
Neural Process Lett (2009) 29:7–27
DOI 10.1007/s11063-008-9092-y

Stray Example Sheltering by Loss Regularized SVM
and kNN Preprocessor

Chan-Yun Yang · Che-Chang Hsu · Jr-Syu Yang

Published online: 30 November 2008
© Springer Science+Business Media, LLC. 2008

Abstract This paper presents a new model developed by merging a non-parametric
k-nearest-neighbor (kNN) preprocessor into an underlying support vector machine (SVM)
to provide shelters for meaningful training examples, especially for stray examples scattered
around their counterpart examples with different class labels. Motivated by the method of
adding heavier penalty to the stray example to attain a stricter loss function for optimization,
the model acts to shelter stray examples. The model consists of a filtering kNN emphasiz-
er stage and a classical classification stage. First, the filtering kNN emphasizer stage was
employed to collect information from the training examples and to produce arbitrary weights
for stray examples. Then, an underlying SVM with parameterized real-valued class labels
was employed to carry those weights, representing various emphasized levels of the exam-
ples, in the classification. The emphasized weights given as heavier penalties changed the
regularization in the quadratic programming of the SVM, and brought the resultant deci-
sion function into a higher training accuracy. The novel idea of real-valued class labels for
conveying the emphasized weights provides an effective way to pursue the solution of the
classification inspired by the additional information. The adoption of the kNN preprocessor
as a filtering stage is effective since it is independent of SVM in the classification stage. Due
to its property of estimating density locally, the kNN method has the advantage of distin-
guishing stray examples from regular examples by merely considering their circumstances
in the input space. In this paper, detailed experimental results and a simulated application are

C.-Y. Yang (B)
Department of Mechanical Engineering, Technology and Science Institute of Northern Taiwan,
No. 2 Xue-Yuan Rd., Beitou, Taipei, 112 Taiwan, ROC
e-mail: cyyang.research@gmail.com

C.-C. Hsu · J.-S. Yang
Department of Mechanical and Electro-Mechanical Engineering, Tamkang University,
No. 151 Ying-Chuan Rd., Tamsui, Taipei County, 25137 Taiwan, ROC

C.-C. Hsu
e-mail: 692342792@s92.tku.edu.tw

J.-S. Yang
e-mail: 096034@mail.tku.edu.tw

123

8 C.-Y. Yang et al.

given to address the corresponding properties. The results show that the model is promising
in terms of its original expectations.

Keywords k-nearest-neighbor preprocessor · Stray training examples · Support vector
machines · Classification · Pattern recognition

1 Introduction

As one of the categories of powerful learning machines, support vector machines (hereafter
SVMs) are gaining popularity due to their superior performance. Based on statistical learning
theory, the mathematics of SVM was firmly grounded by Vapnik [1,2]. The basic concept
of this theory for SVMs seeks to design a learning hypothesis for an optimal function that is
obtained through the minimization of generalization risk. Considering a classification prob-
lem, a set of statistical hypotheses regularized by the relevant parameters is generated to
minimize the expected risk over all available training examples. But in general, the expected
risk cannot easily be found with unknown probability densities. An approximation thus is
usually adopted by replacing the expected risk with an empirical risk [1–3].

Remp = 1

n

∑

xi ∈S

L(yi , f (xi)), i = 1, 2, . . . , n (1)

where L(.) denotes a loss function designed to evaluate the associated errors in the training
examples. The empirical risk, empirically measured from the loss function, has the advantage
that it can be easily and readily computed using only the available training examples. Since
the problems with regard to the SVMs can actually refer to the related convex optimization
learning problems, the governing loss function measuring the associated errors of training
examples plays a key role in the learning.

In a basic two-class classification problem, a set of training examples S = {(xi , yi)},
i = 1, 2, . . . , n, is given. In this expression, xi is described as an input pattern in the d
dimensional input space, xi ∈ Rd . A class label yi is confirmed as a response of xi from
either of the two classes, and is hence assigned with a value in the set of {−1,+1}. In real world
applications, only a small part of training examples might drift far from the normal region of
their familiar majority in the input space Rd . These few examples usually do not evidence less
confidence than the crowds of familiar majority, despite the fact that they often stray beyond
the normal region. Hence, we call them stray examples. Considering the two partly overlap-
ping classes, the stray examples might be scattered in the area of their counterpart examples
with different class labels. The examples mixes in with the adversaries might occasionally
be misclassified by entanglement with their neighbors; however they are crucial instances
in the training set S. From the perspective of the loss function [2,3], these stray examples
that may be liable to misclassification may be saved by increasing their corresponding losses
in the optimization procedure. This paper proposes a model merging a non-parametric kNN
estimation [4–8] into an underlying SVM to produce an instance-dependent loss function.
This model breaks the equivalent attitude of examples in the training set S, and tries to give
the examples various levels of weight by their significance. The kNN method, mining locally
for useful information among the training examples, provides a special independent aspect
to evaluate the significance of the examples. According to this evaluation, penalties from
the instance-dependent loss function are determined for the optimization procedure. Various
penalties in the optimization procedure will produce a set of new Lagrangian multipliers

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 9

and form a separating hyperplane different from the one generated by the set of original
multipliers.

With the present method, modification of SVMs with parameterized class labels are used
to convey the emphasized weights are employed [9]. The use of such parameterized class
labels provides a solution to connect both the kNN rule and the underlying SVM. From the
perspective of the loss function, the parameterized SVM produces a particular surrogate of
the loss function to transfer those various penalties to the stray examples. The surrogate still
fulfills the criterion of increasing penalization for those examples tending towards misclassi-
fication, but the degree of penalization depends on the degree that the stray examples have
immersed in the adversary class.

