), 627-639.
[8] S. S. Kim, S. S. Dragomir, A. White and Y. J. Cho, On the Grüss type inequality in 2-inner product spaces and applications, PanAmerican Math. J., 11(2001), 89-97.
[9] D. S. Mitrinovic, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[10] R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science Publishers, Inc., New York, 2001.
[11] R. W. Freese, S. S. Dragomir, Y. J. Cho and S. S. Kim, Some companions of Grüss inequality in 2-inner product spaces and applications for determinantal integral inequalities, Commun. Korean Math. Soc. 20(2005), 487-503.

Department of Information and Management, Technology and Science Institute of Northern Taiwan, No. 2, Xue Yuan Road, Peitou, Taipei 112, TAIWAN, R.O.C.
E-mail: dyhuang@tsint.edu.tw
Department of Mathematics, Tamkang University, Tamsui, 25137, TAIWAN, R.O.C.

