
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009 2925

Obstacle-Resistant Deployment Algorithms
for Wireless Sensor Networks

Chih-Yung Chang, Associate Member, IEEE, Chao-Tsun Chang, Yu-Chieh Chen, and Hsu-Ruey Chang

Abstract—Node deployment is an important issue in wire-
less sensor networks (WSNs). Sensor nodes should be efficiently
deployed in a predetermined region in a low-cost and high-
coverage-quality manner. Random deployment is the simplest way
to deploy sensor nodes but may cause unbalanced deployment
and, therefore, increase hardware costs and create coverage holes.
This paper presents the efficient obstacle-resistant robot deploy-
ment (ORRD) algorithm, which involves the design of a node
placement policy, a serpentine movement policy, obstacle-handling
rules, and boundary rules. By applying the proposed ORRD, the
robot rapidly deploys a near-minimal number of sensor nodes to
achieve full sensing coverage, even though there exist unpredicted
obstacles with regular or irregular shapes. Performance results
reveal that ORRD outperforms the existing robot deployment
mechanism in terms of power conservation and obstacle resistance
and, therefore, achieves better deployment performance.

Index Terms—Deployment, obstacles, wireless sensor network
(WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are composed of
many sensor nodes that are embedded with simple

processors, little memory, tiny sensing materials, and energy-
limited batteries [1]. Those tiny and low-cost sensor nodes are
deployed in large quantities in a specific sensing region for
application to environment monitoring or military detection.
One of the most important functions of the sensor node is
to collect pertinent information such as earthquake intensity,
light, or temperature measurement in environmental monitoring
applications or enemy or chemical gas detection in military
detection applications [2]–[4]. However, the accuracy of the
information depends on the quality of coverage within the
sensing region.

In the literature, existing deployment algorithms can be clas-
sified into the following three categories: 1) stationary sensor
[8], [9]; 2) mobile sensor [10]–[13]; and 3) mobile robot [14]–
[18]. Several random deployment schemes [8], [9] have been

Manuscript received July 3, 2007; revised December 21, 2007, May 16,
2008, and October 9, 2008. First published December 9, 2008; current version
published May 29, 2009. The review of this paper was coordinated by
Prof. A. Boukerche.

C.-Y. Chang, Y.-C. Chen, and H.-R. Chang are with the Department
of Computer Science and Information Engineering, Tamkang University,
Tamsui 25137, Taiwan (e-mail: cychang@mail.tku.edu.tw; ycchen@wireless.
cs.tku.edu.tw; hrchang@wireless.cs.tku.edu.tw).

C.-T. Chang is with the Department of Information Management,
Hsiuping Institute of Technology, Taichung 41280, Taiwan (e-mail: cctas@
mail.hit.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2008.2010619

proposed for the deployment of stationary sensors. Random
deployment is simple and easy to implement. In a randomly
deployed WSN, a number of coverage maintenance protocols
have been proposed [5]–[7]. However, the number of deployed
sensors is much larger than what is actually required to ensure
full coverage. Randomly deploying stationary sensors may
result to an inefficient WSN, where some areas are densely
deployed while the other areas have a low density deployment.
The denser deployment in some areas increases the hardware
cost, whereas a sparse deployment in the other areas results to
coverage holes or network partitions. As a result, there is no
guarantee for full coverage, and a considerable hardware costs
are needed.

Some other studies [10], [11] address the coverage problems
in a mobile WSN, which is composed of a large number of sta-
tionary sensors and a few mobile sensors. After an initial phase
of random deployment of stationary sensors, mobile sensors are
coordinated to compute for their target locations according to
the information regarding the holes in the monitoring area and
then move to the target locations to heal the existing coverage
holes. However, hardware costs cannot be reduced in those
areas that were densely deployed with stationary sensors. Previ-
ous works [12], [13] further considered the mobile WSN, which
is wholly composed of mobile sensors. With mobility support,
the neighboring mobile sensors can cooperatively adjust their
locations to achieve full coverage. However, each mobile sensor
requires additional hardware cost that supports the mobility, and
considerable energy consumption is required for each mobile
sensor that moves from one location to another.

An alternative [14]–[18] is the use of robots in deploying
static sensors in a given region. The robot explores the envi-
ronment and deploys a stationary sensor on the target location
from time to time. Robot deployment can achieve full coverage
with fewer sensors and increase the sensing effectiveness of
stationary sensors to guarantee full coverage and connectivity.
In addition, the robot may perform other missions such as
hole detection, redeployment, monitoring, and so on. However,
the unpredicted obstacles can challenge robot deployment and
make a great impact on the deployment efficiency. It requires
much more effort to develop a robot deployment mechanism
that uses fewer sensors for full coverage and power effi-
ciency, even though the monitored regions contain unpredicted
obstacles.

In [15], the robot deploys the sensors according to the pre-
defined direction priorities of south, west, north, and east. Each
sensor counts the time interval that the robot does not explore
for each direction. Deployed sensors within the communica-
tion range of the robot may guide the robot’s movement by

0018-9545/$25.00 © 2009 IEEE

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

2926 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

TABLE I
COMPARISON OF THE MAIN CHARACTERISTICS OF THE PROPOSED SCHEME WITH PREVIOUS SCHEMES

suggesting a suitable direction with the maximum time interval
to the robot. When the robot receives the different suggestions,
it integrates them and selects the best direction for patrol and/or
sensor deployment. To reduce the impact of obstacles, previous
work [18] proposes four traveling orders, namely, 1) random,
2) cross, 3) line, and 4) circle, as the movement options of
the robot. Since each subsequent movement is determined
by the predefined rules regardless of the obstacles relative
to the robot, both approaches of Batalin and Sukhatme [15],
[18] cannot guarantee full coverage and may even introduce
several sensing redundancies when the robot encounters the
obstacles. In addition, there is no discussion about how to
handle the irregular obstacles. To handle the obstacles problem,
Wang et al. [17] proposed a centralized algorithm that uses
global obstacle information to calculate the best deployment
location of each sensor. Although the proposed mechanism
achieves full coverage and connectivity using fewer stationary
sensors, global obstacle information is required. However, since
global information is not possible in an unexplored region,
the developed mechanism could only be used for limited
applications.

This paper presents the efficient obstacle-resistant robot de-
ployment (ORRD) algorithm, which involves the design of
a node placement policy, a serpentine movement policy, and
obstacle-handling rules. Performance analysis of the proposed
ORRD is given in terms of the number of required sensors
for an environment containing several irregular obstacles. Sim-
ulation results revealed that the proposed ORRD overcomes
the unpredicted obstacles and deploys fewer static sensors but
achieves higher coverage percentages compared to existing
deployment algorithms. Table I summarizes the characteris-
tics of the related studies and the proposed ORRD. In com-
parison, the major difference between this paper and related
studies is that the obstacles are unknown and irregular, which
raises challenges in designing an efficient robot deployment
mechanism.

The rest of this paper is organized as follows. Section II
introduces the environment and basic concepts of this paper.
The proposed ORRD algorithm is presented in Section III,
while Section IV proposes the boundary problems and its
handling rules. Section V analyzes the performance efficiency
of ORRD. Section VI investigates the performance of ORRD
by simulation study, while Section VII concludes this work and
gives some suggestions for future studies.

Fig. 1. (a) Optimal deployment of the three nearby sensors A, B, and C.
(b) Serpentine movement deployment.

II. NETWORK ENVIRONMENT AND BASIC CONCEPTS

A. Network Environment

Consider a single robot with limited static sensor nodes that
is equipped with a compass that keeps track of the direction
of its movements. Assume that the boundaries of a given
monitoring region are known by the robot. Further, assume
that the robot is initially located at the upper left corner of
the monitoring region. This constraint can be removed when
the obstacle is taken into account. Let rc and rs denote the
communication and sensing ranges, respectively. Herein, we
assume that rc is larger than

√
3rs.

