# 行政院國家科學委員會專題研究計畫 成果報告

子計畫三: 釘氧 2116 系相圖鎢氧化物與製程之研究

計畫類別: 整合型計畫

計畫編號: NSC92-2112-M-032-022-

執行期間: 92年08月01日至94年01月31日

執行單位: 淡江大學物理學系

計畫主持人: 錢凡之

報告類型: 完整報告

處理方式: 本計畫可公開查詢

中華民國94年6月27日

## 行政院國家科學委員會補助專題研究計畫成果報告

## (計畫名稱)

## 新穎過渡金屬氧化物之研究(3/3)

子計畫三: 釕氧 2116 系相圖鎢系氧化物與製程之研究

計畫類別:□ 個別型計畫 ■ 整合型計畫

計畫編號:NSC 92 - 2112 - M - 032 - 022 -

執行期間: 92 年 8 月 1 日至 94 年 1 月 31 日

計畫主持人: 錢凡之

成果報告類型(依經費核定清單規定繳交):■精簡報告 □完整報告

本成果報告包括以下應繳交之附件:

赴國外出差或研習心得報告一份

赴大陸地區出差或研習心得報告一份

出席國際學術會議心得報告及發表之論文各一份

國際合作研究計畫國外研究報告書一份

處理方式:除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外,得立即公開查詢

涉及專利或其他智慧財產權, 一年 二年後可公開查詢

執行單位:淡江大學物理系

中 華 民 國 94 年 6 月 27 日

### 一、中文摘要

我們以固態法燒結的四元化合物  $Bi_XPb_YWO_3$ 。 其中當  $x \le 0.15$  與  $y \le 0.35$  之時,樣品之 Meissner 效應與電阻率的行為顯示了 8.7 K 的超導。經過 X-ray 的粉末繞射分析,此樣品之主要結晶相可以暫定為空間群為 P4/mbm 的立方結構,如同其母體  $Pb_{0.26}WO_3$ ,而其晶格常數則為 a = b = 12.220 Å, c = 3.784 Å。

**關鍵詞:**超導、黃鐵礦、立方晶系。

### 英文摘要

Quaternary tungsten bronze  $Bi_X Pb_Y WO_3$  with  $x \le 0.15$  and  $y \le 0.35$ , synthesized through solid state reaction method, is found to be superconducting at 8.7 K with consistent Meissner effect and resistivity measurements. Through X-ray powder diffraction analysis, the major phase of the bulk sample is tentatively assigned to a tetragonal crystalline structure of space group P4/mbm, as that of its parent compound  $Pb_{0.26}WO_3$ , with a = b = 12.220 Å, c = 3.784 Å.

**KEY WORDS:** superconductors, tungsten bronze, tetragonal.

#### 1. INTRODUCTION

The nonstoichiometric compounds  $M_XWO_3$  ( where M represents an alkali atom ) , commonly referred as the alkali tungsten bronzes, were discovered to be superconducting with transition temperature  $T_C$  ranging from 0.55 to 7 K by Mathias et al. in 1964 [1]. Many studies were centered mainly on the cubic  $Na_XWO_3$  with 0.5 < x < 1.0 [2, 3], which has an insulating parent compound in  $WO_3$  with building blocks of  $WO_6$  octahedron.  $Na_XWO_3$  is not superconducting in its tetragonal phases as x < 0.5. In this study we report the finding of superconductivity in tetragonal tungsten bronze  $Bi_XPb_YWO_3$  with x  $\leq$  0.15 and y  $\leq$  0.35 at 8.7 K.

#### 2. EXPERIMENTS

Samples investigated were prepared by the solid state reaction method. The proper stoichiometric amounts of high purity powders of  $Bi_2O_3$ , PbO, WO<sub>3</sub> and W were thoroughly mixed and ground, then pressed into pellets. The pellets were calcined in  $Al_2O_3$ , crucibles at 800 for 5 hrs in flowing Ar atmosphere. Subsequently samples were grounded, pressed and fired at 800 again for another 5 hrs in flowing Ar atmosphere. The room temperature powder x-ray measurements were carried out using  $Cuk_{\alpha 1}$  radiation ( =1.5406 Å) monochromatized by Ge (111) crystal from Rigaku 12 kW RU200 x-ray generator. Intensity data were collected over a 2 $\theta$  range from 20° to 60° at a step width of 0.02°. Dc magnetization measurements were performed with a SQUID magnetometer (MPMSR2,

Quantum Design) which was previously calibrated using a lead sample with T<sub>C</sub> of 7.2 K. The standard four-probe technique was carried out using PPMS for resistivity measurements.

