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Abstract

We exactly solve a class of Frenkel-Kontorova (FK) models with a periodic potential
composed of piece-wise convex parabolas having the same curvature.  All rotationally
ordered stable configurations can be depicted with appropriate phase parameters. The
elements of a phase parameter are grouped into subcommensurate clusters. Phase transitions,
manifested in the gap structure changes previously seen in numerical simulations, correspond
to the splitting and merging of subcommensurate clusters with the appearance of

incommensurate non-recurrent rotationally ordered stable configurations.  Through the
notion of elementary phase shifts, all the possibilities for the existence of configurations
degenerate with the ground state are scrutinized and the domains of stability in the phase
diagram are characterized. At the boundaries of adomain of stability, non-recurrent
minimum energy configurations are degenerate with the ground state configurations and phase
transitions occur.

Keywords. Frenkel-Kontorova model, commensurate-incommensurate phase transition,
phase diagram, defect
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Spatially modulated structures have been experimentally observed in many condensed matter
physical systemg[1]. The wave-vector characterizing the modulation varies with external
parameters sometimes in a continuous manner but often remains constant, equal to a certain
rational locking value, through some range of the external parameters. The physical origin of
this complicated behavior is understood in terms of competing interactions in the free energy
of the system. The FK class of modelsis one of the simplest among those model s displaying
such interesting behavior[2]. In this work, we will investigate a generalization of the
“locking" behavior in a specific FK model and show that as the external parameters are
adjusted to the boundary of the ““locking" region, some ""non-recurrent” configuration
becomes degenerate with a recurrent one.
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We exactly solve an extension of the Aubry model, where the potential has d subwellsin a
period. Thismodel wasfirst proposed by Griffiths, et al[3]. Several interesting new
phenomena such as the non-recurrent minimum energy (NRME) configuration in the
incommensurate case, discontinuous cantorus-cantorus phase transitions (i.e., phase
transitionsin the gap structure), and independent orbits of gaps composing the complement of
the CAM set (i.e., agap structure with multiple discontinuity classes or holes[4] were found
inthed=2 case. Recent work on this model[5,6] concentrated on acquiring ground state
configurations through studying directional derivatives of the energy function, giving the
average energy per atom, with respect to the elements in the phase parameter.

However, we establish that, for a given set of winding number and phase parameter,

the depicted rotationally ordered (RO) configurations may not be unigque up to shift operations.
Thus the correspondence between RO configurations and phase parameters is not quite clear,
and the meanings of the energy function as well asits derivatives for an arbitrary phase
parameter are obsessed with ambiguity. Moreover, the above mentioned new phenomena
found in the d=2 case have not been analyzed in the general case.

To resolve the ambiguity, we will provide two approaches. We first introduce the notion of
subcommensurate clusters for the elements of a phase parameter. A phase parameter with
multiple subcommensurate clusters builds up a composite hull function to describe a mixed
phase. The meaning of the energy function on the whole space of phase parameters

isthus clarified and the procedures adopted in [5,6] can bejustified. Instead of studying the
average energy per atom, another approach to determine if agiven RO configurationisa
ground state one is conducted through studying the energy differences resulting from moving
some of the atoms across the potential tips. To keep the resultant configurations RO,

we find that only alimited number (at most 2° -2 for the case with d subwells in each period
of potential) of such operations need be investigated. The evauation of these energy
differencesis further reduced to solving a set of linear relations among some atomic positions.

The presence of multiple subcommensurate clusters in the phase parameter naturally leads to
multiple compatible configurations (the mixed phase) in the commensurate case. To carry
the notion of compatible configurations to the incommensurate case, we have to introduce the
notion of extended numberg[7] as the elementsin the phase parameter and then the
non-recurrent RO (NRO) structure automatically emerges.
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In this work, we exactly solve a class of FK models, whose potential has d subwellsin a
period. The RO stable configuration is characterized by a winding number and a phase
parameter with d-1 degrees of freedom. To depict all RO stable configurations with hull
functions, phase parameters expressed in terms of extended numbers must be included for the
incommensurate case.  The depicted configurations in such cases are shown to be
non-recurrent.  The existence of these NRO configurations assures the existence of
incommensurate NRME configurations for a suitable choice of potential parameters.

The notions of subcommensurate clusters, and resonance between different types of openings
are introduced to fully characterize the gap structure. These notions are helpful in
visualizing phase transitions in the gap structures.

We provided an approach to determine the ground state configurations through the
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information about the relative positions of tips for the potential and gaps for the RO
configurations.  All the possibilities of degenerate ground state configurations are explored.
Using these results, we are able to study the phase diagram.  In the incommensurate case,
we show that the phase diagram is an extension of the complete devil's staircase to d-1
dimensions. It will be interesting to seeif the conclusion is still validinthed —oo limit.

We aso provided a genera method to implement an incommensurate NRM E configuration.
For any FK model beyond transition by breaking the analyticity, which alows more than one
discontinuity classes, it appears that such incommensurate NRME configurations should also
exist at the transition points for any | to (I+1)-holetransitions. In general, NRME
configurations emerge as long as a certain locking condition (either the subcommensurate
condition in our case or the commensurate condition) of the parameters to characterize the
configuration (including the phase parametersin our case and the winding number)

is allowed to break down, which are expected to occur at boundaries of the domains of
stability, where some locking conditions prevail.
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