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Abstract: This study presents the fabrication of a polyaniline nanofiber ammonia sensor 

integrated with a readout circuit on a chip using the commercial 0.35 m complementary 

metal oxide semiconductor (CMOS) process and a post-process. The micro ammonia 

sensor consists of a sensing resistor and an ammonia sensing film. Polyaniline prepared by 

a chemical polymerization method was adopted as the ammonia sensing film. The 

fabrication of the ammonia sensor needs a post-process to etch the sacrificial layers and to 

expose the sensing resistor, and then the ammonia sensing film is coated on the sensing 

resistor. The ammonia sensor, which is of resistive type, changes its resistance when the 

sensing film adsorbs or desorbs ammonia gas. A readout circuit is employed to convert the 

resistance of the ammonia sensor into the voltage output. Experimental results show that 

the sensitivity of the ammonia sensor is about 0.88 mV/ppm at room temperature. 
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1. Introduction  

 

Ammonia (NH3) is emitted by human activity. For instance, production of refrigeration systems and 

fertilizers emits ammonia. The worldwide ammonia emission resulting from domestic animals and 

industrial combustion is about 20-35 Tg/year and 2.1-8.1 Tg/year, respectively [1]. Ammonia is a toxic 

gas with exposure limit values of 25 ppm for a period of 8 h and of 35 ppm for a period of 10 min [2]. 

Ammonia sensors are important devices in many industrial, agricultural and biomedical applications. 

For instance, Boeker et al. [3] proposed an ammonia sensor based on a quartz crystal microbalance 

transducer for monitoring the ammonia concentration in agricultural emissions. Moos et al. [4] 

developed an ammonia gas sensor with a selective thick film of zeolites for automotive exhaust gas 

applications. Pushkarsky et al. [5] presented a laser-based photoacoustic ammonia sensor for industrial 

ammonia gas measurement. 

Huang et al. [6] developed polyaniline nanofibers using interfacial polymerization at an aqueous 

and organic interface, and the resulting polyaniline, which had high surface area and porosity, could 

enhance properties in applications such as chemical sensors. With the same synthetic method, Virji et 

al. [7] fabricated polyaniline nanofiber gas sensors with performances that were better than 

conventional polyaniline. Thereby, the ammonia sensor in this work adopts polyaniline as a sensitive 

material. Microelectromechanical systems (MEMS) technology was applied to fabricate various 

microsensors. The advantages of microsensors include small size, high performance, low cost and easy 

mass-production. Many studies have recently utilized MEMS technology to manufacture ammonia 

sensors. For instance, Lee et al. [8] fabricated a micro ammonia gas sensor using a bulk 

micromachining technique. The sensor that was resistive type composed of a polyaniline film, a SU-8 

adhesion layer and an interdigital Pt electrode, where the polyaniline film was the ammonia sensing 

film. The ammonia sensor had a sensitivity of about 40% at 50 ppm ammonia. Mitzner et al. [9] 

utilized a post-CMOS process to manufacture a micro-hotplate-based gas sensor array. The post-

CMOS process adopted XeF2 to etch a silicon substrate to obtain the micro-hotplate array, and a 

SnO2/Pt sensing film was sputtered on this micro-hotplate forming a resistive-type ammonia sensor. 

Llobet et al. [10] utilized silicon process technology to make an ammonia sensor, in which the sensor 

consisted of a heater, an interdigital electrode, a temperature meter and a sensing film. Tungsten oxide, 

coated on the interdigital electrode, was adopted as an ammonia sensing film. Li et al. [11] presented a 

micro gas with piezoresistive SiO2 cantilever beam fabricated by a surface and bulk micromachining 

process. An ammonia sensing layer of 11-mercaaptoundecanoic acid was coated on the piezoresistive 

cantilever beams. The sensor was packaged with a linear amplifier, and its output voltage was about 7 

V in 1 ppm ammonia gas. Connolly et al. [12] reported a porous SiC ammonia sensor produced by 

silicon process technology, in which the sensor was a capacitive type. The sensing film of SiC was 

deposited by plasma enhanced chemical vapor deposition (PECVD) and was then made porous by 

electrochemical etching in 73% HF.    

The use of a commercial CMOS process to fabricate MEMS devices is known as the CMOS-

MEMS technique [13]. Several microdevices manufactured by the CMOS-MEMS technique need a 

post-process to coat the functional films or release the suspended structures. For instance, the 

suspended structures of the CMOS-MEMS switches [14] and pressure sensors [15] were released by a 

wet etching post-process. The main advantage of microdevices fabricated by the CMOS-MEMS 
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technique is their ability to integrate with circuits as a system on a chip (SOC) because of their 

compatibility with the CMOS process. The ammonia sensors, proposed by Lee et al. [8], Mitzner et al. 

