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Internet-Based Smart-Space Navigation
of a Car-Like Wheeled Robot Using

Fuzzy-Neural Adaptive Control
Chih-Lyang Hwang, Member, IEEE, and Li-Jui Chang

Abstract—In this paper, a navigation system is developed. The
system includes path tracking and obstacle avoidance apparatus
for a car-like wheeled robot (CLWR) within an Internet-based
smart-space (IBSS) using fuzzy-neural adaptive control (FNAC).
Two distributed charge-coupled device (CCD) cameras are in-
stalled to capture both the dynamic pose of the CLWR and the
obstacle. Based on the control authority of these two CCD cam-
eras, a suitable reference command that contains the desired steer-
ing angle and angular velocity for the FNAC built into the client
computer is planned. Because of the delay encountered by the
transmission through the Internet network (IN) and the wireless
local area network (WLAN) and the nonlinear coupling features
of the CLWR, a weighted combination of N linear subsystems
that are described by a state-space model with average-delay is im-
plemented to approximate the dynamics of an IBSS-CLWR. The
proposed FNAC contains a neural network consisting of a radial
basis function (RBFNN) to learn the uncertainties due to the fuzzy-
model error (e.g., the random time-varying delays and the slippage
of the CLWR) and the interactions caused by other subsystems.
The stability of the overall system is then investigated by adopting
the Lyapunov stability theory. Finally, a sequence of experiments
including the control of the off-ground CLWR (i.e., the CLWR
does not make contact with the ground) and the navigation of
the IBSS-CLWR as compared with the conventional proportional-
integral-derivative (PID) control is performed to demonstrate the
advantage of the proposed control system.

Index Terms—Car-like wheeled robot (CLWR), fuzzy modeling,
Internet-based smart space (IBSS) navigation, obstacle avoidance,
path tracking, radial basis function neural network, variable struc-
ture control.

I. INTRODUCTION

R ECENTLY, distributed control applications within sen-
sor networks have been attaining a role of importance

(e.g., [1]–[3]). A sensor network that combines both a wire-
less local area network (WLAN) and Internet network (IN) is
called an Internet-based smart space (IBSS) network. It is able
to monitor what is occurring within the remote equipment, build
its own models, communicate with its inhabitants, and act on the
decisions that they make. If the IN and WLAN are absent from
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IBSS, it is then called smart space (SS). Many problems encoun-
tered in classic wheeled robots (e.g., asking for localization [4],
requiring high computational power [5], searching for different
software for different kinds of mobile robots [6], [7], minimiz-
ing the interference with each sensor [8]) are solved when they
are in an SS. Due to the constraint of system architecture, a
car-like wheeled robot (CLWR) is designed to track a trajectory
that is made up of a set of line segments. This paper reveals that
using a set of line segments is practical for the path planning.

Based on the concept of IBSS or SS (e.g., [1]–[3]), two dis-
tributed charge-coupled device (CCD) cameras are set up in this
space to reveal the dynamic positions of both the CLWR and
the obstacle. If the system monitoring region is wide, then we
need to either increase the number of CCD cameras or consider
implementing active CCD cameras. After the images are pro-
cessed by a server computer, the poses of the CLWR and/or the
obstacle together with the outputs of two motors, i.e., steering
angle and angular velocity, in the CLWR are transmitted through
to the client computer so that a reference input for fuzzy-neural
adaptive control (FNAC) is entered. After the control input is
transmitted through the system, its results are passed through
the Internet to the server computer. It finally reaches the CLWR
via a WLAN.

In this paper, the dynamics of an IBSS-CLWR is approx-
imated by the weighted combination of nine subsystems de-
scribed by a linear state equation with nominal input delay. Due
to the random time-varying delay characteristic [9], [10], the
dynamics of the IBSS-CLWR is first investigated without con-
sidering the delay (i.e., the CLWR). That is, the step responses
of the CLWR from these nine subsystems in the absence of
delay are observed. These nine specific conditions for the step
responses are also assigned as the premise variables of the fuzzy
rules. This paper is the first to generate a fuzzy model of the
CLWR from step responses with various operating conditions.
Meanwhile, the delays caused by the signals passing through
the IN and WLAN, the time spent in image processing, and
the computation time of the control signal, are estimated. As a
result, a local linearization of an IBSS-CLWR with respect to
nine operating points is described by nine subsystems, which
are expressed by a linear state equation with a nominal delay
input signal [11]–[14].

A linear transformation (see, e.g., [15]–[17]) is then applied
to this time-delay subsystem to obtain a delay-free subsystem.
This technique is similar to the “Smith predictor” (e.g., [18]
and [19]). In order to shape the response of the closed-loop sys-
tem, we construct a set of reference models to avoid possible
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Fig. 1. Block diagram of the overall system.

transient or sluggish response. Based on the delay-free subsys-
tem and its associated reference model (as described earlier), an
FNAC is designed. The FNAC is briefly introduced as follows.
It contains two parts: one is an equivalent control, and the other
is a switching control. As the norm of the sliding surface is in-
side of a defined set, e.g., ‖σ(t)‖ < nσ2 , where σ(t) denotes a
sliding surface which is a linear combination of tracking errors
and nσ2 is a known constant, a neural network with radial basis
function (RBFNN) [20] is employed to learn the uncertainties
caused by the fuzzy-model error (e.g., random time-varying
delays and the slippage of the CLWR) and the interactions re-
sulting from other subsystems. Upon learning the uncertainties,
we design an extra compensation for the equivalent control to
enhance system performance. The updating law in the control
strategy includes a suitable learning rate and an e-modification
rate so as to effectively learn the uncertainties without causing
the drift of learning weight [21]. It is stressed that the current
control is quite different from most of existing papers (e.g., [19]
and [22]) in that others try to estimate the uncertainty from the
whole nonlinear functions, which in turn causes the learning
error to become large and the robust stability and performance
of the system to deteriorate. As the norm of the sliding surface
is greater than an assigned value, e.g., ‖σ(t)‖ > nσ1 > nσ2 ,
the updating law will shut down the learning process to avoid
the unnecessary transient response and thus prevent instability.
To smooth the possibility of discontinuity in the control input, a
transition, i.e., nσ1 ≥ ‖σ(t)‖ ≥ nσ2 , is also considered. Finally,
a switching control of the FNAC is executed to cope with the
remaining uncertainties, which are not learned by an RBFNN
and not tackled by the equivalent control.