B. Basic Concepts

An optimal robot deployment means that the robot deploys
a minimal number of sensors to achieve the purpose of full
coverage. To achieve an optimal deployment, the overlapping
region of neighboring sensor nodes should be strictly controlled
[17]. Fig. 1(a) illustrates the basic requirement for optimal
deployment. Let nodes A, B, and C be the three neighboring
sensors. The optimal deployment can be reached if the three
sensor nodes intersect with each other at one point. In this
situation, the distance of any pair of A, B, and C is exactly
equal to

√
3rs. Based on this observation, a deployment policy

directs the robot to deploy a sensor every
√

3rs.
In addition to the deployment policy, a serpentine movement

policy is employed to guide the robot’s movement. Fig. 1(b)
depicts the serpentine movement when the robot deploys a
sensor every distance interval of

√
3rs.

Furthermore, the proposed ORRD aims to efficiently over-
come the unpredicted obstacle and develops obstacle-handling

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-RESISTANT DEPLOYMENT ALGORITHMS FOR WIRELESS SENSOR NETWORKS 2927

Fig. 2. Deployment by applying the obstacle-handling mechanism.

rules to alleviate the negative impact of obstacles on the deploy-
ment task. As shown in Fig. 2, the black blocks represent three
obstacles with different shapes, and the directional lines denote
the trajectory of the robot’s movement by applying the proposed
ORRD. To highlight the movement trajectory, sensors deployed
in the WSN are not shown in the figure. The trajectory shows
that ORRD takes into consideration the unpredicted obstacles
and achieves full coverage even though obstacles exist in the
monitoring region.

III. ORRD MECHANISM

A. Legal Movement Pattern

This section presents the serpentine deployment mechanism
that enables the robot to deploy the minimum number of sen-
sor nodes to achieve full coverage and overcome unpredicted
obstacles. The following paragraph will introduce the basic
rules for simple serpentine deployment without considering any
obstacle. Afterward, the obstacle-resistant deployment rules are
proposed.

The robot will deploy a sensor node after each movement
for a distance of

√
3rs. To achieve the optimal deployment, the

movement of the robot should be one of the six legal patterns as
shown in Fig. 3(a). The six types of basic movement are referred
to as the legal patterns for basic movement. Types 1 and 2 are
used when the robot moves toward the east and west directions,
respectively. As shown in Fig. 1(a), the sensor nodes deployed
on the ith row are located on the perpendicular bisector of two
neighboring sensors deployed on the (i − 1)th row. When the
robot encounters a boundary or obstacle, it should deploy the
sensor on the next row. That is, the robot should move toward
the south. Type 3 will be used when the robot moves toward
the west direction but encounters the left boundary or obstacle.
In this case, the robot will initially move toward the south for
a distance of (3/2)rs and then moves toward the east for a
distance of (

√
3/2)rs. Similarly, type 4 is used when the robot

moves toward the east but encounters the right boundary or
obstacle. To overcome the unpredicted obstacles, sometimes,
the robot would move toward the north direction. Types 5 and
6 are used when the robot tries to overcome the obstacle and
moves toward the north direction. Fig. 3(b) shows an example
of the deployment by applying the six types of basic movement.

B. Simple Serpentine Robot Deployment

In the serpentine movement, the robot stays in either the East
or West states. The East and West states denote that the robot
is currently moving toward the east and west directions, respec-
tively. Each state has two legal patterns of basic movement, and
the robot chooses one pattern as its movement policy according
to the priority. Table II depicts the two legal patterns of basic
movement for each state and their priorities. In both the East
and West states, Prefer Direction 1 has a higher priority that
enables the robot moving along the east and west directions,
respectively. Prefer Direction 2 has a lower priority and will be
applied in case the movement in Prefer Direction 1 is a failure.
Prefer Direction 2 will guide the robot moving toward the south.
As soon as Prefer Direction 2 is applied, the robot’s state should
be changed.

For simplicity, we assume that the robot is initially located
at the upper left corner of the monitoring region. The initial
state of the robot will be the East state. According to Table II,
the robot will determine the direction of the next movement
according to Prefer Direction 1. Hence, it moves toward the
east for a distance of

√
3rs and then deploys a sensor. The

robot will continuously move toward the east direction and
deploys a sensor after each basic movement until it encounters
the right boundary. Since the right boundary may cause the
east movement to fail, the robot makes a decision according to
Prefer Direction 2. Hence, it moves toward the south direction
for a distance of (3/2)rs and then moves toward the west
direction for a distance of (

√
3/2)rs. As soon as the robot

changes its movement direction, the state of the robot is also
changed from East to West. After that, the robot makes a
decision according to Prefer Direction 1 and, hence, moves
toward the west direction until the left boundary is encountered.
Note that the robot deploys a sensor node at a distance of every√

3rs. The East and West states can take place by turns in the
serpentine movement, as shown in Fig. 1(b).

C. Obstacle-Resistant Serpentine Robot Deployment

1) Impact of Obstacles: This subsection further considers
the existence of obstacles and develops an obstacle-resistant
serpentine deployment mechanism. Fig. 4 depicts two main
challenges for the developed simple serpentine movement
scheme. As shown in Fig. 4, the black region represents an
obstacle, and the directional line represents the trajectory of the
robot’s movement by applying the simple serpentine deploy-
ment mechanism proposed in Section III-B. Consequently, the
deployment results to several sensing holes. The sensing holes
A and B exist due to the obstacle, while the sensing holes C
and D exist because the robot encountered the boundary of the
obstacle and the monitoring region, respectively. This section
proposes an obstacle-resistant serpentine deployment algorithm
to overcome both the obstacle and the boundary problems.
The deployment algorithm shown later is divided into the
obstacle-handling rules and the boundary handling rules. The
obstacle-handling rules enable the robot to efficiently overcome
the obstacle and deploy sensor nodes in the monitoring region,
while the boundary handling rules address the boundary
problem.

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

2928 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

Fig. 3. Six types of basic movements and their usages. (a) Six legal patterns for basic movement. (b) Scenario of applying six types of basic movement to
overcome obstacles.

TABLE II
SIMPLE SERPENTINE DEPLOYMENT

Fig. 4. Applying simple serpentine deployment results several holes due to
the existence of obstacles and boundary.

2) Obstacle-Handling Rules: Assume that the robot stays in
the East state. The robot repeatedly applies movement type 1,
and hence, it moves to the east direction. As the robot encoun-
ters the right boundary, it checks Prefer Direction 2 according
to the simple serpentine movement mechanism and applies
movement type 4. Thus, the robot moves to the south direction
for a distance of (3/2)rs and then moves to the west direction
for a distance of (

√
3/2)rs. However, by moving this way, the

robot has no opportunity for the robot to visit the north and west
directions to redeploy sensors in the existing hole. Hence, be-
fore the robot applies the simple serpentine movement scheme,
it should first check if a sensing hole exists in the north or west
direction. This implies that the movement to the north and west
directions should be prior to the current Prefer Direction 1.

Table III lists the check directions for the robot to further
check if any sensing hole existed in the check direction. Before
moving according to Prefer Direction 1, the robot will check the
check direction first prior to its movement. In case the sensors
deployed in the check direction exist, the robot will apply the
simple serpentine movement scheme and utilize Table II to
decide the next movement direction.