[9], Llobet et al. [10], Li et al. [11] and Connolly et al. [12], had no integration with circuitry on a chip. 

In this work, we employ the CMOS-MEMS technique to fabricate a polyaniline nanofiber ammonia 

sensor integrated with a readout circuit on a chip, which can reduce the volume and cost and enhance 

the performance. The area of the integrated ammonia sensor chip is about 0.6 mm2. 

 

2. Structure of the Integrated Ammonia Sensor 

 

Figure 1 shows the structure of the integrated chip, which contains an ammonia sensor and readout 

circuit. The ammonia sensor is composed of a sensing resistor and an ammonia sensing film. The 

sensing resistor is a polysilicon winding line. The ammonia sensing film, which is polyaniline 

prepared by a chemical polymerization method, is coated on the sensing resistor. A silicon dioxide 

layer is located between the sensing resistor and the polyaniline film. The sensing resistor is 2 m 

wide, 0.4 m thick and 9,000 m long. 

 

Figure 1. Schematic structure of the ammonia sensor integrated with readout circuit. 

 
 

Figure 2 illustrates the energy band diagram of the ammonia sensor. When the polyaniline surface 

contacts air, holes are produced on this surface. As shown in Figure 2(a), an accumulation of holes is 

formed on the surface of the polyaniline film, so that the valence band edge of polyaniline bends 

upward and is close to the Fermi level of polyaniline. An accumulation of electrons at the oxide-

polysilicon interface is formed [16], which causes the conduction band edge of polysilicon to bend 

downward and be close to the Fermi level of polysilicon. When polyaniline interacts with ammonia, 

the following reaction occurs [17]: 
+ +

3 4PANIH +NH PANI+NH                                                                   (1)  

According to Equation (1), the H+ holes of polyaniline reduce as polyaniline interacts with NH3. 

As shown in 2(b), the accumulation of holes at the surface of polyaniline is reduced when polyaniline 

is exposed to ammonia, resulting in the valence band edge of reduced polyaniline bending and having 
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a distance with the Fermi level of polyaniline, so that the resistance of polyaniline increases. At the 

same time, the accumulation of electrons at the oxide-polysilicon interface is reduced, which leads to 

the conduction band edge of polysilicon to reduce bending and have a distance with the Fermi level of 

polysilicon, so that the resistance of polysilicon increases. 

 

Figure 2. Energy band diagram of the sensor in (a) air and (b) ammonia. EF is the Fermi 

level, Ec-PANi is the conduction band of polyaniline, Ev- PANi is the valence band of 

polyaniline, EFi-PANi is the intrinsic Fermi level of polyaniline, Ec-PolySi is the conduction 

band of polysilicon, Ev-PolySi is the valence band of polysilicon, and EFi-PolySi is the intrinsic 

Fermi of polysilicon. 

 
 

Figure 3. Readout circuit for the ammonia sensor. 

 
 

Figure 3 presents the readout circuit for the ammonia sensor. The readout circuit consists of a 

Wheatstone circuit, an operational amplifier and resistances. As shown in Figure 3, the Wheatstone 

circuit is constituted by the sensing resistor (Rs) and three resistances (R1, R2 and R3). The sensing 

resistor changes its resistance as the sensing film adsorbs or desorbs ammonia gas. The readout circuit 

is utilized to convert the resistance of the ammonia sensor into the voltage output. In this design, 

R1=10 k, R2=10 k, R3=10 k, R4=100 , R5=10 k, R6=10 k and R7=10 k are adopted. Figure 

4 illustrates the operational amplifier circuitry for the readout circuit, where Vdd represents a voltage 

power supply and Vss is the ground.  
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Figure 4. Design of the operational amplifier circuit. 

 
 

HSPICE, which is a professional circuit simulation software, was used to simulate the operational 

amplifier and the readout circuit. Figure 5 shows the simulated results of the frequency response for 

the operational amplifier. As shown, the operational amplifier has a dc open loop gain of 

approximately 97 dB.  

 

Figure 5. Frequency response of the operational amplifier. 