No assumption is required for the upper bound of the random
time-varying delay of an IBSS-CLWR. However, the uncer-
tainties caused by the fuzzy-model error and the interactions
among various subsystems must be relatively bounded. In addi-
tion, the stabilizing conditions for every transformed delay-free
subsystem must be satisfied. Compared with the approach in
this paper, the aforementioned approaches (e.g., [11]) only use
a linear control with feedback from the current state. Their ro-
bustness is often worse than that using a nonlinear control with
feedback from current and past states (e.g., see [15], [17], and
[19]). The stability of the overall system is verified by utilizing
Lyapunov stability theory. Finally, a sequence of experiments in
an IBSS is executed to compare the performances obtained from

Fig. 2. Kinematics and three positions of the LED for the CLWR.

the FNAC and proportional-integral-derivative (PID) control so
as to depict the effectiveness of the control system.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Fig. 1 shows the experimental setup of a CLWR in an IBSS,
where (x̂w , ŷw , ρ̂w ) denotes the estimated pose of the CLWR,
θ1 is the steering angle of the front-wheel, θ̇2 is the angular
velocity of the rear-wheel, and u is the control input coming
from the proposed FNAC or PID control. The overall control
system includes a CLWR, two CCD cameras, and two personal
computers connected through the Internet. These two personal
computers are the sever computer, including the image process-
ing card of Matrox Meteor-II and one WLAN device, and the
client computer, executing the path planning and the compu-
tation of the FNAC or PID control. The CLWR contains two
dc motors from Maxon Corporation, a digital signal proces-
sor (DSP) of TMS320LF2407 from TI Corporation, a driver
of L298, an 802.11b WLAN device, and a mechanism. For a
CLWR with size and shape, its location in the 2-D Cartesian
space can be uniquely specified by the spatial position (xw , yw )
of the base point and the orientation angle ρw with respect to
the base point (see Fig. 2 or [3]). The WLAN device is used
for the data acquisition and transmission between the PC and
the CLWR. Three light emitting diodes (LEDs) are set up at
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Fig. 3. Realization of the CLWR.

suitable locations; then, three corresponding points on the im-
age plane to represent three positions with respect to the World
coordinate, i.e., (x̂1 , ŷ1), (x̂2 , ŷ2), and (x̂3 , ŷ3), as in Fig. 2, are
obtained. Finally, the estimated position x̂w (k), ŷw (k) and ori-
entation ρ̂w (k) of the geometry center of the CLWR with respect
to the World coordinate at the kth sampling interval is described
as follows:

ρ̂w (k) = tan−1{[ŷ1(k) − (ŷ2(k) + ŷ3(k))/2]

/[x̂1(k) − (x̂2(k) + x̂3(k))/2]} (1)

[x̂w (k), ŷw (k)] = [(2x̂1(k) + x̂2(k) + x̂3(k))/4,

(2ŷ1(k) + ŷ2(k) + ŷ3(k))/4]. (2)

Fig. 3 shows the photograph of our CLWR. Upon considering
the restriction of selecting a frequency for a CCD (or image
processing), the total times needed in the transmission delay in
the IN and WLAN, and the total computation times needed for
the control algorithm, the sampling time is set at 260 ms. More
details are discussed in Section III-B. The maximum estimation
error of this CLWR problem is about 2 cm, which is acceptable
and only occurs in the periphery of the visible area. Finally, a
sequence of experiments, including the control of the off-ground
CLWR and the navigation of the IBSS-CLWR, is executed.
Comparisons are made between the proposed control and the
PID control in order to verify the effectiveness of the current
control system.

III. FUZZY MODELING

Two models are discussed in the fuzzy modeling. The first
model does not consider the total times in the transmission
delay in the IN and WLAN, and the total computation time of
the control algorithm. The second model, to be discussed in
Section III-B, incorporates the estimated nominal delays for the
transmission in the client computer.

A. Model Without Delay

Before modeling the CLWR, a proportional feedback gain
k1

p = 45 volt/rad for the front-wheel and a forward gain k2
p = 80

for the rear-wheel are applied to improve the system dynamics
so as to obtain a unit dc gain of the rear-wheel (see Fig. 4).

They are called enhanced steering and translating subsystems
(or ECLWR1 and ECLWR2). In this proposed control system,
the output of the front-wheel is the angular position (in radians)
and the output of the rear-wheel is the angular velocity (in
radians per second). Because the ranges of the operations of the
front-wheel and rear-wheel are known, and because the sym-
metric feature of the CLWR exists, nine operating points as
y1(t) = x1(t) = 0◦,±15◦,±30◦ and y2(t) = x2(t) = 0, 20.4,
±37 (cm/s) are chosen. Due to the jiggling velocity of the rear-
wheel caused by the uncertainties, e.g., loading effect, slippage
of the CLWR, an average statistic dynamics is employed to ap-
proximate the corresponding dynamics. Hence, each connected
system and its associated coupling systems, i.e., all elements of
2 × 2 transfer function matrix, are supposed to be a 2nd-order
system. Based on the resulting step response of a standard 2nd-
order system, the corresponding overshoot (Mp ) and settling
time (Ts) are expressed as follows:

Mp = e−πξ/
√

1−ξ 2
, Ts = 4/(ξwn )(2% criterion) (3)

where ξ and ωn denote, respectively, the damping ratio
and natural frequency of the transfer function G(s) = ω2

n/
(s2 + 2ξωns + ω2

n ). Therefore, two equations can be formed
to associate with these two unknowns ξ and ωn . The dynamics
of the ith operating condition of the CLWR is expressed by the
following two-input–two-output transfer function matrix:

Y i(s) = Gi(s)Ui(s) (4)

where Y i(s), U i(s) ∈ �(s)2×1 , and Gi(s) = ∈ �(s)2×2 . De-
fine Gi

jk (s) as the transfer function of the jth row and the kth
column for Gi(s), or the relation between the kth input and the
jth output of the ith subsystem. Because the angular velocity
of the rear-wheel does not have influence on the output of the
front-wheel, it has the result Gi

12(s) = 0; i.e., the system output
1 (i.e., y1(t)) is not affected by the system input 2 [i.e., u2(t)].

Remark 1: There are two connected systems for the model
of the CLWR or IBSS-CLWR. However, in the fuzzy model-
ing of the CLWR or IBSS-CLWR, it contains nine subsystems.
Each subsystem corresponds to one operating condition. These
modeling representations are different.

Subsystem 1 is defined as the system corresponding to the
operating point or step input U 1(s) = [30/s 37/s]T with the
unit degree and centimeter per second, respectively. The result-
ing step responses are shown in Fig. 5(a) and (b). The first sub-
system is then approximated by the following transfer function
matrix from these resulting step responses:

G1
11(s) = 250.457/(s2 + 22.857s + 250.457)

G1
22(s) = 19.377/(s2 + 7.273s + 19.377)

G1
21(s) = −0.18/(s2 + 7.273s + 19.377). (5)

Based on other eight step inputs and their associated step
responses, as listed in Table I, we have the following transfer
functions for the other eight subsystems.

G2
11(s) = G1

11(s), G
2
22(s) = 32.915/(s2 + 8s + 32.915)

G2
21(s) = −0.315/(s2 + 8s + 32.915)
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Fig. 4. Enhanced CLWR by two proportional (feedback and forward) gains.

