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中文摘要 

 

關鍵詞：X-光磁圓雙色性，超晶格，介面，磁性，x-光吸收光譜。 

 

為了解磁性氧化物超晶格之磁偶合，與其界面上形成之混合氧化物層之磁

性，我們運用同步輻射光源進行了一系列的吸收光譜實驗。而主要的工作是以

X-光磁圓雙色性吸收光譜探討各元素之磁矩，以獲得原子間磁作用的資訊。我

們發現不同厚度的Fe3O4/Mn3O4超晶格樣品中層間磁偶合皆受到介面層的影

響。厚的樣品保有其塊材的性質，薄的樣品則表現著混合氧化物層之磁性。所

以層間磁偶合會受到後度的影響。我們也量測了一系列的Fe-Mn-O混合氧化物

薄膜作為比較以判定界面層磁性的依據。 
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英文摘要 

 

Keywords： x-ray magnetic dichroism, superlattice, interface, magnetism , x-ray absorption 

spectroscopy. 

 

In order to understand the magnetic coupling of the magnetic oxide superlattices, and the 

magnetic properties of the mixed oxide formed at the interfaces. We have performed x-ray 

magnetic dichroism absorption spectroscopy measurements. A series of Fe3O4/Mn3O4 

superlattices with different layer thickness were studied. We found that the interlayer couplings 

are always affected by the mixed oxide layer. Thicker samples exhibit their bulk properties, but 

the thinner samples show similar magnetic property to the mixed oxide. The interlayer coupling 

is, therefore, thickness dependent. In addition to the Fe3O4/Mn3O4 superlattices, we have also 

studied the magnetic properties of a series of mixed Fe-Mn-O thin films to help identify the 

property of the mixed layers.  
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I. INTRODUCTION 

We report the study of magnetic property of magnetic oxide superlattices using synchrotron 

radiations. The magnetic interface effect has been explored more deeply after the expertise of thin 

film synthesis and other modern surface techniques became more mature[1-6]. Various magnetic 

responses have been observed in recent experiments. Basically, two magnetic materials can be 

coupled directly or indirectly through other materials; the coupling can be ferromagnetic (parallel) 

or antiferromagnetic (antiparallel). A simple-minded model of these types of coupling treats the 

magnetic configuration at the interface as static and only the layer at the interface plays the role.  

However, more experimental results show that the coupling may be extended into the material 

and the thickness of the film becomes one of the key parameters to define the magnetic properties. 

We have utilized x-ray absorption spectroscopy techniques to examine a series of Fe3O4/Mn3O4 

superlattices with various modulation wavelengths.  

We found that the interlayer couplings are always affected by the mixed oxide layer. Thicker 

samples exhibit their bulk properties, but the thinner samples show similar magnetic property to 

the mixed oxide. The interlayer coupling is, therefore, thickness dependent. 

 

II. EXPERIMENTS 

Thin films of Fe3O4, Mn3O4 and a series of Mn3O4/Fe3O4 superlattices (17Å/17Å, 34Å/34Å, 

68Å/68Å) were grown on MgO(110) by plasma assisted molecular-beam epitaxy (MBE). The 

base pressure in the disposition chamber is about 5×10-9 torr, the oxygen partial pressure is about 

5×10-5 torr and the substrate temperature is kept at 250 Co during the growth of metal oxides. A 

20 keV reflection high-energy electron diffraction (RHEED), with incident angel 1o, is used to 

monitor the quality of the samples in-situ. The crystal structures of these samples are 

characterized by XRD. The details of the growth, structural characterization, and 
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electro-magnetic properties of pure films and superlattices are given elsewhere [7-9]. The thickness 

of each superlattice is fixed at ~2000Å, while the thickness of each layer varies from 17Å to 68Å. 

The thickness of the standard thin films Fe3O4 and Mn3O4 are ~1200Å. 