TABLE III
CHECK DIRECTIONS FOR OVERCOMING THE OBSTACLE

TABLE IV
OBSTACLE-RESISTANT SERPENTINE MOVEMENT RULE

There are two check directions for each state. In case the ro-
bot stays in the East state, it initially checks Check Direction 1.
If there is no sensor deployed in the west direction, the next
movement direction will be to the west. Otherwise, the robot
will check Check Direction 2. If the north direction did not
deploy any sensor, the robot will move to the north direction
in the next movement. If, fortunately, a hole does not exist in
the two check directions, the robot will further apply the simple
serpentine movement scheme that utilizes Table II to determine
the next movement direction. If the robot stays in the West state,
the situation becomes similar to the East state and is, hence,
omitted herein.

Table IV summarizes the check directions and prefer direc-
tions with priorities. As shown in Table IV, the robot should se-
lect one of the six movement types according to their priorities.
In general, if the robot stays in the East state, the six movement
types have the following priorities:

Type2 > Type5 > Type6 > Type1 > Type3 > Type4

(←) (←) (→) (→) (→) (←) .

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-RESISTANT DEPLOYMENT ALGORITHMS FOR WIRELESS SENSOR NETWORKS 2929

Fig. 5. (a) Applying the simple serpentine deployment scheme results an inner-concave sensing hole. (b) Proposed obstacle-resistant serpentine deployment
mechanism can overcome the obstacle and achieve full coverage.

Otherwise, the six movement types have the following
priorities:

Type1 > Type6 > Type5 > Type2 > Type4 > Type3

(→) (→) (←) (←) (←) (→) .

Note that if the robot fails to move to a certain direction
with a higher priority, the robot will try the next higher priority
until a successful movement occurs. The following four rules
summarize the aforementioned obstacle-handling algorithm.
An attempt to a movement direction is said to be a failure if
there exists a deployed sensor, obstacle, or boundary in that
direction.

Rules 1 and 2 are mainly designed for handling obstacles,
while rules 3 and 4 are designed for the simple serpentine
movement. In each movement, the robot initially checks the
rules from rule 1 to rule 4 in order and then executes one of
the four rules to determine the direction of the next movement.
The robot moves toward the selected direction for a predefined
distance, as shown in Fig. 5(a), and then deploys a static
sensor.

/∗ Rules 1 and 2 are designed for overcoming obstacle.∗/

Rule 1: The robot checks Check Direction 1 (which is in
the opposite direction to Prefer Direction 1) for a
possible movement. If the attempt to this direction is
a failure, then the robot executes the next rule. Other-
wise, the robot will move toward Check Direction 1
for a distance of

√
3rs.

Rule 2: The robot tries to move to Check Direction 2. If the
attempt to this direction is a failure, then the robot
checks Rule 3 subsequently. Otherwise, the robot
will move toward Check Direction 2 for a distance
of (3/2)rs.

/∗ Rules 3 and 4 are designed for the serpentine movement.
∗/

Rule 3: The robot checks Prefer Direction 1 for a possible
movement. If the attempt to this direction is a
failure, the robot executes Rule 4. Otherwise, the
robot moves toward Prefer Direction 1 for a distance
of

√
3rs.

Rule 4: The robot checks Prefer Direction 2 for a possible
movement. If the attempt to go in this direction is
a failure and the deployment is not terminated, the

robot will go back to the location of the previously
deployed sensor and check the four rules again in
order. Otherwise, the robot will move toward to
Check Direction 2 for a distance of (3/2)rs.

A region without any deployed sensor can be treated as a
coverage hole that loses its sensing capability. Assume that the
robot stays in the East state. Applying the simple serpentine
movement (Rules 3 and 4), the robot will move from west to
east until it encounters the right boundary and then from north
to south. Thus, the most difficult situation in robot deployment
is that there exists an obstacle that results to a hole in the west or
north direction. However, if there is a hole in the west or north
direction, the robot may apply Rules 1 and 2, which examine
the west and north directions. Afterward, it moves back toward
the west and north directions to deploy the sensors in the hole
region. Hence, the four rules presented herein can overcome the
existence of an unpredicted obstacle and achieve the objective
of full-coverage deployment.

Since the obstacle-resistant serpentine deployment algorithm
also considers the two check directions, the constraint that
the robot should initially start its movement at the upper left
corner could be released. Even though the robot initially starts
its movement at the central location of the monitoring region,
the robot may apply Rules 1 and 2 to move toward the west
and north directions to deploy the sensors. Then, it moves in
the east and south directions to achieve the objective of full-
coverage deployment. The state of the robot depends on the
initial location. If the robot starts its movement in the east (or
west) boundary of the monitoring region, the robot will stay in
the East (or West) state.

Although the aforementioned four rules may overcome the
obstacles, the boundary problems still exist and may also result
to a small hole at the boundary. Section IV further proposes the
boundary rules that address the boundary problem.

IV. BOUNDARY PROBLEM AND

ITS HANDLING RULES

The boundary problem is referred to the small hole at the
boundary, even after the four rules proposed in Section III-B
are applied. Fig. 6(a) describes the boundary problem. Assume
that the robot stays in the East state and that it has recently
deployed a sensor at location b. By applying Rule 3 proposed

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

2930 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

Fig. 6. Boundary problem. The robot should make a decision on whether a
sensor should be deployed at the boundary. (a) Example of a boundary problem
when a robot has to deploy a sensor at the boundary. (b) Case when a robot does
not have to deploy a sensor at the boundary.

Fig. 7. Two cases in the S-Class boundary problem. (a) Btype 1. (b) Btype 2.

in Section III-B, the robot attempts to move for a distance of√
3rs so that it can deploy a sensor at location c. However,

the robot will encounter the right boundary before it arrives
at location c, and hence, the robot moves toward the south
direction without deploying a sensor at location c. In fact,
whether or not the robot should deploy a sensor at the boundary
depends on the boundary location. Fig. 6(b) shows a boundary
situation wherein the robot does not need to deploy a sensor
at the boundary. In this section, we will develop the boundary
rules for deciding whether the robot should deploy a sensor at
the boundary.

To make the following descriptions clear, some notations
will be used and defined as follows. Let dist(loc1, loc2) denote
the distance between two locations loc1 and loc2. Let s.loc
denote the location of a deployed sensor s. Let s1 denote the
last deployed sensor before the robot encounters the boundary
and s2 denote the sensor that the robot intends to deploy after
the next movement. Recall that there are six types of basic
movement and a boundary or obstacle may be encountered
when the robot moves using each possible type of movement.
Hence, there are ten cases of boundary problem as shown in
Figs. 7 and 8. Fig. 7(a) and (b) depicts two boundary cases when
the obstacle is encountered if the robot applies movement types
1 and 2, respectively. Fig. 8(a) and (b) depicts the other two
cases of boundary problems when the obstacle is encountered
if the robot applies movement type 3. The remaining cases can
be found in Fig. 8, i.e., when the obstacle is encountered if the
robot applies types 4, 5, and 6. The ten cases of boundary prob-
lem can be classified into the following two classes according
to movement pattern:

1) straight movement boundary class: {Btype 1, Btype 2};
2) corner movement boundary class: {Btype 3, Btype 4,

Btype 5, Btype 6, Btype 7, Btype 8, Btype 9, Btype 10}.

The straight movement boundary class (S-Class) for short,
consists of Btype 1 and Btype 2. In this class, the two cases have

similar situations wherein the robot moves along a straight line.
The other Btypes shown in Fig. 8 are included in the corner
movement boundary class (C-Class) for short. The S-Class and
C-Class problems will be tackled individually when developing
the boundary rule.

In the following discussion, we assume that the robot has
deployed sensor s1 at location s1.loc. Assume that the distance
between s1.loc and the boundary is �. Whether or not the robot
should deploy a sensor at the boundary location mainly depends
on the relationship of s1.loc and l.