G3
11(s) = G1

11(s), G
3
22(s) = G2

22(s), G
3
21(s) = 0

G4
11(s) = 557.546/(s2 + 30.189s + 557.546)

G4
22(s) = G1

22(s)

G4
21(s) = −0.12/(s2 + 7.273s + 19.377)

G5
11(s) = G4

11(s), G
5
22(s) = G2

22(s)

G5
21(s) = −0.25/(s2 + 8s + 32.915)

G6
11(s) = G4

11(s), G
6
22(s) = G3

22(s), G
6
21(s) = 0

G7
11(s) = G4

11(s), G
7
22(s) = G1

22(s), G
7
21(s) = 0

G8
11(s) = G4

11(s), G
8
22(s) = G2

22(s), G
8
21(s) = 0

G9
11(s) = G4

11(s), G
9
22(s) = G3

22(s), G
9
21(s) = 0. (6)

Because the state space approach is used in the controller
design of the FNAC, the following state-space equations are
formed to represent the transfer functions of (5) and (6):

ẋ(t) = Aix(t) + Biu(t), y(t) = Cix(t), i = 1, 2, . . . , 9
(7)

where

Ai =




0 0 1 0
0 0 0 1

ai
31 ai

32 ai
33 ai

34

ai
41 ai

42 ai
43 ai

44


 , Bi =




0 0
0 0

bi
31 bi

32

bi
41 bi

42




Ci =
[

1 0 0 0
0 1 0 0

]
. (8)

The corresponding transfer function matrix possesses the fol-
lowing transfer function entries:

Gi
11(s) = bi

31/
(
s2 − ai

33s − ai
31
)

Gi
12(s) =

[
bi
32s

2 +
(
ai

44b
i
32 − ai

34b
i
42
)
s +

(
ai

42b
i
32 − ai

32b
i
42
)]

/
[(

s2 − ai
33s − ai

31
)(

s2 − ai
44s − ai

42
)]

Gi
21(s) =

[
bi
41s

2 +
(
ai

43b
i
31 − ai

33b
i
41
)
s +

(
ai

41b
i
31 − ai

31b
i
41
)]

/
[(

s2 − ai
33s − ai

31
)(

s2 − ai
44s − ai

42
)]

Gi
22(s) = bi

42/
(
s2 − ai

44s − ai
42
)
. (9)

By comparing (5) and (6) with (9), we have

bi
32s

2 +
(
ai

44b
i
32 − ai

34b
i
42
)
s +

(
ai

42b
i
32 − ai

32b
i
42
)

= 0,

bi
41
[
s2 +

(
ai

43b
i
31 − ai

33b
i
41
)
s/bi

41 +
(
ai

41b
i
31 − ai

31b
i
41
)
/bi

41
]

= k
(
s2 − ai

33s − ai
31
)

(10)

where k is a suitable constant. Then, the solution of (10) is

ai
32 = ai

34 = ai
41 = ai

43 = bi
32 = 0, and k = bi

41 . (11)

Finally, the coefficients of these nine subsystems, as in (7)
and (8), are given as

a1∼9
31 = −250.457,−250.457,−250.457,−557.546

−557.546,−557.546,−557.546,−557.546,−557.546

a1∼9
33 = −22.857,−22.857,−22.857,−30.189

−30.189,−30.189,−30.189,−30.189,−30.189

a1∼9
42 = 19.377,−32.915,−32.915,−19.377

−32.915,−32.915,−19.377,−32.915,−32.915

a1∼9
44 = −7.273,−8,−8,−7.273,−8,−8,−7.273,−8,−8

b1∼9
31 = 250.457, 250.457, 250.457, 557.546

557.546, 557.546, 557.546, 557.546, 557.546

b1∼9
41 = −0.18,−0.315, 0,−0.18,−0.375, 0, 0, 0, 0

b1∼9
42 = 19.377, 32.915, 32.915, 19.377,

32.915, 32.915, 19.377, 32.915, 32.915

a1∼9
32 = a1∼9

34 = a1∼9
41 = a1∼9

43 = b1∼9
32 = 0. (12)

B. Model With Nominal Delay

From Fig. 1, the total delay is estimated as 160 ms, which in-
cludes the transmission delay from the client computer through
the WLAN to the server computer, the image processing time in
the server computer, and the time through the Internet between
the server computer and client computer. Similarly, by using the
reverse path from the server computer to the client computer
without image processing time, its delay time is estimated to be
100 ms. Based on these two estimations, the total computation
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Fig. 5. Step responses of the mathematical models and the CLWR for various conditions. (a) The front-wheel for vd = 37 cm/s at t = 0 s and θ1d = 30◦ at
t = 0.2 s(· · ·); the G1∼3

11 (s) (−). (b) The rear-wheel for vd = 37 cm/s at t = 0 s and θ1d = 30◦ at t = 20 s(· · ·); the G1
21 (s), G1 ,4 ,7

22 (s) (−). (c) The rear-wheel

for vd = 20.4 cm/s at t = 0 s and θ1d = 30◦ at t = 20 s(· · ·); the G2
21 (s), G2 ,3 ,5 ,8

22 (s)(−). (d) The rear-wheel for vd = 37 cm/s at t = 0 s and θ1d = 15◦ at

t = 20 s(· · ·); the G4
21 (s), G1 ,4 ,7

22 (s) (−). (e) The rear-wheel for vd = 20.4 cm/s at t = 0 s and θ1d = 15◦ at t = 20 s(· · ·); the G5∼6
21 (s), G2 ,3 ,5 ,8

22 (s)(−).
(f) The front-wheel for vd = 37 cm/s at t = 0 s and θ1d = 15◦ at t = 0.2 s(· · ·); the G4∼9

11 (s) (−).
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TABLE I
STEP INPUTS AND THEIR CORRESPONDING STEP RESPONSES OF NINE SUBSYSTEMS

time of the proposed control is smaller than the total delay time
of the signal transmission and the time required for the image
processing. Therefore, the transfer function matrix of the ith
subsystem becomes

Y i(s) = Gi(s)Ui(s) e−(p+q)s (13)

where p = 0.16 s and q = 0.1 s denote, respectively, the input
and output delays of the client computer. The corresponding
state and output equations for the ith subsystem (13) are de-
scribed as follows:

ẋ(t)= Aix(t)+ Biu(t− τ), y(t)= Cix(t), i= 1, 2, . . . , 9
(14)

where τ = p + q = 0.26 s, Ai ∈ �4×4 , Bi ∈ �4×2 , and Ci ∈
�2×4 have the same form as (8). In summary, the ith rule of the
fuzzy model for the IBSS-CLWR is

System rule i: IF y1(t) is Mi
1 , and y2(t) is Mi

2

THEN ẋ(t) = Aix(t) + Biu(t − τ) (15a)

where [y1(t)y2(t)]T = y(t) = [x1(t)x2(t)]T , and Mi
j , j = 1, 2,

i = 1, 2, . . . , 9 denote fuzzy terms of Mj selected for rule i that
have the following form:

M 1∼3
1 (y1) =

{
e−(y1 (t)±30◦)2 / 5 0

, if |y1(t)| ≥ 30◦

1, otherwise
,

M 4∼6
1 (y1) = e−(y1 (t)±15◦)2 / 5 0

,M 7∼9
1 (y1) = e−y 2

1 (t)/50 (15b)

M 1,4,7
2 (y2) =

{
e−(y2 (t)±37)2 / 6 0

, if |y2(t)| ≥ 37 cm/s

1, otherwise
,

M 2,5,8
2 (y2) = e−(y2 (t)±20.4)/60 ,M 3,6,9

2 (y2) = e−y 2
2 (t)/50 .