2 Merging kNN with SVM

2.1 Loss Functions in SVMs

According to the fundamentals of SVMs, examples with a positive margin are known as those
classified correctly and examples with a negative margin are those misclassified. According
to this definition, the goal of the learning is to produce a positive margin as frequently as
possible. Under this criterion, a formal definition of the loss function is incurred by the trip-
let consisting of an example xi , the class label yi , and the predicted value coming from the
resultant decision function f (xi). Here, the soft margin loss function, which is popularly
used in the classical SVM, is defined as [3,10]:

c(xi , yi , f (xi)) = max(0, 1 − yi f (xi)) =
{

0, if yi f (xi) ≥ 1,

1 − yi · f (xi), otherwise.
(2)

where yi is a binary target,yi ∈ {+1,−1}, and f (xi) is a real-valued prediction from the
decision function. In the expression, the scale of loss depends on the product yi f (xi) if the
product has a value less than one. The loss function will be minimized in the process of fitting
the model to meet the goal of being “classified correctly as frequently as possible.” In other
words, the loss function represents a selected measure of the discrepancy between the target
yi and the predicted value, which is the response by the fitted function f (xi).

The loss function is commonly employed as a penalization to penalize an example with
negative margin more heavily than one with positive margin in the SVMs. Following this
statement, any penalty that is incurred by the loss function is not necessary for the examples
which are correctly classified with large enough positive margins. For instance, the classical
SVM takes the penalties focused on the examples with margins less than one. In a sense, it
seems feasible to slightly change the scale of penalties for the examples with small or negative
margins under the penalization rule in Eq. 2. Hence, several surrogates of loss function, such
as the misclassification, exponential, binomial deviance, squared error, and support vector
loss functions have been proposed for selected topics in the theory of statistical learning
[11,12] (Fig. 1). Except for the misclassification loss, all the surrogates are strict convex
functions. However, their common essential property is to continuously penalize examples
that have a small or negative margin. The differences among the surrogates are the degrees of
the penalization exerted on the examples with negative margins. For example, the penalties
for large and increasingly negative margins associated with the binomial deviance loss func-
tion increase linearly, and those with the exponential loss function increase exponentially.
Having a role in the regularization of the hypothesis, the loss function is very important and
has received much attention in the related literature. Many researchers have stressed that the

123

10 C.-Y. Yang et al.

Fig. 1 Surrogates of loss
function in statistical
learning [11]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

yf

Lo
ss

Misclassification
Exponential
Binomial Deviance
Squared Error
Support Vector

performance assessment of a hypothesis can be related to a minimization problem regarding
the loss function [12–15].

2.2 A Preprocessor to Emphasize Local Heterogeneities

A preprocessor based on the kNN method is employed to identify and re-weight the stray
examples. The kNN methods have been widely used in the field of data mining for appli-
cations such as density estimation and classification [4–8]. Based on the non-parametric
assumption, these methods can be described as a class of instance-based learning techniques
that learn directly from a set of available examples and interpret results statistically. Instead
of trying to create rules, the kNN approaches work directly from the examples themselves.
Suppose an unlabeled example x is placed among the n training examples in a hyperspace of
volume V . From the Bayes rule, the posteriori probability of P(ω j |x) can be expressed as:

P(ω j |x) = p(x, ω j)

p(x)
, (3)

where ω j denotes the j th class. With the prior probability p(x) = ∑
h p(x, ωh) and a locally

approximated joint density function p(x, ω j) = k j/nV , the posteriori probability of P(ω j |x)

can be obtained by:

P(ω j |x) = k j

k
, (4)

where k denotes the number prototypes captured in the volume V , and k j denotes the portion
of k prototypes from the class ω j . From Eq. 4, one can estimate P(ω j |x) by the fraction of
neighboring prototypes labeled as ω j that are captured in a finite local region. The equation
describes the class belonging to an unlabeled query example can be determined locally by
the k nearest neighboring prototypes based on the basis of the similarity in the input space
around the query example. The determination of k usually depends on the locality that the
query examples should refer to. In general, the coverage of volume V is decreased with a
decreasing value of k. Low locality is referred to estimate the probability if a small value of
k is used.

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 11

Objectively speaking, we should be mindful of the opportunity of some examples if they
are critical in the prototypes, especially if they are the ethnic minorities. In general, the ethnic
minorities in the prototypes have less opportunity to receive attention in the decision making
process. To rectify this, a modification to increase the hiring cost of the minorities in a fair
way has been proposed [16]. This modification uses heavier weights for the minorities by
considering the class size in an unbalanced dataset. An equal-valued compensation is given
for all the examples in a certain minority-class, regardless of the difficult circumstances of
individual examples. These examples, referring to stray examples, are used to indicate the
examples which are difficult to correctly classify, whatever the asserted distribution is. In
general, stray examples may be distant from the gathering area of the examples with the
same class label, or may be close to the border of an adjacent overlapping region in which
examples from different classes reside together. However, the non-parametric method, which
identifies the uneven circumstances of the prototypes locally, is quite suitable for use as a
preprocessor for filtering the individual stray examples. Instead of treating the training set
from the global perspective by most learning algorithms , the kNN approaches locally mine
the information in the training data. With the kNN, it does not matter fundamentally what
particular distribution form or global probability density of the training data is assumed.
Therefore, the kNN is for certain a universal candidate to improve a classification involving
stray examples.

2.3 Support Vector Machines Carrying Emphasized Weights

According to the principle of structural risk minimization in statistical learning theory [1,2,
10], the SVMs were devised to find a decision boundary with maximal margin. Based on the
decision boundary, good generalization ability can be achieved. By learning from the set of
training examples S = {(xi , yi)}, the decision function, given as f (x) = sign (〈w, x〉 + b),
can be determined by the orientation vector w and bias b. With the notation yi in the input
training set, altered parameterized labels ỹi tied to the training set have been introduced to
carry the emphasized weights [17]. Because of this alteration, the training set is changed as:

S̃ = {(xi , ỹi)}, i = 1, 2, . . . , n. (5)

The real-valued class label ỹi having its sign identical to yi , carries potential weights of
example i . With the weight, the set S̃ tries to carry more information for training, even if S̃
contains a set of the same patterns xi in the set S. The change in S̃ provides the chance to
assign different weights for the stray examples. In Eq. 5, labels ỹi ’s are no longer a discrete
value; instead it would be a real, |ỹi | ≥ 1, to carry the weight that we want to suggest for the
stray examples. Therefore, the value of ỹi can be obtained by incorporating the idea of kNN