A. Boundary Rule for the S-Class Boundary Problem

This section considers the robot moving toward the east or
west direction (type 1 and type 2) but encounters a boundary
or an obstacle. In the case of l ≤ (

√
3/2)rs, the robot does not

need to deploy a sensor at the boundary. On the other hand,
the robot should deploy a sensor at the boundary in the case
of l > (

√
3/2)rs. Fig. 6(a) depicts the scenario of (

√
3/2)rs <

l <
√

3rs wherein the robot should deploy a sensor at location
a to avoid the existence of a sensing hole. Fig. 6(b) depicts
the other scenario of l ≤ (

√
3/2)rs. The robot does not need

to deploy a sensor in this case, and full coverage can still be
achieved. As soon as the robot handles the obstacle or boundary
problem at location a, it should return to position b and execute
the obstacle-handling rules again. The following boundary rule
(BRule 1) concludes the aforementioned discussion. Brule 1
will be applied when movement types 1 and 2 of the robot result
to failure.

BRule 1: If (
√

3/2)rs < l <
√

3rs, the robot will deploy a
sensor near the boundary. Otherwise, the robot does not need
to deploy a sensor near the boundary, and it simply returns
to s1.loc.

B. Boundary Rule for the C-Class Boundary Problem

The C-Class boundary problem occurs when the robot ap-
plies movement types 3, 4, 5, and 6 but encounters a boundary
or an obstacle. It is different from the S-Class boundary prob-
lem since each movement type in C-Class has two segments,
i.e., moving to the north or south direction first and then moving
to the east or west direction. The robot may encounter the
obstacle either in the first or the second segment, as shown
in Fig. 8. In the case of l ≤ (1/2)rs, the robot does not need
to deploy a sensor at the boundary location while the robot
moves toward the south or north direction. On the other hand,
the robot should deploy a sensor at the boundary location in
the case of l > (1/2)rs. Since each of movement types 3, 4,
5, and 6 consists of two segments, when the robot encounters
the boundary during the movement of the first segment, it
checks the value l and makes the deployment decision. Then,
the robot continues to move along segment 2 to complete the
basic movement. Hence, the boundary problems with Btypes 3,
5, 7, and 9 can be resolved.

The remaining boundary problems in C-Class are Btypes 4,
6, 8, and 10, where the robot encounters the boundary at the
second segment. Since the robot has completed the movement

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-RESISTANT DEPLOYMENT ALGORITHMS FOR WIRELESS SENSOR NETWORKS 2931

Fig. 8. Eight cases in the C-Class boundary problem. (a) Btype 3. (b) Btype 4. (c) Btype 5. (d) Btype 6. (e) Btype 7. (f) Btype 8. (g) Btype 9. (h) Btype 10.

of the first segment, the l value must be equal to (3/2)rs. Thus,
the robot has to deploy a sensor at the boundary location to
achieve full coverage.

After the robot handles the boundary problem and completes
the current basic movement, it should return to s1.loc and ex-
ecute the obstacle-handling rules again. The following bound-
ary rule (BRule 2) concludes the aforementioned discussion.
BRule 2 will be applied when the robot applies movement type
3, 4, 5, or 6 and results to failure owing to the existence of an
obstacle or a boundary.

BRule 2: If (1/2)rs < l < (
√

3/2)rs, the robot should de-
ploy a sensor near the boundary or obstacle. Otherwise, the
robot does not need to deploy any sensor, and it simply returns
to s1.loc.

Fig. 9(a) depicts an example of applying the proposed
BRules to overcome the C-Class boundary problem. Assume
that the robot stays in the West state and moves to location a
by applying movement type 2. Once the robot deploys a sen-
sor at location a, it applies the obstacle-resistant serpentine
deployment mechanism and checks whether a hole exists in
the check direction. The robot will subsequently check if a
hole exists in the east, northeast, or northwest direction. If
there is a hole in the northwest direction, then the robot
applies movement type 5 and attempts to deploy a sensor at
location b. Unfortunately, the robot encounters an obstacle on
the first segment of movement type 5 while moving toward
the north direction. Thus, Btype 7 of the C-Class boundary
problem is encountered, as shown in Fig. 8(e). Since the value l
satisfies the criterion (1/2)rs < l < (

√
3/2)rs, the robot will

execute the BRule 2 and deploy a sensor at the location c.
Afterward, the robot returns to the position a and continues to
execute the obstacle-resistant serpentine deployment. The robot
applies the movement type 3 and deploys a sensor at location d.
A similar situation occurs at location a, and the robot detects
that there is a sensing hole that exists in the northwest direction.
According to the obstacle-resistant serpentine movement rules,
the robot applies movement type 5 and deploys a sensor at
location e. In the end, the robot achieves full-coverage deploy-

Fig. 9. Example of overcoming the C-class boundary problem by applying the
BRules. (a) An example of the C-Class boundary problem. The robot applies
BRule 2 to achieve the full-coverage deployment. (b) Boundary for Rule 2.
(The robot moves toward Check Direction 2 by about (3/2)rs and then turns
to Check Direction 1 or Prefer Direction 1 whose moving distance is not enough
(
√

3/2)rs.)

ment even though an obstacle or a boundary exists in the north
direction.

Fig. 9(b) depicts an example of the Btype 10 boundary
problem shown in Fig. 8(h). Assume that the robot stays in
the West state. The robot moves to the location a by applying
movement type 2 and then deploys a sensor in that location.
Then, the robot will check the check directions, including the
east, northeast, and northwest directions. In this example, the
robot observes that there is a hole that existed in the northeast
direction. Hence, the robot applies movement type 6, with
the intention of deploying a sensor at this location. However,
the robot encounters the obstacle on the second segment of
movement type 6, and hence, the robot applies Brule 2 to cope
with the Btype 10 boundary problem shown in Fig. 8(h). The
robot deploys a sensor at the location b and then returns to
the location a. After that, the robot will move to location c by
applying movement type 5 and deploy a sensor to achieve full
coverage.

C. Putting Obstacle and Boundary Handling Rules Together

The following algorithm integrates the obstacle-resistant ser-
pentine deployment rules and the boundary handling rules.

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

2932 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

Fig. 10. Three ways of regular deployment and their effective coverage regions. (a) Triangle deployment. (b) Square deployment. (c) Hexagon deployment.

Algorithm: ORRD
Input: A given monitoring region, which may contain obsta-

cles. A robot that carries static sensors is located in the region.
Output: A region deployed with a near-minimal number of

sensors and has achieved full coverage.
1. while there is an uncovered hole do
2. Rule1.execute
3. if Rule1.success = false then
4. Brule1.execute
5. Rule2.execute
6. if Rule2.success = false then
7. Brule2.execute
8. Rule3.execute
9. if Rule3.success = false then
10. Brule1.execute
11. Rule4.execute
12. if Rule4.success = false then
13. Brule2.execute
14. else
15. switch the state
16. end if
17. end if
18. end if
19. end
20. end while

Each rule has the execute and success attributes. The execute
attribute represents the robot executing this rule, while the
success attribute is designed to indicate whether the move-
ment is a success or not. As described in Section III-C2, the
obstacle-handling rules have a higher priority than the serpen-
tine movement rules. Hence, the robot initially executes Rule 1,
which handles the hole region caused by the obstacle. Line 2
reflects the execution of the obstacle-handling rule. However,
a boundary might be encountered during the execution of the
obstacle-handling rule. This boundary could block the robot’s
movement and cause a movement failure. Line 4 means that
the robot executes the boundary rules when the execution of
Rule 1 is a failure. Lines 5, 6, and 7 are similar to lines 2, 3,
and 4, respectively. In other words, the robot will initially try
the obstacle-handling rule. The boundary rule will be executed
in case the execution of obstacle-handling rule is a failure.
Line 8 implies that the robot executes the simple serpentine
movement. Similarly, as shown by lines 9 and 10, the boundary
rule will be executed when the simple serpentine movement is
a failure. Lines 11, 12, and 13 are similar to lines 8, 9, and 10,

Fig. 11. Effective coverage region of hexagon deployment treated as a rectan-
gle region that has the same area size as the hexagon region shown in Fig. 10(c).

respectively. These three lines handle another rule for the
serpentine movement. Notice that the robot should switch its
state if there is success when executing Rule 4.