(15c)

Furthermore, the stable reference models for every subsystem
are assumed to be

Ci
0 =




0 0 1 0
0 0 0 1

ci
031 0 ci

033 0
0 ci

042 0 ci
044


,Di

0 =




0 0
0 0

di
031 0
0 di

042


 (16)

where ci
031 = −100, ci

033 = −40, ci
042 = −10, ci

044 = −20,
di

031 = 100, and di
042 = 10.

IV. CONTROLLER DESIGN

Fig. 6 contains three subsections to describe the proposed
controller design. Three theorems are also derived to discuss
the properties of the proposed FNAC.

Fig. 6. Control block diagram of the proposed control system.

A. Background of Controller Design

The dynamics of an IBSS-CLWR is assumed to be

ẋ(t) = A(x, xτx
) + B(x, xτx

)uτu
(t) (17)

where x(t) ∈ �4 denotes the available system state, xτx
(t) =

x(t − τx(t)) the time-varying delayed state, and uτu
(t) =

u(t − τu (t)) ∈ �2 the time-varying delayed input. In addi-
tion, τx(t) ≥ 0 and τu (t) ≥ 0 denote random quantities of the
time-varying delays of the state and the input, respectively;
with the expected values fixed and known, i.e., E{τx(t)} = p,
E{τu (t)} = q. The continuous mappings: A(x, xτx

) : �8 →
�4 , and B(x, xτx

) : �8 → �4×2 are partially known. The ini-
tial condition of the system (17) is assumed to be bounded and
known, i.e., x(ςx) = x0(ςx) ∈ �4 and u(ςu ) = u0(ςu ) ∈ �2 ,
where ςx ∈ [−τx(t), 0], ςu ∈ [−τu (t), 0]. In summary, the dy-
namics of (17) is approximated by the weighted combinations
of nine subsystems (15):

ẋ(t) =
∑9

i=1
µi(x)[Aix(t) + Biuτ (t)] (18)

where µi(x) = ki(x)/
∑9

i=1 ki(x), ki(x) = Mi
1(x1)Mi

2(x2)
and uτ (t) = u(t − τ). In addition, µi(x) ≥ 0∀i and∑9

i=1 µi(x) = 1. The following linear transformation (19)
(see, e.g., [15]–[17]) is applied to the time delayed subsystem
(15) such that a delay-free subsystem (20) is obtained

x̄(t) = x(t) +
∫ 0

−τ

eAi ϑBiuτ +ϑ (t)dϑ (19)

where x̄ ∈ �4 and the integration of ϑ ∈ [−τ , 0] for the input
delay. After the linear transformation, the fuzzy system rule (15)
is rewritten as follows:
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System rule i: IF x1 is Mi
1 and x2 is Mi

2

THEN ˙̄x(t)= Aix̄(t)+ B̄iu(t), for i= 1, 2, . . . , 9 (20)

where B̄i = e−τ Ai
j Bi. The pair (Ai, B̄i), for i = 1, 2, . . . , 9

must be stabilizable (or controllable). The output of the overall
fuzzy system is then described as

˙̄x(t) =
∑9

i=1
µi(x)[Aix̄(t) + B̄iu(t)] (21)

where µi(x), i = 1, 2, . . . , 9 is the same as (18). Based on the ap-
proximation of the Takagi–Sugeno model [11], [12], the follow-
ing uncertain matrices ∆A(x, xτx

, t) and ∆B(x, xτx
, t)uτu

(t)
exist. These are denoted as the approximation error in the fuzzy
modeling, derived from (17), (19), (21), and Leibnitz’ rule, and
are described as follows:

∆B(x, xτx
, t)uτu

(t) = −
∫ 0

−τ

eĀ i θBiu̇τ +θ (t)dθ (22)

An (x) + Bn (x)uτ (t) =
∑9

i=1
µi(x)[Aix̄(t) + B̄iu(t)]

(23)
where u̇τ +θ (t) = duτ +θ (t)/dt, A(x, xτx

) = An (x) + ∆A
(x, xτx

, t) and B(x, xτx
)uτu

(t) = Bn (x)u(t) + ∆B(x, xτx
, t)

uτu
(t). Assuming the reference model shares the same fuzzy

sets with the fuzzy subsystem (15), we have the following rule
for the reference model:

Reference Model Rule i: IF x1 is Mi
1 and x2 is Mi

2

THEN ż(t) = Ci
0z(t) + Di

0r(t) (24)

where Ci
0 ∈ �4×4 , �e{λ[Ci

0 ]} < 0, Di
0 ∈ �4×2 , for i =

1, 2, . . . , 9, and r(t) ∈ �2 is a known reference input. The out-
put of the overall fuzzy reference model system is

ż(t) =
∑9

i=1
µi(x)

[
Ci

0z(t) + Di
0r(t)

]
. (25)

Remark 2: The coefficients of the reference model of
the ith subsystem, i.e., Ci

0 and Di
0 for i = 1, 2, . . . , 9, are

selected such that the transfer function matrices Gi
m (s) =

Ci
m [sIn − Ci

0 ]
−1Di

0 + Di
m are stable, with desired poles and

zeros, and with unity dc gain (by suitable selected matrices
Ci

m and Di
m ).

Before discussing the controller design, the following sliding
surface is defined

σ(t) = G1 x̃(t) + G2

∫
x̃(τ) dτ (26)

where x̃(t) = x(t) − z(t) denotes the tracking error and
G1 and G2 ∈ �2×4 are chosen such that the dynamics of
σ(t) = 0 is Hurwitz. In the selection of G1 and G2 , it can also
adjust the frequency response between the tracking error and
the sliding surface. Based on the concept of parallel distribu-
tion control (PDC), (e.g., [11] and [12]), the proposed FNAC is
supposed to share the same fuzzy sets with the subsystem (15).