 
 

Figure 6 depicts the simulated results of the readout circuit. In this simulation, the input voltage Vin 

is 3 V, the resistance of the ammonia sensor Rs varies from 23 k to 26 k. The output voltage of the 

readout circuit varies from 2.294 V to 2.372 V as the resistance of the ammonia sensor changes from 

23 k to 26 k. 
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Figure 6. Simulated results of the readout circuit. 

 
 

3. Fabrication of the Integrated Ammonia Sensor 

 

The commercial 0.35 m CMOS process of Taiwan Semiconductor Manufacturing Company 

(TSMC) was used to fabricate the integrated chip with ammonia sensor and readout circuit. In order to 

expose the sensing resistor and coat the ammonia sensing film, the integrated chip requires a post-

process after completion of the CMOS process. The post-process contains two main steps: (1) etching 

the sacrificial layers to expose the sensing resistor, and (2) coating the ammonia sensing film on the 

sensing resistor.  

Figure 7 shows the process flow of the integrated chip. Figure 7(a) illustrates the cross-section of 

the integrated chip after completion of the CMOS process. In the ammonia sensor, the polysilicon 

layer is adopted as the sensing resistor, and the metal and via layers are used as the sacrificial layers. 

The materials of the metal and via layers are aluminum (Al) and tungsten (W), respectively. The 

sacrificial layers are removed from the ammonia sensor, exposing the sensing resistor. As shown in 

Figure 7(b), the chip is immersed in two etchants: one is an Al etchant with phosphoric acid, nitric 

acid, acetic acid and deionized water in a ratio of 14:1:2:3. The other is a W etchant with sulfuric acid 

and hydrogen peroxide in a ratio of 2:1. Figure 8 displays the photograph of the integrated ammonia 

sensor after the wet etching process. Then, the chip is put in an oven at 300C for 8 h, so that a thin 

silicon dioxide layer is formed on the polysilicon surface. Finally, the polyaniline film is coated on the 

sensing resistor as shown in Figure 7(c). 

The polyaniline nanofibers [6,18] are prepared by a chemical polymerization method according to 

the following steps: (1) 8 mL HCl is mixed with 100 mL deionized water and stirred until a 

homogenous solution is obtained; (2) the solution of 1 mL C6H5NH2 is added into the HCl solution 

with stirring until the mixing solution becomes homogenous; (3) 2.4 g (NH4)2S2O8 is dissolved in 50 

mL deionized water by stirring vigorously; (4) the (NH4)2S2O8 solution is added into the 

C6H5NH2/HCl solution and stirred until a homogeneous mixing solution is obtaned; (5) the mixing 

solution of (NH4)2S2O8/C6H5NH2/HCl is aged at room temperature for 120 h, producing a blackish 

green sediment; (6) the resulting product is filtered, and a precision micro dropper is used to drop the 

product on the ammonia sensor chip, followed by calcination in air at 110C for 1 h. 
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Figure 7. Process flow of the ammonia sensor; (a) after the CMOS process, (b) etching 

sacrificial layers, and (c) coating the sensing film. 

 
 

The surface morphology of the polyaniline film is measured by a scanning electron microscope 

(JEOL JSM-6700F). Figure 9 shows a scanning electron microscope image of the polyaniline film. 

The sensing film, which is composed of many polyaniline nanofibers as shown in Figure 9, is porous 

and has a large surface area. The elements of the polyaniline nanofiber film are measured by an energy 

dispersive spectrometer (OXFORD INCA ENERGY 400), and the measured results are shown in 

Figure 10. The polyaniline nanofiber film contains 63 wt% C, 28 wt% O, 8.5 wt% S and 0.5 wt% Cl. 

 

Figure 8. photograph of the integrated ammonia sensor chip after the wet etching process. 
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Figure 9. Scanning electron microscope image of polyaniline nanofiber film. 

 
 

Figure 10. Elements of polyaniline nanofiber film measured by energy dispersive spectrometer. 

 
 

4. Results and Discussion 

 

A power supply, an oscilloscope, an LCR meter and a test chamber were utilized to measure the 

performance of the ammonia sensor chip. In order to characterize the variation of resistance in the 

sensing part, the ammonia sensor was tested without readout circuit. The sensor chip was set in the test 

chamber, and the LCR meter was used to measure its resistance variation at different NH3 

concentrations. Figure 11 presents the measured results of the ammonia sensor without readout circuit 

at different ammonia concentrations. The initial resistance of the sensing resistor in the ammonia 

sensor was about 22.7 k (in air), and the resistance of the sensor varied to 25.5 k at 50 ppm NH3. 