V. ANALYSIS AND DEPLOYMENT EFFICIENCY

This section analyzes the performance efficiency of the
ORRD algorithm on the optimality of the deployed network.
First, a basic analysis that the given monitoring area contains
no obstacle is considered to analyze the efficiency of the ORRD
algorithm. Based on the basic analysis, the efficiency of the
ORRD algorithm for an obstacle environment is then evaluated.

A. Without the Obstacle Environment

Let the effective coverage region of a sensor refer to the
average coverage region that the sensor contributes to the moni-
toring area. Increasing the effective coverage of each sensor will
reduce the number of sensors required to be deployed to achieve
the objective of full coverage. For full coverage, there are three
ways of regular deployment, namely, 1) triangle deployment,
2) square deployment, and 3) hexagon deployment, as shown
in Fig. 10(a)–(c), respectively. In Fig. 10, the dotted polygon
denotes the effective coverage region of each deployed sensor,
where rs denotes the sensing range. It is trivial to say that
the hexagon deployment gave the best result, wherein each
sensor had the largest effective coverage region. Under the
hexagon deployment, the size of the effective coverage region
(a hexagonal region) can be evaluated by

Area = Δ × 6 =
√

3
4

r2
s × 6 =

3
√

3
2

r2
s .

To simplify the deployment efficiency analysis of ORRD, the
effective coverage region of a sensor in hexagon deployment
can be treated as a rectangular region with a size of 1.5rs ×√

3rs, as shown in Fig. 11, and has the same effective coverage

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-RESISTANT DEPLOYMENT ALGORITHMS FOR WIRELESS SENSOR NETWORKS 2933

Fig. 12. Example of irregular monitoring considered in the optimality analysis
for the ORRD mechanism.

region size as the hexagonal region. We refer to the rectangle
region shown in Fig. 11 as the optimal effective region. The
optimal deployment to a given area is that which not only
deploys the given monitoring area with the minimal number of
sensors but also achieves full coverage. The number of sensors
required by an optimal deployment is equal to the number of
optimal effective regions that partition the given monitoring
area.

Let L and W denote the length and width of the given
monitoring area R, respectively. Fig. 12(a) shows an example
of an irregular monitoring area and the deployment by apply-
ing the proposed ORRD. Since ORRD applies the horizontal
movement, we assume that the monitoring region R can be
partitioned into n disjoint horizontal rectangles denoted by Ri

and with the width of 1.5rs, as shown in Fig. 12(b). Let the
length of Ri be xirs. The ideal number of sensor nodes required
by optimal deployment can be derived by

Nideal(R) =

⌈
n∑

i=1

area of Ri

optimal effective coverage region

⌉

=

⌈
n∑

i=1

xirs√
3rs

⌉
. (1)

In the real scenario, the robot may need to deploy one more
sensor as it encounters the left or right boundaries of each
region Ri. Hence, the robot may deploy more sensors than with
the ideal case. Equation (2) evaluates the number of sensors
deployed by applying the ORRD mechanism in an average
case, i.e.,

NORRD(R) =
n∑

i=1

⌈
area of Ri

optimal effective coverage region

⌉

=
n∑

i=1

⌈
xirs√
3rs

⌉
. (2)

Let krs be the average length of all regions Ri, where k can
be derived by

k =
1
n
×

n∑
i=1

xi.

Fig. 13. Irregular monitoring region containing irregular obstacles considered
for optimality analysis by the ORRD mechanism.

Let the effective ratio of ORRD be the actual number of
sensor nodes required by ORRD over the optimized number.
The effective ratio of ORRD can be evaluated by the ratio
of NORRD(R) over Nideal(R), as shown in (3). Equation (3)
implies that the effective ratio of ORRD decreases with the
average length of regions Ri. This also indicates that applying
ORRD to continually deploy a large number of sensors in hor-
izontal movements will improve the effective ratio of ORRD.
Hence, the number of sensors required by ORRD will approach
the value for the ideal deployment. We have

Effective_Ratio(R) =
NORRD(R)
Nideal(R)

=

n∑
i=1

⌈
xirs√
3rs

⌉
⌈

n∑
i=1

xirs√
3rs

⌉

≤

n∑
i=1

⌈
xirs√
3rs

⌉
n∑

i=1

xirs√
3rs

≤

n∑
i=1

(
xi√
3

+ 1
)

n∑
i=1

xirs√
3rs

=
(k+

√
3)n√

3
kn√

3

= 1 +
√

3
k

. (3)

B. With the Obstacle Environment

This subsection analyzes the efficiency of ORRD in a given
monitoring area that contains obstacles. Fig. 13(a) shows an
example of an irregular monitoring area with multiple ob-
stacles and the deployment of ORRD. Initially, we do not
consider the existence of any obstacle, and we assume that
the monitoring area R is partitioned into n disjoint horizontal
rectangles, denoted by Ri with a width of 1.5rs, as shown in
Fig. 12(b). Let the length of Ri be xirs. Equations (1) and
(2) can be applied to evaluate the numbers of sensor nodes
required by the ideal deployment and the ORRD mechanism,
respectively.

Assume that there are m obstacles O1, O2, . . . , Om existing
in the irregular monitoring area. Each obstacle Oi can cover wi

disjoint horizontal rectangles denoted by Lij and with a width
of 1.5rs, where 1 ≤ j ≤ wi, as shown in Fig. 13(b). Let the

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

2934 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

length of Lij be lijrs. Let hirs be the average length of the
horizontal rectangle Lij , where hi can be derived by

hi =
1
wi

×
wi∑

j=1

lij .

The total length of horizontal rectangles covered by all obsta-
cles can be estimated by

lobstacles =
m∑

i=1

hiwi. (4)

Since the obstacles may further partition the horizontal
rectangles, we assume that the number of disjoint horizontal
rectangles outside the obstacles is t, which is a number larger
than n. Let the t horizontal rectangles be denoted by R′

i, where
1 ≤ i ≤ t, as shown in Fig. 13(b), and the length of R′

i be x′
irs.

Let krs be the average length of all regions R′
i. The value k

can be estimated by the difference between the total lengths of
xi and lobstacles divided by the number of disjoint horizontal
rectangles t, as derived by

k =
1
t
×

(
n∑

i=1

xi −
m∑

i=1

hiwi

)
(5)

Effective_Ratio(R) =
NORRD(R)
Nideal(R)

≤

m∑
i=1

⌈
x′

irs√
3rs

⌉
⌈

m∑
i=1

x′
i
rs√

3rs

⌉

≤ 1 +
t

n∑
i=1

xi −
m∑

i=1

hiwi

. (6)

According to (3), the effective ratio of ORRD can be deter-
mined by k, which is the value of the average length of all re-
gions Ri over rs. Hence, in a monitoring region with obstacles,
the effective ratio of ORRD can be evaluated by substituting
(5) into (3), as shown in (6). In this case, the obstacles will
reduce the number of continually deployed sensors in the hori-
zontal movements and, hence, reduce the average length of all
regions R′

i. The small number of continually deployed sensors
in the horizontal movement will increase the difference in the
numbers of deployed sensors between ORRD and the ideal
deployment, i.e., increasing the value of the Effective_Ratio(R)
of ORRD. Equation (6) implies that increasing the number of
obstacles or the total area of obstacles will reduce the chance of
continually deployed sensors in the horizontal movements and,
hence, decrease the value of the Effective_Ratio(R) of ORRD.