Controller Rule i: IF x1 is Mi
1 and x2 is Mi

2

THEN u(t) = vi(t) + wi(t). (27)

The aforementioned FNAC of subsystem i contains an equiv-
alent control (28a), i.e., vi(t), to deal with a nominal system in-
cluding the learning uncertainties, and a switching control (28b),
i.e., wi(t), to cope with the remaining uncertainties, which are
not effectively learned by an RBFNN and not tackled by the
equivalent control

vi(t) = − (G1B̄
i)−1{G1A

ix̄(t) − G1D
i
0r(t) − G1C

i
0z(t)

+ G2 x̃(t) + F (‖σ(t)‖)Ŵ i(t)T Φ(ρ)}
(28a)

wi(t) = − (G1B̄
i)−1{ηi

1σ(t) + ηi
2σ(t)/[‖σ(t)‖ + εi ]

}
/(
√

2 − αi) (28b)

where G1B̄
i is nonsingular, ηi

1 = diag{ηi
11 , ηi

12} > 0 and
ηi

2 = diag{ηi
21 , ηi

22} > 0 are the switching gains, εi > 0, the
symbol ‖σ(t)‖ represents an Euclidean norm of the vector σ(t),
and αi satisfies the following inequality:

‖G1∆B(x, xτx
, t)(G1B̄

i)−1‖F ≤ αi ≤
√

m

∀i, x(t), xτx
(t), t (28c)

where m = 2 denotes the number of the control inputs, the
notation ‖ · ‖F denotes the Frobenius norm, i.e., ‖W‖2

F =
tr[WT W ] = tr[WWT ], W ∈ �L×2 . In addition, the scalar
function in (28a) is designed as

F (‖σ(t)‖)

=




0, as ‖σ(t)‖ > nσ1

1, as ‖σ(t)‖ < nσ2

(nσ1 − ‖σ(t)‖)/(nσ1 − nσ2), otherwise

(29)

where nσ1 > hmax > nσ2 > pmax ∈ �+ (see Section IV-B and
IV-C for the details). The following updating law (30) is em-
ployed to obtain the weighting parameter for the equivalent
control (28a)

˙̂
W

i

(t) = βiΦ(ρ)σT (t) − γiŴ i(t) (30a)

where βi ∈ �+ denotes a learning rate, γi ∈ �+ denotes an
e-modification rate to ensure the boundedness of the learn-
ing weight, Ŵ i(t) ∈ �L×2 stands for the learning weight, and
Φ(ρ) ∈ �L represents the basis function of the RBFNN

Φ(ρ) = [ 1 φ2(ρ) . . . φL (ρ) ]T (30b)

where φj (ρ) = exp[−‖ρ(t) − cj‖2/ζ2
j ], L, cj , ζj for j =

2, 3, . . . , L are known, the centers cj for j = 2, 3 . . . , L are
chosen with normal distribution in the corresponding domain,
and ρ(t) = [xT (t) vi(t)T ]T . Because the switching control
(28b) is applied to deal with the uncertainties, one cannot use
a signal that deals with uncertainties to represent the uncer-
tainties. Hence, ρ(t) cannot contain wi(t). Finally, the overall
control law is described as follows:

u(t) =
∑9

i=1
µi(x)[vi(t) + wi(t)]. (31)

Remark 3: The motivation for designing the proposed control
(31) and how it works are explained in the third paragraph of
Section I. Due to space limitation, we do not repeat it here.
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The following equation describes the system uncertainties
caused by the approximation error in fuzzy modeling and the
interactions resulting from other subsystems

Ωi(ρ) + εi
Ω(t) = G1

{
∆A(x, xτx

, t) + B̄i [u(t) − ui(t)]

+ ∆B(x, xτx
, t)
∑9

j=1,j �=i
µj (x)wj (t)

+ ∆B(x, xτx
, t)uτu

(t)
}

(32)

where Ωi(ρ) is a function of ρ(t) due to (28), (21), and (32),
and εi

Ω(t) denotes the other uncertainties except Ωi(ρ). In gen-
eral, the magnitude of εi

Ω(t) is upper bounded by a constant.
The right-hand side of (32) is divided into two terms: one is
Ωi(ρ), which can be estimated by an upper bounded function
or approximated by a neural network, and the other is εi

Ω(t),
which cannot be estimated by an upper bounded function or
approximated by a neural network.

B. Condition: ‖σ(t)‖ > nσ1

The following property about “uniformly ultimately bounded
(UUB)” is first defined.

Definition 1: The solution of a dynamic system is said to be
UUB if there exist positive constants υ and κ, and for every δ ∈
(0, κ), there is a positive constant T = T (δ) such that ‖x(t0)‖ <
δ ⇒ ‖x(t)‖ ≤ υ,∀t ≥ t0 + T.

From (29), F (‖σ(t)‖) = 0 (or Ŵ i(t) = 0) as ‖σ(t)‖ > nσ1 .
Using (17), (20)–(23), (25)–(27), and (31), the derivative of
sliding surface is given as follows:

σ̇(t) = G1 [ẋ(t) − ż(t)] + G2 x̃(t), using (26)

= G1

{
A(x, xτx

) + B(x, xτx
)uτu

(t)

−
9∑

i=1

µi(x)[Ci
0z(t) + Di

0r(t)]
}

+ G2 x̃(t), using (17) and (25)

= G1

{ 9∑
i=1

µi(x)[Aix̄(t) + B̄iu(t)]

+∆A(x, xτx
, t) + ∆B(x, xτx

, t)uτu
(t)
}

− G1

{ 9∑
i=1

µi(x)
[
Ci

0z(t) + Di
0r(t)

]}

+ G2 x̃(t), using (21)–(23)

=
9∑

i=1

µi(x)G1

×
{

Aix̄(t) + ∆A(x, xτx
, t) + (B̄i + ∆B(x, xτu

, t))

×
9∑

j=1

µj (x)(vj (t) + wj (t))−
[
Ci

0z(t)+Di
0r(t)

]}

+G2 x̃(t), using (27),
9∑

i=1

µi(x) = 1

=
9∑

i=1

µi(x)
{
G1A

ix̄(t) + G1∆A(x, xτx
, t) + G1B̄

ivi(t)

+ G1B̄
i

9∑
j=1,j �=i

µj (x)vj (t)

+ G1∆B(x, xτx
, t)vi(t)

+ G1(B̄i + ∆B(x, xτx
, t))wi(t)

+ G1(B̄i + ∆B(x, xτx
, t))

×
9∑

j=1,j �=i

µj (x)wj (t)

− G1
[
Ci

0z(t) + Di
0r(t)

]}
+ G2 x̃(t). (33)

Substituting vi(t) from (28a) into (33) yields

σ̇(t) =
9∑

i=1

µi(x)
{
[I + G1∆B(x, xτx

, t)(G1B̄
i)−1 ]

· (G1B̄
i)wi(t) + Ωi(ρ) + εi

Ω(t)
}

(34)

where Ωi(ρ) + εi
Ω(t) is described in (32) and their upper bounds

are estimated as follows:

‖Ωi(ρ)‖ ≤ hi
Ω(ρ),

∥∥εi
Ω(t)

∥∥ ≤ hi
ε . (35)

Then, the following theorem is given for the operating point
outside of ‖σ(t)‖ = nσ1 .