ỹi = η
yi

P(ωi |xi)
, (6)

where P(ωi |xi) is the posteriori probability denoted in Eq. 4.
The method of Eq. 6, called the kNN emphasizer, adopts an inverted scheme to scale up

the value of ỹi . The key point of the expression in Eq. 6 can be revealed from the ratio of
magnification 1/P(ωi |xi). To fulfill the intention of carrying heavier weights in the stray
examples, the value of the ratio should definitely be greater than 1. The acceleration para-
meter η as a scaling factor should also be a positive real number greater than 1 to ensure that
|ỹi | ≥ 1. Hence, for different classes, ỹi should be:

123

12 C.-Y. Yang et al.

ỹi ≥ 1, for yi = +1, and (7)

ỹi ≤ −1, for yi = −1. (8)

As stressed above, the class labels ỹi ’s, carrying heavier weights, provide corresponding
stray examples stricter penalties in the optimization, and are able to conduct the training
more accurately. Following the steps in the classical SVM [10], a set of canonical constraints
is set up with ỹi for optimization:

〈w̃, xi 〉 + b̃ ≥ +1 − ξ̃i , for ỹi ≥ +1, and (9)

〈w̃, xi 〉 + b̃ ≤ −1 + ξ̃i , for ỹi ≤ −1, (10)

where ξ̃ denotes the slack variables equivalent to that in the classical model of soft margin
SVM [10] for solving a linear non-separable problem. The inequalities in Eqs. 9 and 10 can
be merged as

ỹi

(
〈w̃, xi 〉 + b̃

)
≥ 1 − ξ̃i , i = 1, 2, . . . , n. (11)

The constraints in Eq. 11 are used to specify the searching space of the maximal solution
of margin ρ = 2/ ‖w̃‖. Instead of using the inner-product < ·, · > to produce a linear
classification, a kernel trick is then employed to extend the SVM to the case of non-linear
classification [18]. At this point, a mapping function, φ(·) : Rd → Rdh , is introduced first
to map features from the lower dimensional input space Rd to a higher dimensional feature
space Rdh and the objective and subjective functions for a general non-linear classification
problem can be established, equivalent to those in the classical SVM [10]:

min
w̃

, b̃, w̃L P (w̃) = 1

2
‖w̃‖2

2 + C̃
n∑

i=1

ξ̃i , (12)

subject to

ỹi

(
〈ϕ(w̃), ϕ(xi)〉 + b̃

)
≥ 1-ξ̃i , and (13)

ξ̃i ≥ 0, i = 1, 2, . . . , n, (14)

where C̃ is the penalty factor, which controls the trade-off between the classification capa-
bility and the margin width that the learning machine can achieve. With the derivations
according to the Wolfe dual form [3], the minimization problem (12–15) can be written as:

max
α̃

L D(α̃) = −1

2

n∑

i=1

n∑

j=1

ỹi ỹ jκ(xi , x j)α̃i α̃ j +
n∑

i=1

α̃i , (15)

subject to

n∑

i=1

α̃i ỹi = 0, and (16)

0 ≤ α̃i ≤ C̃, i = 1, 2, . . . , n, (17)

where α̃i denotes the Lagrange multiplier corresponding to example xi in the dual space.
The expression in Eq. 15 employs the kernel function κ(xi , x j) [18] as an alternative to com-
pute similarities in the pair-wise examples for non-linear classification. The kernel function,

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 13

computing implicitly the dot-product without mapping into a high-dimensional feature space
Rdh ,

κ(xi , x j) =< ϕ(xi), ϕ(x j) >, i, j = 1, 2, . . . , n, (18)

is actually an excellent solution to manipulate the high dimensional mapping φ(·). Here, it
is noted that the kernel trick is only applied in the second stage of SVM. Eventually, a set
of optimized α̃i can be obtained after the quadratic programming of Eqs. 15–17. Only those
α̃i ’s corresponding to support vectors (SVs) will have non-zero values, α̃i �= 0. According
to the Karush-Kuhn-Tucker (KKT) conditions, the sparse expansion of SVs is sufficient to
compute w̃:

w̃ =
∑

i ∈ SVs

α̃i ỹiϕ(xi). (19)

Furthermore, those examples with unsaturated non-zero Largrange multipliers, 0 < α̃i < C̃ ,
are selected to determine the bias b̃ with the KKT’s complementarily conditions [3]. Once
the optimal value of parameters w̃ and b̃ are determined, the task of learning from the training
data is eventually finished, and the decision function can therefore be given as:

f̃ (x) = sign

(
∑

i ∈ SV s

α̃i ỹiκ (x, xi) + b̃

)
. (20)

2.4 A Two-Stage Model

As in the illustrations, the loss function always focuses on the examples with small or negative
margin, and tries to penalize these examples heavily. Moreover, we should note the weighting
individual penalties by the parameterized class labels. Accordingly, a filtering stage of the
kNN emphasizer will be inserted in front of the classification stage. A two-stage model of
kNN-SVM (Fig. 2) is proposed in order to match the heavy penalization criterion. In this
model, the kNN emphasizer sifts through the training set to choose all the examples that may
be stray, and creates a set of various emphasized weights corresponding to the stray exam-
ples. In the second classification stage, the training examples with parameterized class label
ỹi , organize a temporal input set of S̃, including those refilled by the emphasized weights.
Following the model in the previous section, a new set of Lagrangian multipliers α̃i will
be produced to form a new hyperplane. With the refilled emphasized weights for the stray
examples, the induced hyperplane tends towards high training accuracy. Being a two-stage
model, completely independent approaches adopted by kNN-SVM in both the stages does
really make sense. The independence potentially reduces the possibility of over-penalization
which may be caused by employing the identical approach twice, since the approach is often
inclined to behave in a particular way if it has been employed again, and tends to focus on
the same crew of training examples with over-weighted penalization.

2.5 Change of Loss Through Merging

In the present method, an SVM with parameterized class labels to convey the emphasized
weights is employed. The use of such parameterized class labels provides a solution to connect
both the kNN emphasizer and the underlying SVM. We should hereby point out the crucial
effects on the loss function which accompany the parameterized class labels. Due to the
change of ỹi , all the examples are re-evaluated and are given arbitrary penalties individually.