VI. PERFORMANCE STUDY

This section examines the performance study of the devel-
oped obstacle-resistant deployment mechanism. The proposed
ORRD mechanism is compared with previous work in [15] and
is referred to as CED.

TABLE V
SIMULATION PARAMETERS

A. System Model

Table V lists the parameters values that refer to the typical
parameters in the Berkeley motes [19]. The robot is assumed to
be equipped with a compass and a constant number of Berkeley
motes. The total energy and the speed of the robot are 64 800 J
and 3 m/s, respectively. The mobility cost is set to 8.267 J/m.
The experimental environment is described below. The network
size is 400 ∗ 400 m2. The starting location of the robot is at the
top left spot. The simulation result is obtained from an average
of 100 independent runs.

The proposed ORRD is compared with the CED [15] and
LRV [18] in terms of the number of deployed sensors, the
coverage percentage, and the energy consumption in a WSN
environment with or without obstacles. The four movement
policies, namely, 1) random order, 2) cross order, 3) line order,
and 4) circle order, as proposed by LRV [18], are implemented.
Two types of obstacles, namely, 1) regular obstacles and
2) irregular obstacles, are considered in the experiment. Regular
obstacles are randomly generated from among five different
shapes, as shown in Fig. 14. The process for generating an
irregular obstacle is more complicated than for regular ones.
In the experiment, an irregular obstacle is composed of 6, 9, or
12 unit squares, with each unit square having an edge length of
rs, where rs denotes the sensing range. The generation of an
irregular obstacle with size k consists of k + 1 phases, where
k is 6, 9, or 12 unit squares. Initially, an irregular obstacle
contains only one unit square. Therefore, the obstacle bound-
ary is composed of four edges. In its second phase, an edge
is randomly selected from the four edges, and an additional
unit square is attached to the selected edge. As a result, the
boundary of the irregular obstacle then becomes composed of
six edges. Let the boundary of an irregular obstacle in the ith
phase be composed of ni edges. In the (i + 1)th phase, an
edge is randomly selected from the ni edges, and an additional
unit square is attached to the selected edge. This process of
obstacle generation is executed phase by phase until k phases
are reached. As a result, the boundary of the generated irregular
obstacle with size k becomes composed of nk edges. Fig. 15(a)
shows an example of an irregular obstacle composed of nine
unit squares. Finally, in the (k + 1)th phase, each of the nk

edges is replaced by one arc randomly selected from the arcs
shown in Fig. 15(b). The following gives the details of the edge
replacement process. The arcs shown in Fig. 15(b) are classified
into two sets: 1) horizontal and 2) vertical. In the case where

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-RESISTANT DEPLOYMENT ALGORITHMS FOR WIRELESS SENSOR NETWORKS 2935

Fig. 14. Shapes of regular obstacles considered in the simulation. (a) Rectangle. (b) Square. (c) X-shape. (d) L-shape. (e) C-shape.

Fig. 15. Generation of an irregular obstacle. (a) Example of an irregular
obstacle with nine unit squares. (b) Six possible arcs that replace the boundaries
of an irregular obstacle. (c) Boundaries of an irregular obstacle replaced by the
arcs shown in (b). (d) Final version of the generated irregular obstacle with nine
unit squares.

the edge of the constructed obstacle is a horizontal edge, it is
replaced by the arc randomly selected from the horizontal arc
set; otherwise, it is replaced by the arc selected from the vertical
arc set. Fig. 15(c) depicts the generated irregular obstacle with
nine unit squares after the obstacle boundary is replaced by
arcs, while Fig. 15(d) shows the final version of the generated
irregular obstacle with nine unit squares.

B. Number of Deployed Sensors

The performance of ORRD is examined in terms of the
number of deployed sensors in the environment with/without

obstacles. Fig. 16(a) depicts the screenshot of the development
executed by ORRD in an environment without an obstacle.
In Fig. 16(a), the number labeled in each sensor denotes the
deployment order. The robot deploys a total of 174 sensor nodes
to achieve the full sensing coverage. In most cases, the ORRD
mechanism deploys the minimum number of sensor nodes,
but the whole monitoring area is fully covered. Fig. 16(b)
depicts the deployment by applying ORRD in an environment
containing a C-shape obstacle. It is observed that the robot
can efficiently overcome the obstacle and deploys 163 sensors,
which is also the minimal number of sensors required to achieve
the objective of full coverage.

Table VI presents the number of deployed sensors when
applying the ORRD, CED, and LRV mechanisms. An obstacle
with a regular-corner shape is considered in the simulation
environment. According to the predefined priority of the south,
west, north, and east directions, the CED deploys a sensor when
the robot moves out of the sensing region of the deployed sen-
sor. To reduce the impact of the obstacles, LRV determines the
movement direction according to the four policies of random,
cross, line, and circle orders. By comparison, LRV outperforms
the CED in most cases in terms of the number of deployed
sensors. Since the CED and LRV deploy a sensor by negotiating
with the closest deployed sensors, the newly deployed sensor
may have significant redundant sensing regions with the sensing
regions of the neighboring sensors. The proposed ORRD sig-
nificantly reduces the redundant coverage regions and, hence,
outperforms the CED and LRV in all cases in terms of the
number of deployed sensors.

Let coverage percentage denote the ratio of the given
monitoring region covered by the deployed sensors. Fig. 17
compares ORRD, CED, and LRV in terms of the coverage per-
centage in the environment that contains an obstacle with differ-
ent regular-corner shapes. LRV-random has poor performance
in all cases because the random-walk movement strategy is
applied. By comparison, the coverage percentage of the CED is
higher than that of LRV in all cases, except in the environment

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

2936 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

Fig. 16. Screenshots of the deployment by applying the proposed ORRD mechanism. (a) Screenshot of the deployment by applying ORRD in an environment
without an obstacle. (b) Screenshot of the deployment by applying ORRD in an environment containing a C-shape obstacle.

TABLE VI
COMPARISONS BETWEEN THE ORRD, CED, AND LRV SCHEMES IN TERMS OF THE NUMBER OF DEPLOYED SENSOR NODES

IN AN ENVIRONMENT CONTAINING A REGULAR OBSTACLE WITH VARIOUS SHAPES

Fig. 17. Comparison of coverage percentage in the environment that contains
a regular obstacle with various shapes.

that contains the C-shape obstacle. In general, ORRD keeps
the coverage percentage above 99% and outperforms CED and
LRV in all cases.

Fig. 18 rotates the regular obstacles with five shapes to
measure the number of deployed sensors by applying ORRD.
The obstacle is rotated by 45◦, 90◦, 180◦, and 270◦, and
then, the ORRD mechanism is applied to investigate the im-
pacts of the different obstacle shapes on the ORRD perfor-
mance. As shown in Fig. 18, ORRD deployed more sensors in
the environment where the obstacle is rotated by 45◦. This is be-

Fig. 18. ORRD deploying a constant number of deployed sensors even though
the five-shape obstacles are rotated with 45◦, 90◦, 180◦, and 270◦ in the
environment.

cause ORRD applies the boundary rules to avoid the existence
of sensing hole and, thus, deploys more sensors near the bound-
aries of the obstacle. In general, the proposed ORRD deploys a
similar number of sensors and can overcome various shapes of
obstacles.