Theorem 1: Consider the nonlinear time-varying delayed sys-
tem (17) and the FNAC (28) with F (‖σ(t)‖) = 0 or Ŵ i(t) = 0,
‖ηi

1‖F > δ/2 > 0 and ‖ηi
2‖F > hi

Ω + hi
ε . Together with the

conditions (28c) and (35), σ(t) and u(t) are UUB and the track-
ing performance is achieved as follows:

Pr = {σ(t) ∈ �2 |0 ≤ ‖σ(t)‖ ≤ hmax} (36)

where hmax = max
1≤i≤9

[hi(ρ)], hi(ρ) =
√

[hi
1(ρ)]2 + hi

2(ρ) −
hi

1(ρ), hi
1(ρ) = {εi + [‖ηi

2‖F − hi
Ω(ρ) − hi

ε ]/(‖ηi
1‖F − δ/2)}

/2 and hi
2(ρ) = εi(hi

Ω(ρ) + hi
ε)/(‖ηi

1‖F − δ/2).
Proof: See Appendix A.
Remark 4: If εi = 0 (i.e., no boundary layer for the ith

fuzzy subsystem), then from (36), hmax = 0. Hence, ‖σ(t)‖ →
0 (or ‖x̃(t)‖ → 0) as t → ∞. However, the control input may
be in a chattering way and its amplitude is also large if the upper
bound of uncertainties is large. Although a large value of εi will
make the control input smooth, the tracking accuracy is gener-
ally degraded. Therefore, a compromise must be made. This is
an important design consideration that the system uncertainties
must be learned and an extra compensation function designed
so that the tracking accuracy and the degree of chattering con-
trol input are improved. Furthermore, if the uncertainties do not
exist, i.e., hi

Ω(ρ) = 0 and hi
ε = 0, then from (36), hmax = 0.

Hence, ‖x̃(t)‖ → 0 as t → ∞.
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Remark 5: The assumptions of Theorem 1 are explained as
follows:

1) Condition (28c) denotes the uncertainty of the control
gain as compared to its nominal value. It indicates that
this uncertainty must be smaller than the corresponding
nominal value.

2) Condition (35) denotes the must known upper bound of the
uncertainty. Its upper bound is interrelated with the system
performance. From (36), the larger the hi

Ω(ρ) or hi
ε , the

larger the ‖σ(t)‖ (or tracking error).

C. Condition: ‖σ(t)‖ < nσ2

When ‖σ(t)‖ < nσ2 , the updating law (30) is employed to
learn the uncertainty Ωi(ρ). It is assumed that the unknown sig-
nals Ωi(ρ) can be smoothly truncated outside of ρ(t) ∈ Ψ(ρ)
(a compact subset in �12). Hence, their spatial Fourier trans-
formations are absolutely integrable. The following universal
approximation theory (e.g., [20]–[22]) is first stated.

Theorem 2: Suppose ρ(t) ∈ Ψ(ρ) (a compact subset of �12),
f(ρ) : Ψ → �2 is a continuous function vector. For an arbitrary
constant ε > 0, there exists an integer L (the number of hidden
neurons) and real constant matrix W ∈ �L×2 , where ‖W‖2

F ≤
Wm , such that

f(ρ) = WT Φ(ρ) + εf (ρ)

where ‖εf (ρ)‖ ≤ ε ∀ρ(t) ∈ Ψ(ρ).
Based on the result of Theorem 2, the system uncertainties

in a compact subset Ψ(ρ) are assumed to be continuous and
approximated by the following RBFNN:

Ωi(ρ) = (Wi)T Φ(ρ) + υi(ρ) (37)

where Wi ∈ �L×2 is a constant matrix that is not necessar-
ily unique, ‖υi(ρ)‖ ≤ pi

υ∀ρ(t) ∈ Ψ(ρ), where pi
υ � hi

Ω(ρ). In
fact, υi(ρ) for i = 1, 2, . . . , 9 are regarded as the summation of
the class membership error, the aliasing error, and the truncation
error [22]. In addition, the upper bound of Wi is known, i.e.,
‖Wi‖F ≤ Wi

m . The compact subsets Ψ(ρ) can be achieved
because the result of Theorem 1 ensures the boundedness of
υ(t). Similarly, the derivative of a sliding surface is derived as
follows:

σ̇(t)

=
9∑

i=1

µi(x){[I + G1∆B(x, xτx
, t)(G1B̄

i)−1 ](G1B̄
i)wi(t)

+ W̃ i(t)T Φ(ρ) + υ(ρ) + εi
Ω(t)} (38)

where W̃ i(t) = Wi − Ŵ i(t).
Then, the following theorem for the operating point inside of

‖σ(t)‖ = nσ2 is proposed.

Theorem 3: Consider the same conditions as of Theorem 1
except that ‖ηi

2‖F > pi
υ + hi

ε and that the updating law (30)
is applied to accomplish the learning term Ŵ i(t)T Φ(ρ)
with F (‖σ(t)‖) = 1 in (28a). Then σ(t), u(t), Ŵ 1(t), . . . ,
and ŴN (t) are UUB, and the system performance is obtained
as follows:

Pa = {Z(t) ∈ �10 |0 ≤ ‖σ(t)‖ ≤ pmax ,

0 ≤ ‖W̃ i(t)‖F ≤ si, for 1 ≤ i ≤ 9} (39)

where pmax = max1≤i≤9(pi), si = γiW i
m /(γi − δ/2), pi =√

(pi
1)2 + pi

2 − pi
1 , pi

1 = {εi + (‖ηi
2‖F − pi

υ − hi
ε)/(‖ηi

1‖F −
δ/2)}/2, and pi

2 = εi(pi
υ + hi

ε)/(‖ηi
1‖ − δ/2) .

Proof: See Appendix B.
Remark 6: Because pi

υ � hi
Ω(ρ), the comparison between

pmax in (39) and hmax in (36) shows that the tracking perfor-
mance, i.e., ‖σ(t)‖, of the adaptive control is much smaller than
that in robust control. However, a mere adaptive control often
results in a transient response. In this situation, a robust control
is first used to force the operating point to converge to an ac-
ceptable set and then an extra compensation of the uncertainties
(i.e., adaptive control) is used to enhance system performance.

Remark 7: As nσ1 ≥ ‖σ(t)‖ ≥ nσ2 , the corresponding result
can refer to our previous study [23]. In addition, the scalar func-
tion F (‖σ(t)‖) can be designed as a vector function F (σ(t))
such that different channels possess different schemes of (29)

F (σ(t)) = diag{f(|σ1(t)|), f(|σ2(t)|)} (40)

where f(|σi(t)|), as shown at the bottom of the page.

V. EXPERIMENTS AND DISCUSSION

A. Experimental Preliminaries

1) Tracking Mode: Two types of tracking modes are con-
sidered, namely 1) approach mode and 2) fine-tune mode. The
purpose of the approach mode is to drive the CLWR to the neigh-
borhood of the line-segments path. Then, the fine-tune mode is
applied to force the CLWR to be the line-segments path (or as
close as possible). It is well-known that the relative angle be-
tween the orientation of the CLWR and that of the line-segments
path is the index for the desired steering angle θ1d . Certainly, the
CLWR in the left or right region of the line-segments path also
affects the desired steering angle. However, the tracking mode
for the left or right region is similar. For brevity, only the motion
of the CLWR in the left region is depicted in Fig. 7. The content
of large circle with dash-dotted line in Fig. 7 indicates the con-
cept of the fine-tune mode. After the CLWR is in the region of the
fine-tune mode, the tracking of line-segment path is illustrated,
as in Fig. 8. To begin with, the turning angle δi−1 of the (i − 1)th
segment is defined as the relative angle between the ith segment
and the (i − 1)th segment. The turning point pi−1 or turning

f(|σi(t)|) =




0, as |σi(t)| > niσ1

1, as |σi(t)| < niσ2 , i = 1, 2.