123

14 C.-Y. Yang et al.

Fig. 2 Model of kNN-SVM

i

Classification
Stage

Parameterized Class
Labels

Filtering
Stage

SVM

kNN Emphasizer

Compared to the loss function (Eq. 2) of classical SVM, the penalties are no longer linearly
increased with the margin yi f (xi) only. The circumstances of the local neighborhood should
additionally be considered. The loss function here can be expressed as

c̃(xi , ỹi , f̃ (xi)) = max(0, 1 − ỹi f̃ (xi)) =
{

0, if ỹi f̃ (xi) ≥ 1,

1 − ỹi f̃ (xi), otherwise.
(21)

The change of loss function still satisfies the criterion of increasing the penalization for those
examples tending towards misclassification in the training, but the penalties become higher
if stray examples occur. In general, only a small portion of the training examples attained
a higher penalty. The criterion alters the loss of individual stray examples, but it does not
change the aggregative decision boundary very much, and instead it produces some stand-
alone sheltered regions for the stray examples. This is because the potential of these stray
examples is intensified locally by the kNN emphasizer and forces the convex optimizer to
produce such standalone sheltered regions.

3 Experimental Results and Discussions

3.1 General Descriptions for Experiments

This section illustrates the basic characteristics of the kNN-SVM and compares its behav-
iors with its prototype stump of the classical SVM. In the experiments, an implementation
according to Breiman’s example [19] was adopted mainly to generate an artificial dataset. In
order to clearly explain the effects on the kNN-SVM, only two classes of such normal distrib-
uted examples are taken on the two-dimensional input space, and form the simplified version
of the dataset Twonorm. In the dataset, each class was drawn from a multivariate normal

distribution with unit standard deviation. One class center is located at
(

1/
√

5, 1/
√

5
)

and

the other at
(
−1/

√
5,−1/

√
5
)

[20]. In addition, several biomedical datasets were collected

for performance tests, including Bupa [20], Diabetes [20], and Biomed [21]. According to
the previous section, the kNN emphasizer Eq. 6 is used to evaluate locally the emphasiz-
ing weights of examples with their neighbors. One should be aware of a large value of η

that will lead to fast saturation or even excess in the value of ỹi with a growing value of
k, especially for stray examples in a complicated dataset. This may seriously suppress the

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 15

Table 1 Details of datasets

Sample size Dimension of features K Preprocess
Dataset

Class A Class B Total

Twonorm 60 60 120 2 10 –
Bupa 145 200 345 6 5 Normalization
Diabetes 268 500 768 8 4 Normalization
Biomed 66 126 192 4 6 Normalization

sensitivity of the emphasizing weights that the examples in the neighboring region ought to
have. Table 1 shows the details of all the datasets uses in this paper. In addition, an assessment
of generalization performance with K -fold cross-validations is also described. A capitalized
“K ” is used here to make a difference with the special term of “k” for the kNN. The assessment
of the generalization ability is an important issue for learning methods.

3.2 Changes of Decision Boundary

A separating hyperplane of dataset Twonorm depicted by the kNN-SVM is shown in Fig. 3b,
and a comparison with that is made in Fig. 3a using the classical SVM. In this example, both
the penalty factors, C̃ in the kNN-SVM and C in the classical SVM, are set to 1 × 102. The
other relevant parameters setting the kNN-SVM are given as k = 19, η = 4 and σ̃ = √

d
in RBF kernel. Comparing to Fig. 3a, a more rugged hyperplane in Fig. 3b is obtained by the
kNN-SVM. Instead of the smaller margin, the hyperplane obtained by the kNN-SVM creates
sheltered sub-regions to make all the examples with same class label fall on the same side
of the decision boundary. In Fig. 3b, the kNN-SVM urges the decision boundary to produce
the sub-regions with various piecewise shapes, such as breaking into standalone islands or
sticking out as peninsulas that are almost surrounded by the adversaries. This situation can
be explained as follows. A crucial example settles, unfortunately, with its nearest k neighbors
carrying class labels with an opposite value, and has been recognized as a stray example.
As the essential goal of maintaining the membership of such an example in its native class,
the kNN-SVM increases ỹi to set apart the stray example from the adversarial class. This
means that protecting the stray example cannot be abandoned easily. In Fig. 3, the counts of
the misclassified examples—those marked as solid symbols—are reduced from 19 to 16 due
to the moderate change of the hyperplane. According to the rugged hyperplane, the related
evidence of margin is reduced from 10.03 × 10−2 to 6.56 × 10−2. As mentioned above, the
margin reduction is a cost to trade off with the misclassification reduction in the training
phase. The misclassifications, in our assumption, may consist of some stray examples which
are immersed in the adversaries.

Similar tests were extended to the other datasets to validate the classifier’s capability more
widely (Table 2). The results show that the proposed kNN-SVM consistently has lower train-
ing error and higher generalization error than the underlying SVM does. Here, the higher
generalization error is assessed directly by the narrower margin. Compared to an optimized
prototype SVM with a set of equivalent parameter settings, the kNN-SVM with the addi-
tional emphasis of the stray examples may thus cause the system to be slightly over-fitted.
The overfitting, as it happens, is related to the employment of the kNN-SVM, so users should
consider this and carefully deal with it.

123

16 C.-Y. Yang et al.

Fig. 3 A comparison of
hyperplanes from both
(a) classical SVM and (b)
kNN-SVM with equivalent
parameter settings, code words of
k j is placed beside the examples

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

(a)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

18

14

13

12

18

16

5

18

10

9

18

16

12
6

18

4

17

13

17

3

10

6

16

7
16

15

8

16

15

12

10

5

1612

17
6

10

4
12

8

12

14

11

16

11

15

7

14

16

17

14

3 15

15

14

11

12

17

15

17

8

13

14

6

5

14

10

15

12

14

11

15

12

16

18

16

15

16

12

13

15

12

4

15

17

12

12

17

8
9

13

17

15

18

16

15

18

15

9

5

4

16

15

17

13

17

19

13

16

17

11

16

4

7

8

13

13

17

16

18

(b)

3.3 Effects of Relevant Parameters

Upon examining the reduction along the increasing value of acceleration factor η, both the
margin and training error reductions are found to be common effects. Diagrams of both reduc-
tions are given in Fig. 4. Even though both the equivalent settings of C̃ = C are changed from
102 to 101, the margin and classification errors of the kNN-SVM are generally lower than
those of the classical SVM if a sufficient value of η is adopted. The general conditions can