The soft x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism 

(XMCD) [10] measurements were performed at room temperature at the Dragon beamline[11] of the 

National Synchrotron Radiation Research Center in Taiwan. The degree of circular polarization 

of the incident light was ~80%. The base pressure of the measurement chamber was in the low 

10-10 torr ranges. The spectra were taken under an applied magnetic field of ~1T along the (110) 

direction at each photon energy. We used total electron yield (TEY) mode by measuring the 

sample current of the samples. The incident angle of the of the photon beam is 60o and the energy 

resolution is about 0.235eV at transition metal L2,3-edge.  

The Fe3O4/MgO standards XMCD data was used for energy calibration and contrast. It was 

conform to the calculation and experiment by P. Kuiper et al results [12]. The L3-edge also shows 

the 3 sharp peaks at absorption spectra of circularly polarized x-ray magnetization component 

parallel and anti-parallel to the direction of x-ray beam. Those peaks indicated the iron atoms are 

on difference site and tow difference valences. The Fe3O4 is inverse spinel cube structure. 

Tetrahedral site are occupied by spin down Fe3+ d5 ions and the spin up ions on octahedral site 

fluctuate between Fe+3 and Fe2+. 

The Mn3O4/MgO has a low Tc (~43K). At room temperature MCD is almost undetectable. 

More details about magnetic property, ionic and electronic structure of the Mn3O4 is in references 

[13,14]. In order to compared and proved with the interface of superlattices had mixed oxide inside; 
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we also measured the XAS-MCD of bulk MnFe2O4. This ferrite is an ionic system where the 

Mn2+ cations occupy predominantly the tetrahedral sites, have a 3d5 configuration. Fig-1 show 

the Fe (a) and Mn (b) 2p for magnetization parallel (I+ sold curve ) and anti-parallel (I- dash 

curve) to the different spectra or MCD. But MnFe2O4 bulk has very sharp MCD peaks at Mn 2p 

XAS spectra. Our data Mn and Fe 2p for MnFe2O4 spectra are similar to that reported [15].  

 

III RESULTS AND DISCUSSION  

One of the special properties of oxide superlattices is the formation of a mixed oxide at the 

interface. We prove the existence MnxFe3-xO4 inside at interface. [16] It is most important 

component of influence in magnetic coupling of those superlattices. In order to compared and 

proved with the interface of superlattices had mixed oxide inside; we also measured the 

XAS-MCD of bulk MnFe2O4.  

The probing depth (λx) of XAS at normal incident, for most metal oxide is about 100Å[17,18]. 

Our measurements were taken at incident angle θ~60o. Therefore, our probing depth is λxcosθ 

around ~86Å. The top layers of our superlattices are Mn3O4. The x-ray beam should pass through 

the more layers (bilayers, Λ~2.5) of Mn3O4 and Fe3O4 in 17Å/17Å. Even 34Å/34Å had 2-3 layers 

(bilayer, Λ~1). However, x-ray beam only pass one Mn3O4 lays through to Fe3O4, the probing 

include contribution to the one interface of 68Å/68Å superlattice sample. Observation of the 

L2,3-edge XAS of 68Å/68Å sample and the MCD spectrum, show in Fig-2 Fe(a) and Mn(b). We 

found significant similarity with those of MnFe2O4. The Fe environment of 68Å/68Å sample is 

difference form the pure Fe3O4. It is more like bulk MnFe2O4 spectrum. The Fe environment of  
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The experimentally observed XAS and MCD (Full black area under curve µ+-µ–) of 
2O4 Bulk for Fe 2p XAS (a) and Mn 2p XAS (b). µ+ represent the XAS for magnetization 
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Fig-1. 
MnFe
parallel to photon-spin (Solid line) and µ– represent that antiparallel. 
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Fig-2 The experimentally observed XAS and MCD (Full black area under curve µ+-µ–) of 
68Å/68Å superlattice for Fe 2p XAS (a) and Mn 2p XAS (b). µ+ represent the XAS for 
magnetization parallel to photon-spin (Solid line) and µ– represent that antiparallel. 
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68Å/68Å superlattice resembles that of the bulk MnFe2O4 but difference form the Fe3O4 

according to the XAS and MCD measurement, as follow the Fig-1(a) and Fig-2(a). The Fe3O4 

have 3 components at Fe MCD L3-edge spectrum with two negative peaks and one positive peak 

from B-site Fe2+, Fe3+ and A-site Fe3+, respectively [12]. Otherwise, We observed the MCD 

L3-edge spectra of the 68Å/68Å superlattice and MnFe2O4 with a negative double-peak structure. 