The results showed that the resistance of the ammonia sensor increased as the concentration of 

ammonia increased. As shown in Figure 11, the ammonia sensor had a response time of about 60 sec at 

50 ppm NH3 and a recovery time of 330 sec at 50 ppm NH3.  

 

 

 



Sensors 2009, 9                            

 

 

877

Figure 11. Relation between the resistance variation and NH3 concentration for the ammonia sensor. 

 
 

Figure 12. Measured results of the ammonia sensor with input voltage of (a) 1 V, (b) 2 V 

and (c) 3 V. 
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The ammonia sensor with readout circuit was set in the test chamber and was tested at room 

temperature with different ammonia concentrations. In order to understand the influence of the input 

voltage, the sensor was provided with different input voltages. The power supply provided a bias 

voltage of 3.3 V and different input voltages of 1, 2 and 3 V, respectively, to the readout circuit in the 

sensor. The oscilloscope was employed to record the output signal of the sensor to ammonia changes. 

Figure 12 displays the output voltage of the ammonia sensor with different input voltages of 1, 2 and 3 

V. In this investigation, 1 to 50 ppm of ammonia gas was supplied. With an input voltage of 1 V, the 

output voltage of the ammonia sensor changed from 948 mV to 958 mV as the concentration of 

ammonia gas varied from 1 to 50 ppm. The variation of the output voltage was 10 mV over 1-50 ppm 

NH3, so the sensitivity of the ammonia sensor with an input voltage of 1 V was about 0.2 mV/ppm. As 

shown in Figure 12(b), when an input voltage of 2 V was supplied, the measured results showed that 

the output voltage of the ammonia sensor varied from 1.754 V to 1.772 V as the concentration of 

ammonia gas changed from 1 to 50 ppm. Thereby, the variation of the output voltage was 18 mV in 1-

50 ppm NH3, and the ammonia sensor with an input voltage of 2 V had a sensitivity of about 0.36 

mV/ppm. When the input voltage was changed to 3 V, as depicted in Figure 12(c), the output voltage 

of the ammonia sensor changed from 2.491 V to 2.534 V as the concentration of ammonia gas varied 

from 1 to 50 ppm. The variation of the output voltage was 43 mV for 1-50 ppm NH3, so the sensitivity 

of the ammonia sensor with an input voltage of 3 V was approximately 0.88 mV/ppm. Therefore, the 

integrated ammonia senor had a sensitivity of 0.88 mV/ppm when providing a bias voltage of 3.3 V 

and an input voltage of 3V. The polyaniline nanofiber gas sensor, fabracted by Virji et al. [7], was 

used to detect a low concentration of 3 ppm ammonia gas and had a high sensitivity. Sutar et al. [19] 

proposed a polyaniline nanofiber ammonia sensor with the detection limit of 0.5 ppm NH3. Crowley et 

al. [20] manufactured an ammonia gas sensor by using inkjet-printed polyaniline nanoparticles, and 

the sensor had a detection limit of 1 ppm NH3. In this study, the experiments showed that the detection 

limit of the ammonia sensor was about 1 ppm NH3. The resistive ammonia sensor with a sensitive film 

of polyaniline, presented by Lee et al. [8], had a sensitivity of about 40% at 50 ppm ammonia. Li et al. 

[11] proposed an ammonia sensor with a sensitive material of 11-mercaaptoundecanoic acid, and it had 

an output voltage of 7 V in 1 ppm ammonia gas. The sensitivity of 0.88 mV/ppm in this work 

exceeds that of Li et al. [11].  

 

5. Conclusions  

 

A polyaniline nanofiber ammonia sensor integrated with readout circuit was successfully 

implemented using the commercial 0.35 m CMOS process and the post-process. The ammonia sensor 

was comprised of a sensing film and a sensing resistor. The sensing film, which was prepared by a 

chemical polymerization method, was composed of polyaniline nanofibers that had a large surface 

area. The sensing resistor was formed by the polysilicon layer of the CMOS process. The post-process 

used etchants to etch the sacrificial layers to expose the sensing resistor, and then polyaniline was 

coated on the sensing resistor. The resistance of the resistive type ammonia sensor changed upon 

ammonia gas adsorption. A readout circuit was employed to convert the variation in resistance of the 

ammonia sensor into a voltage output. Experimental results showed that the sensitivity of the ammonia 
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sensor was about 0.88 mV/ppm at room temperature when providing a bias voltage of 3.3 V and an 

input voltage of 3 V.  
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