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 17

Table 2 Extended validations on the datasets

Parameter setting Misclassification counts Margin (×10−2)

Dataset σ

C = C̃ k η kNN-SVM Classical SVM kNN-SVM Classical SVM

Twonorm
√

2 1 × 102 19 4 16 19 6.56 10.03
Bupa

√
6 1 × 102 13 4 73 83 3.97 4.14

Diabetes
√

8 1 × 103 23 6 112 144 0.68 1.22
Biomed

√
4 1 × 101 25 4 16 18 17.06 21.71

be concluded as followings. Together with the lower classification error in Fig. 4b, a margin
reduction can consistently be found in Fig. 4a as a sacrifice to trade off for classification
accuracy in the training phase. The reduction of classification error is slightly increased with
a higher value of η, which means that more stray examples are correctly classified in the
training phase when the penalties from Eq. 6 are heavier. In terms of generalization perfor-
mance, value of η shall not be too large to avoid an unexpected overfitting. In fact, a stray
example with a huge value of η will dominate the other non-stray examples, and consume
too much of the counter-balanced penalty in configuring the optimal separating hyperplane.
This unexpected overfitting, as can be observed in the figure if η approaches a larger value,
would degrade the generalization performance of the hypothesis (Fig. 4c). The details of this
degradation will be discussed in the following section. However, a small but sufficient value
for η to provide a smooth enough hypothesis is important in the model. Compared with the
parameter-optimized classical SVM, a value slightly small than the equivalent C is suggested
for C̃ in order to compensate for the increased penalty from the kNN emphasizer (Fig. 4c).

The examination is extended to the verification of parameter k in the filtering stage (Fig. 5).
One should be convinced again that the diagram meets the assumption in the previous sec-
tions. The training error from the kNN-SVM is generally lower than the classical SVM,
even if we set k to a large value. During the training stage, we can see that the scale of
misclassification reduction depends not only on η but also on k. As illustrated in Fig. 5, the
maximal reduction of training error will generally be satisfactory with a relatively small value
of k in the beginning. The reduction is similar to the behavior of the class of kNN classifier.
According to the behavior, the training error is approximated as an increasing function of k
because of the inverse correlation between the neighboring number k and the model com-
plexity [11,13]. Hence, a setting of k as large as possible is suggested if the model complexity
is concerned. In fact, the setting of a larger value of k refers to more reference examples in
the neighboring region, and urges the posteriori density P(ω j |x) in Eq. 4 to behave more
like a global estimation. This also avoids the condition of high model complexity caused by
an overemphasis of the locality in the input space, since high model complexity in general
leads to degradation in the generalization performance. In spite of the consideration of model
complexity, it is noted that an excessively large value of k would unfortunately suppress
the sheltering effect. The setting of k actually depends on the tradeoff between the model
complexity and the sheltering effect.

3.4 Classification Improvement in the Neighborhood of Stray Examples

As mentioned above, the kNN emphasizer is able to resist the inattention to stray
examples. This resistance protects the stray examples from neglect by an un-weighted hypo-
thesis if they are highly important in the training set. If test examples appear close to the stray

123

18 C.-Y. Yang et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.05

0.1

0.15

0.2

0.25

0.3
M

ar
gi

n

kNN-SVM (C=1e+1)1

Classical SVM (C=1e+1)1

kNN-SVM (C=1e+2)2

Classical SVM (C=1e+2)2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12

14

16

18

20

22

24

26

T
ra

in
in

g
E

rr
or

 (
%

)

kNN-SVM (C = 1e+1)1

Classical SVM (C = 1e+1)1

kNN-SVM (C = 1e+2)2

Classical SVM (C = 1e+2)2

 (a) (b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18

19

20

21

22

23

24

25

G
en

er
al

iz
at

io
n

E
rr

or
 (

%
)

η

ηη

kNN-SVM (C =1e+1)1

Classical SVM (C =1e+1)1

kkNN-SVM (C =1e+2)2

Classical SVM (C =1e+2)2

(c)

Fig. 4 (a) Margin, (b) training errors, and (c) generalization errors with increased settings of acceleration
factor η. The superscript “1” dedicates to the equivalent condition of C = C̃ = 1 × 101, and the superscript
“2” dedicates to C = C̃ = 1 × 102. Here, k is chosen as 19

examples with an identical class label, they will be protected by the sheltering effect. In order
to examine this effect, an experiment was designed and tested on the dataset Twonorm. This
experiment is designed to examine the classification improvement if some validation exam-
ples are aggregated close to the emphasized stray examples. If the emphasized stray examples
have been given heavier weights, those validation examples may gain much confidence due
to their closeness to the emphasized stray examples.

The procedures to generate the validation examples are described as follows. First, the
emphasized stray examples were selected from the other prototypes with their ỹi greater than
the average of

∑
ỹi/n. In contrast to the other prototypes, marked as small symbols “�”

and “◦,” for two classes, 31 of the scattered prototypes indicated by the large symbols are
selected in Fig. 6a as the mother emphasized stray examples, and these are marked with the
larger symbols “�” and “◦,” according to the two classes. Second, the validation examples
were then generated around those emphasized stray examples with an underlying parametric
distribution. For the illustrative instance, we chose five examples randomly drawn from a
multivariate distribution with their mean lay on the location of a certain mother emphasized
stray example. We collected all the five examples of every mother emphasized stray example,
and formed the full set of 155 validation examples. All the validation examples were assigned
the same class labels as their mother emphasized stray examples. The full validation set is

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 19

0 10 20 30 40 50 60 70 80 85

0.1

0.15

0.2

0.25

0.3

k

M
ar

gi
n

kNN-SVM (C = 1e+1)1

Classical SVM (C = 1e+1)1

kNN-SVM (C = 1e+2)2

Classical SVM (C = 1e+2)2

0 10 20 30 40 50 60 70 80 85
9

10

11

12

13

14

15

16

17

k

T
ra

in
in

g
E

rr
or

 (
%

)

kNN-SVM (C = 1e+1)1

Classical SVM (C = 1e+1)1

kNN-SVM (C = 1e+2)2

Classical SVM (C = 1e+2)2

(a) (b)