It is obtained from a sum of 70% Fe L-2,3-edge spectra from MnA[Fe2]BO4 and 30% from 

FeA[MnFe]BO4
 [15].  

Form the Mn L-edge MCD measurement in Fig-1(a) and Fig-2(a). We observe the strong 

similarity of Mn form of MCD spectrum in 68Å/68Å superlattice and MnFe2O4 but x-ray 

absorption spectra are difference. The 68Å/68Å superlattice is broader then MnFe2O4 XAS L3 

spectrum. The absorption is overall average of probing Mn environment. These absorption 

contributions include more part of Mn3O4 and some MnFe2O4-like interface environment. XAS 

are difference, MCD similar, due to the fact that. Mn3O4 has a low Tc, at room temperature MCD 

is almost undetectable but MnFe2O4 has a prominent MCD. In 68Å/68Å superlattice the MCD 

signal is very similar to that of bulk MnFe2O4 except that it is much worker in superlattice. The 

reason is that the amount of MnFe2O4 is only small fraction at the interface. 

In 17Å/17Å superlattice we observe, show in Fig-3 (a) form Fe L-edge MCD data, that 

contribution from A-site Fe3+ is much higher that 68Å/68Å. This is an evidence of the Fe3O4 type 

spectral shape. On the other hand, Mn L-edge data (Fig-3(b)) show a very similar XAS and MCD 

shape to that of Fe MnFe2O4. (An indication of the formation of mixed oxide near interface.)  

Fig-4 plats Fe L3-edge MCD of superlattice samples of different thickness as indicated.  
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ig-3 The experimentally observed XAS and MCD (Full black area under curve µ+-µ–) of 
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Fig-4 plats Fe L2,3-edge MCD of superlattice samples of different thickness as indicated.
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The spectral shape evolves form pure Fe3O4 film, which shows 2 downward peaks correspond to 

the two B-site Fe2+ (Low energy) and Fe3+ (Higher energy). The upward peak corresponds to the 

A-site Fe3+. When the thickness of the top layer Mn3O4 increases from 10Å to 80Å, we observe 

basically the same 3-peak structures. However, the intensity of the upward peak decreases, for the 

80Å/40Å superlattice what we see is only the region near the interface area. Owing to the limited 

probing (~80Å).  

We discuss the mechanism of the anti-parallel coupling between Fe3O4 and Mn3O4. For a 

spinel superlattice such as Mn3O4/Fe3O4, if both layers form complete unite cell, then an A site 

must be followed by B site at the interface. The net moment in Mn3O4 and Fe3O4 should be 

parallel. However, in 68Å/68Å this case, we are proved the mixed-ferrite (MnFe2O4-like) 

between the Mn3O4 and Fe3O4, the reason that they do not complete cells or even complete layers. 

The integral value 68Å/68Å of superlattice MCD L3-edge spectra of iron is negative and 

manganese is positive. Those results are consistency with the Superconducting Quantum 

Interference Device (SQUID) measurement by G. Chern et al [19]. Ferrimagnetic oxides have 

difference spin configuration in A and B sites such as MnFe2O4. The most of Mn2+ occupied the A 

site and the magnetic moment direction opposed to B site Fe ion. The Mn3O4 layer follows the 

interface A site Mn2+ and anti-parallel state for the magnetic moment was occurred. The interface 

is mixed-ferrites of influence magnetic coupling in these superlattices.  

Otherwise, We consider the net moment of the 17Å/17Å superlattice. The lattices constant of 

Mn3O4 and Fe3O4 are around ~8.5Å. There are two unit cells in only one layer of Fe3O4 or Mn3O4. 

If we focus on the interface, we should say this sample is MnFe2O4-like. And the magnetic 
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behave is the same the bulk MnFe2O4.  
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