Fig. 19 compares the proposed ORRD with the ideal case
in terms of the number of deployed sensors when the WSN
contains irregular obstacles. The number of irregular obstacles
ranges from one to three, and each obstacle is composed of
six, nine, or 12 unit squares. Since the shapes and sizes of the

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-RESISTANT DEPLOYMENT ALGORITHMS FOR WIRELESS SENSOR NETWORKS 2937

Fig. 19. Impact of irregular obstacles on the number of deployment sensors.

irregular obstacles are known in the ideal case, the minimal
number of required sensors to fully cover the monitoring region
can be obtained. However, ORRD does not have the obstacle
information; hence, it will apply the boundary rules to addi-
tionally deploy sensors near the obstacle boundaries to achieve
full coverage. As a result, ORRD deploys more sensors than the
ideal case for irregular obstacles. In Fig. 19, the numbers la-
beled in the ideal case represent the number of sensors required
in the ideal case, while the numbers labeled in ORRD denote
the number of sensors that need to be additionally deployed
by applying the proposed ORRD, as compared with the ideal
case. In general, both of them have a similar result, namely,
the number of deployed sensors decreases along with the size
or the number of obstacles. The reason for this is because
there is no need to deploy any sensor within the obstacle
region, which is enlarged along with the size and the number
of obstacles. The difference between ORRD and the ideal case
in terms of the number of deployed sensors highly depends
on the total boundary length of irregular obstacles. The total
boundary length increases when the number of obstacles grows
or when the sizes of the obstacles are increased. Compared with
the ideal case, the number of sensors additionally deployed by
ORRD therefore increases, along with the size and the number
of obstacles.

C. Deployment Efficiency

Deployment efficiency, which is used to measure the effi-
ciency of the deployment task, is the ratio of the ideal and the
actual number of deployed sensors, i.e.,

deployment efficiency

=
ideal number of sensor deployment
real number of sensor deployment

. (7)

A deployment efficiency of a deployment mechanism that is
close to 1 indicates that the deployment mechanism approaches
the optimal deployment. Fig. 20 compares the ORRD, CED,

Fig. 20. Comparison of ORRD, CED and LRV in terms of deployment
efficiency.

Fig. 21. Average deployment time after applying the ORRD, CED, and LRV
in the environment containing multiple regular obstacles with different shapes.

and LRV mechanisms in terms of the deployment efficiency
and the number of sensors. The monitoring area contains
obstacles with specific shapes, including rectangle, square,
X-shape, L-shape, and C-shape. The deployment efficiencies of
the CED and LRV, which significantly change with the obstacle
shapes, have average values of 0.6 and 0.58, respectively. In
general, ORRD keeps an almost constant deployment efficiency
value greater than 0.95 and outperforms the other deployment
mechanisms in all cases. By applying the proposed ORRD, the
number of deployed sensors approaches the ideal number.

D. Deployment Time

In the simulation, the deployment time refers to the time
required for the robot to achieve full coverage or a predefined
percentage of coverage. A shorter deployment time indicates
that the robot deploys sensors by traveling an efficient path and,
hence, allows the WSN to start working earlier. Each simulation
result is obtained from the average of deployment times
required for the environment containing regular- and round-
corner obstacles. Fig. 21 compares ORRD, CED, and LRV
in terms of the deployment time to achieve the full coverage.

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

2938 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

TABLE VII
ENERGY CONSUMPTION OF ORRD, CED, AND LRV

Fig. 22. Comparison of ORRD, CED and LRV in terms of energy efficiency
within a specific time period.

LRV-random has the longest deployment time in all cases
because no efficient movement strategy is applied. The CED,
LRV-line, and LRV-circle apply predefined movement rules
and spend similar deployment times in the environment without
any obstacle. However, they spend more time than ORRD to
achieve the full coverage. In the environment that contains
obstacles, the CED and LRV results in several holes that were
subsequently healed after a relatively long period of time.
The proposed ORRD efficiently overcomes different shapes
of obstacles and achieves full coverage. Consequently, the
proposed ORRD outperforms the CED and LRV in terms of
deployment time.

E. Energy Efficiency

The total energy consumption of the robot is used to evaluate
the efficiency of the robot’s moving trajectory. The energy
consumption is increased with the length of the robot’s move-
ment. Table VII summaries the total energy consumption of the
robot by applying ORRD, CED, and LRV in the environment
containing obstacles with different shapes. The LRV-random
mechanism deploys sensors without a movement strategy and,
hence, consumes more energy than the other mechanisms in
all cases. The CED and the other three mechanisms proposed
in LRV have similar performance. ORRD outperforms all the
other compared mechanisms in terms of energy consumption.
The major reason is that ORRD deploys sensors and overcomes
the obstacles with an efficient trajectory.

Energy efficiency, which is used to measure the effectiveness
of the robot’s movement, is the ratio of the final coverage per-

Fig. 23. Frequencies of six movement types applied by the robot that executes
ORRD in different environments.

centage and the total energy consumption within a predefined
time period, i.e.,

energy efficiency =
final coverage percentage
total energy consumption

. (8)

Fig. 22 compares the energy efficiency of ORRD, CED,
and LRV. The multi-X-shape obstacles raised the boundary
problems, and ORRD applies BRules 1 and 2 to achieve the
full coverage. However, the application of BRules 1 and 2 also
introduces the redundant movements and reduces the energy
efficiency. As a result, ORRD has the lowest energy efficiency
in the environment containing the multi-X-shape obstacles.

On the other hand, ORRD has the best efficient move-
ment when the obstacles are with the square or rectangular
shape. By comparison, ORRD achieves better energy efficiency
than the CED and LRV in all cases. The major reason is
that the CED and LRV have many redundant movements when
the environment contains obstacles. Another factor that lowers
the performance of the CED and LRV is that they cannot
overcome the obstacles, and thus, the deployment results in
many sensing holes within the predefined time period.

F. Applied Frequency of Movement Types and Rules

ORRD classifies the basic movement into six patterns.
Fig. 23 depicts the usages of the six movement patterns. In
the experiments, movement types 1 and 2 are used most fre-
quently. In the environment without any obstacle, the robot
always moves toward the east or west until the boundary is
encountered. Hence, movement types 1 and 2 are frequently

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-RESISTANT DEPLOYMENT ALGORITHMS FOR WIRELESS SENSOR NETWORKS 2939

Fig. 24. Applied frequency of each rule proposed in ORRD in an environment
containing a regular obstacle with various shapes.

applied. In the environment with obstacles, the robot still at-
tempts to move in a serpentine manner, i.e., moving toward
the east or west direction. To avoid the existence of sensing
hole, movement types 3, 4, 5, and 6 are used to check whether
a hole exists in the direction opposed to the current state. Thus,
such movement types will actually be applied only when the
obstacle is encountered. In particular, movement types 3, 4, 5,
and 6 are frequently used when the shapes of the obstacles are
irregular. For example, these types of movements are frequently
used by the robot when the obstacles are X-shape, L-shape, and
C-shape.

Fig. 24 measures the usage of the proposed four rules in
the obstacle-resistant mechanism and the two boundary rules.
Different shapes of obstacles are considered in the environ-
ment. Recall that Rules 1 and 2 are designed for overcoming
obstacles, while Rules 3 and 4 are designed for the serpentine
movement. In the environment without an obstacle, ORRD
applies Rules 3 and 4 to achieve full coverage. As soon as
different shapes of obstacles exist in the environment, Rules 1
and 2 are applied. In addition, a big hole might be surrounded
by several boundaries, and several small holes might exist
near the boundary. Hence, the robot applies the proposed four
boundary rules to cope with the boundary problem. The usage
of the BRule highly depends on the location and the shape of the
obstacle. Recall that the BRule is applied when the following
condition holds:{ √

3
2 rs < l <

√
3rs, for an S-Class boundary problem

1
2rs < l <

√
3

2 rs, for a C-Class boundary problem.