0 10 20 30 40 50 60 70 80 85
18

19

20

21

22

23

24

25

k

G
en

er
al

iz
at

io
n

E
rr

or
 (

%
)

kNN-SVM (C=1e+1)1

Classical SVM (C=1e+1)1

kkNN-SVM (C=1e+2)2

Classical SVM (C=1e+2)2

(c)

Fig. 5 (a) Margin, (b) training errors, and (c) generalization errors with increased setting of k. The super-
script “1” dedicates to the equivalent condition of C = C̃ = 1 × 101, and the superscript “2” dedicates to
C = C̃ = 1 × 102. Here, η is chosen as 14

shown in Fig. 6b with the points marked with “�” and “©” symbols. Here, the standard
deviation of the multivariate normal distribution is 0.5 for the illustrative instance. More
validation sets with different settings of standard deviation are presented below.

As described previously, the model a kNN emphasizer, referring to a local density esti-
mator, provides protection for the stray examples. If those stray examples are substantial in
the learning set of a real application, we believe that a large number of examples with an
identical class label will replicate anywhere with feature values that are near to the stray
examples. Based on the assumption, the sub-regions created by the emphasized stray exam-
ples will make sense according to the type of classifications. The degree of improvement can
be determined by counting the misclassifications that are marked as solid symbols in Fig. 7.
Compared to the 102 misclassifications produced by the classical SVM (Fig. 7a), the rugged
separating hyperplane of the kNN-SVM (Fig. 7b) produces only 81 misclassifications. It is
obvious that the hyperplane with local sub-regions is capable of improving the classification
with examples that behave like the emphasized stray examples.

Following the illustrative instance above, we changed the standard deviation to differ-
ent values, and repeated the experiment several times. For each standard deviation setting,
5 batches of the 155 validation examples are generated repeatedly to test the sheltering effect.
The results were then averaged, and they are listed on Table 3. In the test, various standard

123

20 C.-Y. Yang et al.

Fig. 6 The randomly generated
validation examples: (a)
Emphasized stray examples
selected from the prototypes, and
(b) Generated validation
examples with their mother
emphasized stray examples

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

1

2

3

4
5

6

7

8

9
A

B

C

D

E

F

G

H

I

J

K

L

M

N

O
P

Q

R

S

T

U

V

(a)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

1
1

1 1

1

1

2
2

2

2

2

2

3
3

3
3

3

3

4

4

4

4

445 5

5

5

5
5

6

6

6

6

6
6

7

7 7

7

7 7

8

8

8

88
8

9

9

9

9

9

9

A A

A

A A

A

B
B

B
B

B

B

C C

C

C

C
C

D
D D

D

D

D

EE

E

EE

E

FF

F

F

F

F

G

G

G G

G G

HH

H

HH

H

I

I I

I

I

I

J
J J
JJ JK

K K

K
K

K

L
L

L

L

L

L

M

M

M

M M
M

N

N

NN

N

N

O

O

O

O

O

O

P

P
P

P

P

P

QQ

Q

Q

Q

Q

R
R

R

R

R

R

S

S

S
S

S

S

T

T

TT

T

T

UU
U

U

U

U

V
V

V

V

V

V

(b)

deviations were used to control the scattering range of the validation examples. The smaller
the standard deviation, the narrower is the scattering range. The table shows that the mis-
classification counts from the validation sets with small values of standard deviation are
consistently lower than those with large values. All the sets with various standard deviations
generally render an improved classification.

To show the effect to general real-world applications, some experiments have been car-
ried out with the datasets listed in Table 1. By following the same procedure as described
previously, the experiments are aimed to seek a set of parameter settings which achieves the

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 21

Fig. 7 Comparison of the
classification of full validation
set: (a) Classified by the classical
SVM, and (b) Classified by the
kNN-SVM. The
misclassifications are represented
by the solid symbols

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

1

2

3

4
5

6

7

8

9
A

B

C

D

E

F

G

H

I

J

K

L

M

N

O
P

Q

R

S

T

U

V

(a)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

1

2

3

4
5

6

7

8

9
A

B

C

D

E

F

G

H

I

J

K

L

M

N

O
P

Q

R

S

T

U

V

(b)

lowest classification error rates via a grid-search scheme. With the best parameter settings, a
comparison of the lowest classification error rates is concluded in Table 4. In addition to the
comparison between the results of the kNN-SVM and those of the classical SVM, the results
of cascaded SVM–SVM approach are also included in the table. The cascaded SVM–SVM
approach adopts an underlying SVM as the preprocessor, instead of the kNN preprocessor,
and presumes an underfitted setting σp = σ̃ and C p = 0.1C̃ to collect sufficient stray
examples for the preprocessor. In SVM–SVM, the class labels of the stray examples are then
emphasized by:

123

22 C.-Y. Yang et al.

Table 3 Classification improvement in the validation sets with various standard deviation

Standard deviation
Misclassification counts Repetition

.1 .3 .5 .7 .9

1 93 110 113 112 114
2 96 106 102 106 109

Classical SVM 3 96 97 106 115 105
4 97 105 103 110 103
5 97 103 116 96 110

Average 95.8 104.2 108 107.8 108.2

1 49 73 97 101 97
2 49 73 87 98 100

kNN-SVM 3 48 74 91 86 92
4 45 78 93 96 100
5 53 89 115 96 102

Average 48.8 77.4 96.6 95.4 98.2

ỹi =
{

yi , yi f (xi) > 0
yi (1 − η′yi f (xi)), yi f (xi) ≤ 0,

(22)

where η′ is also an acceleration parameter. Although the SVM–SVM may form a similar
hybrid model, its sheltering effect is different. The kNN is more advantageous to the prepro-
cessor to capture the stray examples locally. It is really different from the global perspective
achieved by the SVM preprocessor. From Table 4, a better sheltering effect of the kNN-SVM
is obtained with rough grids searching, compared with those of the best configured SVM-
SVM and classical SVM. The results confirm that the sheltering effect on the stray examples
is something to which particular attention should be paid.