#### 3. RESULTS AND DISCUSSIONS

Figure 1 shows the magnetization curves of the composite sample  $Bi_{0.15}Pb_{0.35}WO_3$  as a function of temperature from 4 K to 20 K, under conditions of zero field cooling (ZFC) and field cooling (FC) at 10 Oe. The existence of the superconducting phase was confirmed unambiguously by measuring the Meissner effect with onset  $T_C$  at 8.7 K. A superconducting volume fraction of 30% under a magnetic field of 10 Oe was obtained at 4 K, indicating that the superconductivity is bulk in nature and originated from  $Bi_XPb_YWO_3$ .

Figure 2 shows the temperature dependence of the resistivity of the composite sample Bi<sub>0.15</sub>Pb<sub>0.35</sub>WO<sub>3</sub> from 4 K to 20 K under zero magnetic field. The onset transition temperature is 8.7 K and zero resistivity 8.6 K.

Figure 3 shows the x-ray powder diffraction pattern of the sample  $Bi_{0.15}Pb_{0.35}WO_3$  taken at room temperature with 20 range from 20° to 60°. The dominant phase in  $Bi_XPb_YWO_3$  with x  $\leq 0.15$  and y  $\leq 0.35$  are indexed based on a tetragonal crystalline structure of space group P4/mbm, as that of its parent compound  $Pb_{0.26}WO_3$  [4, 5, 6], with a = b = 12.220 Å, c = 3.784 Å. There are a few extra peaks. Through investigating various samples the Bragg peaks at 20 = 27.18°, 37.94°, and 39.70° are identified to be Bi (102), (104), and (110) respectively. And 40.26° is W (110). At least two peaks at 30.84° and 33.30°, indicated by the arrows, are not yet identified. With the discrepancy in the x-ray powder patterns the exact chemical composition of the superconducting compound was not able to be determined.

To summarize, the superconductivity at 8.7 K was truly realized in this compound  $Bi_{0.15}Pb_{0.35}WO_3$ , which may take a tetragonal crystalline structure as that of  $Pb_{0.26}WO_3$ .

#### **REFERENCES**

- [1]. C.J. Raub, A.R. Sweedler, M.A. Jensen, S. Broadston, and B.T. Matthias, *Phys. Rev. Lett.* **13**, 746 (1964).
- [2]. P. A. Lighysey, D. A. Lilienfeld, and D. F. Holcomb, *Phys. Rev. B* 14, 4730 (1976).
- [3]. M. A. Dobson and D. F. Holcomb, *Phys. Rev. B* **34**, 27 (1986).
- [4]. S. T. Triantafyllou, P. C. Christidis, and Ch. B. Lioutas, *J. Solid State Chem.* **130**, 176 (1997)
- [5]. S. K. Haydon and D. A. Jefferson, *J. Solid State Chem.* **168**, 306 (2002)
- [6]. F. Takusagawa and R. A. Jacobson, J. Solid State Chem. 18, 163 (1976)

### Figure captions

- **Fig. 1.** Magnetization of the sample  $Bi_{0.15}Pb_{0.35}WO_3$  as a function of temperature under conditions of zero field cooling (ZFC) and field cooling (FC) at 10 Oe.
- **Fig. 2.** Temperature dependence of the resistivity of the sample Bi<sub>0.15</sub>Pb<sub>0.35</sub>WO<sub>3</sub> under zero magnetic field.
- **Fig. 3.** The room temperature x-ray diffraction patterns of the sample  $Bi_{0.15}Pb_{0.35}WO_3$  using Cuk <sub>1</sub> radiation ( =1.5406 Å) with 2 ranging from 20° to 60°.