(niσ1 − |σi(t)|)/(niσ1 − niσ2), otherwise
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Fig. 7. Illustration of path tracking mode.

Fig. 8. Illustration of path tracking of line segments.

length li−1 of the (i − 1)th segment in Fig. 8 is represented as
the point or the position starting to turn into the ith segment.
Based on our analysis, the following relation li−1 = c2(δi−1)c1 ,
where c1 = 0.5, c2 = 42 cm, and the unit of δi−1 is radian, is
employed to track a path of multiple line segments.

2) Strategy of Obstacle Avoidance: The strategy for the
avoidance of static and dynamic obstacles is introduced. When
a CLWR is faced with a staticobstacle or dynamic obstacle,
the strategies can be simultaneously applied to avoid these ob-
stacles. The strategy for the avoidance of a static obstacle in
Fig. 9(a) is first described.

1) As the distance between the corresponding point of the
CLWR and the obstacle (i.e., L1) is smaller than L1,min ,
the CLWR starts the operation to avoid the corresponding
obstacle. That is, the operation of the CLWR is in a mode
of static obstacle avoidance. In addition, it is not limited
only to one static obstacle.

2) As the minimum distance between the corresponding point
of the CLWR and the obstacle (i.e., L2) is greater than
L2,min , then θ1d = 0 so that the CLWR moves in a straight
line.

3) As |α − β| > 90◦, the operation of the CLWR returns to
the path tracking mode.

Remark 8: Strategy 3) for the avoidance of a static obstacle
is explained as follows. Based on the definitions of the angles
α and β, if the CLWR is on the right-hand side of the obstacle and
leaves away from it, i.e., α ≤ 90◦ and β = 180◦, then |α − β| >
90◦. Similarly, if the CLWR is on the left-hand side of the
obstacle and leaves away from it, i.e., α ≥ 90◦ and β = 0◦,
then |α − β| > 90◦. At this moment, the CLWR has avoided
the obstacle and it should return to the path tracking mode.

Similarly, the strategy for the avoidance of a dynamic obsta-
cle, as in Fig. 9(b), is depicted as follows:

1) As the value ȳ of the CLWR is smaller than ymin , the
CLWR stops.

2) The CLWR starts to track the path when either of the
following conditions is satisfied:
a) x̄ > xdepature , where x̄ denotes the distance between

the intersection of the path and the center of the CLWR,
departing from the intersection, and xdepature repre-
sents an assigned distance to prevent the CLWR from
bumping against a dynamic obstacle;

b) x̃ > xarrival, where x̃ stands for the distance between
the intersection of the path and the center of the CLWR,
arriving into the intersection, and xarrival denotes an
assigned distance to prevent the CLWR from bumping
against a dynamic obstacle.

In the beginning, the images captured by two CCDs for a time
interval (e.g., 2 s) are obtained to judge whether the visible area
(or smart space) is in the presence of a static obstacle or dynamic
obstacle. If the obstacle is static, the corresponding position
(x, y) is input for the path planning to avoid this static obstacle.
If the obstacle is dynamic, its position is estimated in every
sampling interval (i.e., 260 ms) and input for the path planning
to avoid the dynamic obstacle. In this paper, the corresponding
parameters for (static and dynamic) obstacle avoidance are set
as follows: L1,min = 60 cm, L1,min = 60 cm, L2,min = 15 cm,
xdeparture = 20 cm, xarrival = 60 cm, and ymin = 60 cm.

B. Experimental Results

From the very beginning, the performances of two mo-
tors are evaluated when the CLWR does not contact with the
ground, i.e., CLWR is off ground. The coefficients of sliding

surface (26) are set as G1 =
[

9.2 0 0.5 0
0 14.5 0 14.2

]
and G2 =[

0.5 0 0 0
0 3 0 0

]
. In other words, σ1(t) = 0.5 ˙̃x1(t) + 9.2x̃1(t)

+ 0.5
∫

x̃1(τ) dτ and σ2(t) = 14.2 ˙̃x2(t) + 14.5x̃2(t) +
3
∫

x̃2(τ) dτ ; they contain the eigenvalues −0.0545,−18.3455
and −0.28829,−0.73284, respectively. The control parameters
of robust control are set as follows: ηi

1 = diag{16.0, 35.0},
ηi

2 = diag{1.0, 2.2}, εi = 0.1, and αi = 0.2. It indicates that
the dynamics of a sliding surface possesses a low-pass feature
to reduce the effect of the high-frequency component of the
tracking error. A RBFNN with L = 37 + 1 = 730 is first em-
ployed to learn the system uncertainties; then, the environment
uncertainty is reduced. In addition, control parameters are used
in the robust control, and γi = 0.01 and βi = 15 are selected for
the updating law (30). The parameters nσ1 = 0.3 and nσ2 = 0.8
are applied to partition the robust control and adaptive control
for the following experiments.

The experiments are divided into the following three cases:
1) to track a set of line segments with different initial poses of the
CLWR; 2) to track the same path as in part 1) but with two static
obstacles; and 3) to track the same path as in part 1) but with
one static and one dynamic obstacle in the X-axis direction. The
positions of two static obstacles with radius 25 cm are (X, Y )
= (−72.32, 259.48) and (91.33, 295.31) cm, respectively. The
path to be tracked is made up of five segments of straight line
(i.e., the dash lines in Figs. 10 and 11). The coordinates of the
five segments from the start point to the end point are (− 45, 0),
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Fig. 9. Strategy for the avoidance of static and dynamic obstacles: (a) static obstacle; (b) dynamic obstacle.

Fig. 10. Responses of the navigation for the IBSS-CLWR with νd = 28.6 cm/s and different initial poses for the following six cases: (a) and (b), without
obstacle; (c) and (d), two static obstacles; (e) and (f), one static obstacle and one dynamic obstacle.
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Fig. 11. Responses of the steering angle and translation velocity of Fig. 10(a): (a) front-wheel; (b) rear-wheel.