3.5 Generalization Performance via K -Fold Cross Validation

The generalization performance is an important issue to qualify a learning hypothesis. In
general, the expected prediction error over a sufficient independent validation sets is not easy
to obtain. AK -fold or leave-one-out cross validation using only one dataset is often taken to
assess the generalization performance. In this study, the method of K -fold cross-validation
is adopted as an evaluation facility for the generalization performance.

The assessment of generalization performance with varying exponential grids of C or C̃
by the K -fold validation is depicted in Fig. 8a, where K is given as 10. In the diagram, the
generalization errors of the kNN-SVM with different settings of C̃ are larger than those of
the classical SVM with equivalent settings of C . This consequence indicates the overfitting
tendency of the kNN-SVM. The justification is fair when we connect the consequence to the
reductions of training error in Fig. 4b and 5b. However, this consequence is not significant
for the current study of the kNN-SVM because we not only are concerned with the general-
ization performance, but also are concerned with the effects which may take place with the
model.

An investigation of cross-validation error with respect to the major parameter k is given in
Fig. 8b. As mentioned in Sect. 3.3, there are inverse correlations between model complexity
and k. The figure shows consistent results with the inverse correlation. With larger values of

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 23

Ta
bl

e
4

E
xt

en
de

d
va

lid
at

io
ns

of
th

e
lo

w
es

tc
la

ss
ifi

ca
tio

n
er

ro
rs

on
th

e
da

ta
se

ts
w

ith
co

rr
es

po
nd

in
g

pa
ra

m
et

er
se

tti
ng

s

L
ow

es
tc

la
ss

ifi
ca

tio
n

er
ro

r
(c

or
re

sp
on

di
ng

pa
ra

m
et

er
se

tti
ng

s)
M

ot
he

r
D

at
as

et
E

xa
m

pl
es

in
te

st
se

t
Se

ar
ch

in
g

gr
id

s
kN

N
-S

V
M

(C̃
,σ̃

,k
,η

)
C

la
ss

ic
al

SV
M

(C
,σ

)
SV

M
–S

V
M

(C̃
,σ̃

,η
′)

C̃
:{.

1,
1,

10
,
1e

2}
Tw

on
or

m
34

0
σ̃

:{.
5,

1,
2,

4,
8}

4.
12

%
(1

,2
,7

,1
)

4.
76

%
(1

0,
1)

4.
35

%
(1

,1
,8

)
k:

od
ds

fr
om

3
to

23
η

an
d

η
′ :

in
te

ge
rs

fo
rm

1
to

14
C̃

:{1
,
10

,
1e

2,
1e

3}
B

up
a

57
0

σ̃
:{

1,
2,

4,
8}

21
.5

6%
(1

0,
2,

5,
7)

24
.6

7%
(1

0,
1)

23
.1

1%
(1

e3
,2

,9
)

k:
od

ds
fr

om
3

to
15

η
an

d
η
′ :

in
te

ge
rs

fo
rm

1
to

14
C̃

:{0
.1

,
1,

10
,
1e

2}
D

ia
be

te
s

86
4

σ̃
:{1

,
2,

4}
6.

64
%

(1
0,

1,
17

,3
)

7.
91

%
(1

,1
)

9.
57

%
(1

0,
1,

5)
k:

od
ds

fr
om

3
to

23
η

an
d

η
′ :

in
te

ge
rs

fo
rm

1
to

14
C̃

:{0
.1

,
1,

10
,
1e

2}
B

io
m

ed
45

0
σ̃

:{1
,
2,

4,
8}

3.
16

%
(1

,8
,7

,3
)

3.
68

%
(1

,4
)

3.
40

%
(1

0,
4,

9)
k:

od
ds

fr
om

3
to

23
η

an
d

η
′ :

in
te

ge
rs

fo
rm

1
to

14

T
he

te
st

se
ts

ar
e

ge
ne

ra
te

d
fo

llo
w

in
g

th
e

sa
m

e
pr

oc
ed

ur
es

ill
us

tr
at

ed
in

Fi
g.

6,
an

d
st

an
da

rd
de

vi
at

io
n

0.
5

is
ad

op
te

d.
E

ac
h

ce
ll

of
cl

as
si

fic
at

io
n

er
ro

ri
s

av
er

ag
ed

fr
om

fiv
e

ra
nd

om
re

pe
at

s

123

24 C.-Y. Yang et al.

Fig. 8 Assessment of
generalization performance by
the K -fold cross-validation:
(a) Cross-validation errors in
both training phases and test
phases. The conditions of k = 19,
η = 4, and C = C̃ are used.
(b) Cross-validation errors with
increasing value of k. Setting
η = 4 and C = C̃

10-1 100 102 104 106

5

10

15

20

25

30

35

40

C

C

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

kNN-SVM Test Phase
Classical Test Phase
kNN-SVM Training Phase
Classical Training Phase

(a)

10-1 100 10 2 104 106
18

20

22

24

26

28

30

32

34

36

38

40
C

ro
ss

-V
al

id
at

io
n

E
rr

or
 (

%
)

kNN-SVM (k = 19)
kNN-SVM (k = 49)
kNN-SVM (k = 79)
kNN-SVM (k = 109)
Classical SVM

(b)

k, there will generally be less the cross-validation error. In fact, a high value of k brings the
local density estimation of Eq. 4 into a state of globalization. This, of course, conducts the
model simplified.

Eventually, a set of optimal parameter settings should be obtained to sustain the
kNN-SVM’s generality. The basic principle of parameter settings is to seek its optimal values
and thus to preserve the expected sheltering effect as much as possible and a low generaliza-
tion error simultaneously. The selection of these values is indeed an optimization problem
and will be investigated in future study.

3.6 Simulated Application on Pattern Recognition

To understand the practical applications of kNN-SVM, we present a scenario of image resto-
ration to describe its effects on digital image processing. This scenario uses a blurred image,
which might be the photograph of a moving vehicle escaping from the scene of an acci-
dent. In general, the image would be segmented into piecewise patterns and be recognized
carefully, since the patterns on the image might be too fuzzy to interpret. Often, a thinning
technique to extract the skeleton of the unclassified patterns is an intuitive idea for process-
ing before recognition. In order to obtain a more distinct boundary from the hazy outline
of those patterns, an additional process of utilizing SVM to enclose the patterns by their

123

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 25

(a)

(b) (c)

Fig. 9 Simulated application on image processing: (a) Original patterns, (b) Restored by classical SVM, and
(c) Restored by kNN-SVM

123

26 C.-Y. Yang et al.

exact borders—not only the outer border, but also the inner border—before the thinning may
be helpful for the recognition task. For instance, Fig. 9a shows three simulated characters
with some inner corrupted noise. The case of such characters assumes that the inner noise is
not easily rejected, and is harmful to the thinning algorithms. Serious noise may change the
connected border and possibly results in an incorrect skeleton. The SVM model is therefore
introduced to improve the restoration of the inner borders. The decision boundary by SVM,
separating the black pixels from the surrounded blank pixels in the two dimensional spatial
space, can be employed to sketch out the borders. Under equivalent parameter settings of
C = C̃ = 1, σ = √

d, k = 11, and η = 1, the resultant borders restored by the classical
SVM and the kNN-SVM are shown in Fig. 9b, c, respectively. In comparison, the kNN-SVM
has better results than the classical model. The results show that the kNN emphasizer with
its sheltering effect is really beneficial for reconstructing the corrupted sub-regions.

4 Conclusions

The paper presents an embedded classification model, kNN-SVM, to deal with the stray
examples which deviate from their majorities. The objective of the model is to spotlight
those heterogeneous stray examples, and provide a sheltering effect to protect them in the
classification. With the preprocessor of kNN emphasizer searching locally for stray example
candidates, the objective is achieved by the consecutive SVM classifier. The main results
show significant improvement with the use of the paradigm. Detailed corresponding resident
properties in the model are also examined to accomplish the study. In this paper, the key
of parameterized class labels is used not only as a relaxation to the penalization policy in
the loss function, but also as a remedy to connect both the kNN and SVM subsystems. In
particular scenarios, the model demonstrates excellent accuracy and robustness for mining
heterogeneous examples residing in the neighborhood of the stray training examples.

Acknowledgements The authors would like to express their appreciation to Timothy Baker, PhD and Liou-
Chun Chang, PhD for their helpful comments on this paper. The first author dedicates this paper to the memory
of his father (Shiou-Ching Yang, 1925-2007), who had given him rigid discipline and education.

References

1. Vapnik VN (1995) The nature of statistical learning theory. Springer-Verlag, New York
2. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999.

doi:10.1109/72.788640
3. Schölkopf B, Smola AJ (2002) Learning with kernels. MIT Press, Cambridge, MA
4. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21–27.

doi:10.1109/TIT.1967.1053964
5. Duda RO, Hart PE (1973) Pattern classification and scene analysis. John Wiley and sons, New York
6. Fukunaga K (1990) Statistical pattern recognition. 2. Academic Press, San Diego
7. Duda RO, Hart PE, Stork DG (2000) Pattern classification. John Wiley and sons, New York
8. Webb A (2002) Statistical pattern recognition,. 2. John Wiley and sons, New York
9. Hsu C-C, Yang C-Y, Yang J-S (2005) Associating kNN and SVM for higher classification accuracy. In:

International conference on computational intelligence and security. Xi’an, China, pp. 550–555
10. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297
11. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer-Verlag, New

York
12. Bartlett PL, Jordan MI, McAuliffe JD (2003) Convexity, classification, and risk bounds. Technical report

638, Department of Statistics, UC Berkeley, CA
13. Vapnik VN (1998) Statistical learning theory. John Wiley and sons, New York

123

http://dx.doi.org/10.1109/72.788640
http://dx.doi.org/10.1109/TIT.1967.1053964

Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor 27

14. Shawe-Taylor J, Bartlett PL, Williamson RC, Anthony M (1998) Structural risk minimization over data-
dependent hierarchies. IEEE Trans Inf Theory 44(5):1926–1940.doi:10.1109/18.705570

15. Zhang T (2004) Statistical behavior and consistency of classification methods based on convex risk
minimization. Ann Stat 32:56–85. doi:10.1214/aos/1079120130

16. Yang C-Y, Chou J-J, Yang J-S (2003) A method to improve classification performance of ethnic minor-
ity classes in k-nearest-neighbor rule. In: IEEE international conference on computational cybernetics.
Siófok, Hungary

17. Yang C-Y, Hsu C-C, Yang J-S (2006) A novel SVM to improve classification for heterogeneous learn-
ing samples. In: International conference on computational intelligence and security. Guangzhou, China,
pp. 172–175

18. Schölkopf B, Smola AJ, Müller KR (1998) Nonlinear component analysis as a kernel Eigen value problem.
Neural Comput 10:1299–1319. doi:10.1162/089976698300017467

19. Breiman L (1996) Bias, variance and arcing classifiers. Technical report 460, Department of Statistics,
UC Berkeley, CA

20. Murphy PM (1995) UCI-benchmark repository of artificial and real data sets. University of California
Irvine. http://www.ics.uci.edu/~mlearn

21. Vlachos P, Meyer M (1989) StatLib. Department of Statistics, Carnegie Mellon University. http://lib.stat.
cmu.edu/

123

http://dx.doi.org/10.1109/18.705570
http://dx.doi.org/10.1214/aos/1079120130
http://dx.doi.org/10.1162/089976698300017467
http://www.ics.uci.edu/~mlearn
http://lib.stat.cmu.edu/
http://lib.stat.cmu.edu/

	Stray Example Sheltering by Loss Regularized SVMand kNN Preprocessor
	Abstract
	1 Introduction
	2 Merging kNN with SVM
	2.1 Loss Functions in SVMs
	2.2 A Preprocessor to Emphasize Local Heterogeneities
	2.3 Support Vector Machines Carrying Emphasized Weights
	2.4 A Two-Stage Model
	2.5 Change of Loss Through Merging

	3 Experimental Results and Discussions
	3.1 General Descriptions for Experiments
	3.2 Changes of Decision Boundary
	3.3 Effects of Relevant Parameters
	3.4 Classification Improvement in the Neighborhood of Stray Examples
	3.5 Generalization Performance via K -Fold Cross Validation
	3.6 Simulated Application on Pattern Recognition

	4 Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