(−65, 330), (−50, 495), (85, 495), (75, 200), and (10, 0) cm.
Then, the corresponding responses of the aforementioned three
cases are shown in Fig. 10 for νd = 28.6 cm/s. The responses in
the neighborhood of the overlap region, which is simultaneously
visible by CCD1 and CCD2, e.g., 275 < Y < 325 cm, are often
in an unfavorable situation due to the discontinuity resulting
from the pose estimation and the reduced quality of the image
system. Because there always exists a minimum turning radius
for a CLWR, the tracking performance in the third segment
is inferior. In this situation, an omnidirectional wheeled robot
(e.g., [24]) should be considered instead. Although the segments
to be tracked are in the periphery of smart space with reduced
quality in pose estimation, the performances in Fig. 10 are still
acceptable to confirm the usefulness of our control system. In
addition, the responses of the steering angle and the translation
velocity of Fig. 10(a) by using the FNAC are shown in Fig. 11,
which are apparently acceptable responses.

Before comparing the results obtained by executing our pro-
posed FNAC with that obtained by using PID control, the param-
eters of PID control are chosen such that the off-ground CLWR
has good enough performance. By comparing the performance,
as shown in Fig. 10(a) and (c) obtained by CLWR, with the per-
formance shown in Fig. 12 with PID control with the same case,
it appears that PID control is inferior to the CLWR. Although in
Fig. 12 it has a total delay between 210 and 260 ms and we have
a sound result by using PID control, it will fail if the time delay
of the IBSS-CLWR is changed too much. For instance, a total
time-varying delay in the range of 260∼310 ms will navigate
the CLWR outside of the visible area of CCD1 and CCD2, and
a total time-varying delay in 310∼360 ms will result in a neg-
ative phase margin. However, our proposed control can survive
to accomplish the desired goal [23]. These features are verified
by our experiments. Because the bandwidth of the IBSS-CLWR
is constrained by the sampling rate, its motion becomes slower
as the larger sampling time is used. For simplicity, these results
are omitted. In summary, the robustness of PID control is worse
than that of our proposed control. If the monitoring region is
wide, the number of the CCD cameras should be increased or
the active CCD camera should be considered.

Fig 12. Responses of PID control for the cases of Fig. 10(a) and (c):
(a) without obstacle; (b) two static obstacles.

VI. CONCLUSION

Nine subsystems without delay are developed from the step
responses of the CLWR with nine specific conditions, which
are also assigned as the premise variables for the fuzzy rule. To
our best knowledge, we believe that it is the first time in fuzzy
modeling that the model has been developed from the CLWR
step responses with various conditions. Meanwhile, the trans-
mission delays of the input and output signals passing through
the IN and WLAN, the image processing time, and the total
calculation time in the control algorithm are estimated. Eventu-
ally, the fuzzy delay modeling of an IBSS-CLWR is achieved.
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Then, a suitable fuzzy reference model is applied to shape
the response of the closed-loop system. Based on these op-
erations, our proposed FNAC is designed without the constraint
on the upper bound of the time-varying delay for the input of an
IBSS-CLWR. However, the uncertainties caused by the fuzzy-
model error and the interactions among subsystems must be rel-
atively bounded, and the stabilizing conditions of every trans-
formed delay-free subsystem must be satisfied. Although the
line segments to be tracked are on the periphery of smart space,
and incurring quality in the pose estimation, our proposed con-
trol system provides satisfactory performance in path track-
ing and obstacle avoidance. If the delay of the controlled sys-
tem is beyond range, the traditional control (e.g., robust con-
trol, PID control) often fails due to the retarded navigation
of the CLWR and the existence of a negative phase margin.
If the monitoring area is wide, the number of the CCD cam-
eras should be increased or the active CCD camera should be
considered.

APPENDIX A: PROOF OF THEOREM 1

Define the following Lyapunov function:

V = σT σ/2 > 0, as σ �= 0. (A1)

Taking the time derivative of (A1) and assuming that V̇ ≤
−δV where δ > 0 gives

V̇asy = σT σ̇ + δσT σ/2 (A2)

where V̇asy = V̇ + δV . Substituting (28b), (34), and (35) into
(A2) yields

V̇asy ≤ σT

{
9∑

i=1

µi

[
−(I + G1∆B(G1B̄

i)−1)√
2 − αi

·
(

ηi
1σ +

ηi
2σ

‖σ‖ + εi

)
+ Ωi + εi

Ω

]
+

δσ

2

}

≤ −
9∑

i=1

µi
(
‖ηi

1‖F − δ/2
)
‖σ‖

‖σ‖ + εi

×
{
‖σ‖(‖σ‖ + εi) +

∥∥ηi
2

∥∥
F

(‖ηi
1‖F − δ/2)

‖σ‖

− hi
Ω + hi

ε

(‖ηi
1‖F − δ/2)

(‖σ‖ + εi)

}

≤ −
9∑

i=1

µi(‖ηi
1‖F − δ/2)‖σ‖Hi(‖σ‖)/(‖σ‖ + εi) (A3)

where Hi(‖σ‖) = ‖σ‖2 + 2hi
1‖σ‖ − hi

2 . When ‖σ‖ ≥ hmax ,
the inequalities Hi(‖σ‖) ≥ 0 for i = 1, 2, . . . , 9, are satisfied.
Then, outside of the domain Pr in (36a), V̇asy ≤ 0 (or V̇ ≤
−δV ) is achieved. Hence, the signal σ exponentially con-
verges into the domain Pr . Finally, from (27) and (28) u is
UUB. Q.E.D.

APPENDIX B: PROOF OF THEOREM 3

Similarly, the arguments of variable are omitted. Define the
following Lyapunov function:

V = σT σ/2 +
∑9

i=1
µi tr{(W̃ i)T W̃ i}/(2βi)

= ZT RZ > 0, as σ �= 0 or W̃ i �= 0 (B1)

where R = Diag[ 1/2 µ1/(2β1) . . . µ9/(2β9) ] > 0 ∈
�10×10 , tr{} stands for the trace operator, and tr{A} =∑n

i=1 aii , where A ∈ �n×n . Similarly, taking the time deriva-
tive of (B1), assuming that V̇ ≤ −δV where δ > 0 and using
(28) and (37), yields

V̇asy = V̇ + δV

≤ σT

{
9∑

i=1

µi

[
−(I + G1∆B(G1B̄

i)−1)√
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(
ηi
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2σ
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)

+ (W̃ i)T Φ + υi + εi
Ω

]
+

δσ

2

}

−
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+ δ
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{
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[
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2σ
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+ (W̃ i)T Φ + υi + εi
Ω

]
+

δσ

2

}

+
9∑

i=1
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−
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i=1
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where P i(‖σ‖) = ‖σ‖2 + 2pi
1‖σ‖ − pi

2 , Qi(‖W̃ i‖F ) =
‖W̃ i‖F − si. When ‖σ‖ ≥ pmax and ‖W̃ i‖F ≥ si for
i = 1, 2, . . . , 9 the inequalities P i(‖σ‖) ≥ 0 and Qi(‖W̃ i‖F )
≥ 0 for i = 1, 2, . . . , 9, are obtained. Then, outside of the do-
main Pa in (39a) makes V̇asy ≤ 0(or V̇ ≤ −δV ). Hence, the
signal Z exponentially converges into the domain Pa . Finally,
from (27) and (28), u is UUB. Q.E.D.
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