As shown in Fig. 22, the applied frequency of BRule 1 that
handles the failure in movement types 1 and 2 is larger than that
of BRule 2 in case that the shapes of obstacle are rectangular,
square, L-shaped, and C-shaped.

Fig. 25 measures the usage of the proposed rules in ORRD
in an environment that contains multiple irregular obstacles
with various sizes. The number of irregular obstacles is set
at one or two, while the size of each obstacle is varied by
six, nine, or 12 unit squares. Since Rule 3 is mainly designed
for the serpentine movement, which can only be applied in
regions without obstacles, the applied frequency of Rule 3

Fig. 25. Applied frequency of each rule proposed in ORRD in environments
containing one or two irregular obstacles of sizes six, nine, or 12 unit squares.

Fig. 26. Applied frequencies of BRules 1 and 2 for the environment contain-
ing irregular obstacles.

decreases along with the size and the number of the obstacles.
Rule 4 is applied when switching between the “West” and
“East” states whenever boundaries of obstacles or monitoring
regions are encountered by the robot. Similarly, the BRule 1 is
applied only when the boundaries of obstacles and monitoring
regions are encountered by the robot. As a result, the applied
frequencies of Rule 4 and BRule 1 increase along with the
number and size of the obstacles. Compared with BRule 1,
BRule 2, Rule 1, and Rule 2 are applied less frequently because
they are designed for handling special situations that appear less
frequent.

Fig. 26 investigates the impact of irregular obstacles on the
applied frequencies of BRule 1 and BRule 2. The number of
obstacles ranges from 1 to 3, and the sizes of each obstacle
are set to six, nine, and 12 unit squares. In general, the applied
frequency of BRule 1 is more than that of BRule 2, regardless of
whether the obstacle shape is regular or irregular. The proposed
BRule 1 is applied for overcoming irregular obstacles more
frequently than regular obstacles because the robot might ad-
ditionally deploy more sensors at locations near the boundaries
of irregular obstacles.

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

2940 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 6, JULY 2009

VII. CONCLUSION

This paper has proposed the ORRD mechanism, which over-
comes obstacles, deploys a near-optimal number of sensors
over the monitoring region, and likely achieves full coverage.
We initially proposed a deployment policy and the serpen-
tine movement for deploying a minimal number of sensors
in the environment without an obstacle. Then, we proposed
four obstacle-handling rules to cope with the sensing holes
problem due to the existing obstacles. In addition, we pre-
sented the boundary problem and proposed two boundary rules
to cope with it. Eventually, the proposed ORRD integrates
the deployment policy, the serpentine movement policy, the
obstacle-resistant rules, and the boundary-handling rules. Per-
formance results reveal that the proposed ORRD significantly
outperforms the existing CED and LRV mechanisms in terms
of the number of deployed sensors, the coverage percentage,
the required deployment time, and the energy consumption of
the robot.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,
Mar. 2002.

[3] M. S. Pan, C. H. Tsai, and Y. C. Tseng, “Emergency guiding and monitor-
ing applications in indoor 3D environments by wireless sensor networks,”
Int. J. Sensor Netw., vol. 1, no. 1/2, pp. 2–10, Sep. 2006.

[4] W. Liang and Y. Liu, “Online data gathering for maximizing network
lifetime in sensor networks,” IEEE Trans. Mobile Comput., vol. 6, no. 1,
pp. 2–11, Jan. 2007.

[5] A. Boukerche, Handbook of Algorithms for Wireless Networking and
Mobile Computing. London, U.K.: Chapman & Hall, 2005.

[6] A. Boukerche and X. Fei, “A coverage-preserving scheme for wireless
sensor network with irregular sensing range,” Ad Hoc Netw., vol. 5, no. 8,
pp. 1303–1316, Nov. 2007.

[7] A. Boukerche, X. Fei, and R. B. Araujo, “An optimal coverage-
preserving scheme for wireless sensor networks based on local informa-
tion exchange,” Comput. Commun., vol. 30, no. 14/15, pp. 2708–2720,
Oct. 2007.

[8] B. Carbunar, A. Grama, J. Vitek, and O. Carbunar, “Redundancy and
coverage detection in sensor networks,” ACM Trans. Sensor Netw., vol. 2,
no. 1, pp. 94–128, Feb. 2006.

[9] H. Gupta, Z. H. Zhou, S. R. Das, and Q. Gu, “Connected sensor
cover: Self-organization of sensor networks for efficient query execution,”
IEEE/ACM Trans. Netw., vol. 14, no. 1, pp. 55–67, Feb. 2006.

[10] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent
mobile sensor networks,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 35, no. 1, pp. 78–92, Jan. 2005.

[11] S. Chellappan, X. Bai, B. Ma, D. Xuan, and C. Xu, “Mobility limited flip-
based sensor networks deployment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, no. 2, pp. 199–211, Feb. 2007.

[12] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor de-
ployment,” IEEE Trans. Mobile Comput., vol. 5, no. 6, pp. 640–652,
Jun. 2006.

[13] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in mobile
sensor networks,” in Proc. 24th Annu. INFOCOM, Miami, FL, Mar. 2005,
pp. 2302–2312.

[14] M. A. Batalin and G. S. Sukhatme, “Efficient exploration without local-
ization,” in Proc. ICRA, Taipei, Taiwan, May 2003, pp. 2714–2719.

[15] M. A. Batalin and G. S. Sukhatme, “Coverage, exploration and de-
ployment by a mobile robot and communication network,” Telecommun.
Syst.—Special Issue Wireless Sensor Networks, vol. 26, no. 2–4, pp. 181–
196, Jun. 2004.

[16] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization in
distributed sensor networks,” ACM Trans. Embed. Comput. Syst., vol. 3,
no. 1, pp. 61–91, Feb. 2004.

[17] Y. C. Wang, C. C. Hu, and Y. C. Tseng, “Efficient deployment algorithms
for ensuring coverage and connectivity of wireless sensor networks,” in
Proc. IEEE WICON, 2005, pp. 114–121.

[18] M. A. Batalin and G. S. Sukhatme, “The design and analysis of an efficient
local algorithm for coverage and exploration based on sensor network
deployment,” IEEE Trans. Robot., vol. 23, no. 4, pp. 661–675, Aug. 2007.

[19] J. Hill and D. Culler, “A wireless embedded sensor architecture
for system-level optimization,” Comput. Sci. Dept., Univ. Calif.,
Berkeley, Berkeley, CA, 2002. Tech. Rep.

Chih-Yung Chang (M’01–A’01) received the Ph.D.
degree in computer science and information engi-
neering from National Central University, Taoyuan,
Taiwan, in 1995.

In 1997, he joined the faculty of the Department
of Computer and Information Science, Aletheia Uni-
versity, Tamsui, Taiwan, as an Assistant Professor,
where he was the Chair of the Department of Com-
puter and Information Science from August 2000 to
July 2002. In August 2002, he joined the Department
of Computer Science and Information Engineering

(CSIE), Tamkang University, Tamsui, as an Associate Professor and where
he is currently a Full Professor. He served as an Associate Guest Editor for
the Journal of Information Science and Engineering in 2008, the Journal of
Internet Technology in 2004 and 2008, and the Journal of Mobile Multimedia
in 2005 and as a Member of the Editorial Board of Tamsui Oxford Journal
of Mathematical Sciences from 2001 to 2008 and the Journal of Information
Technology and Applications in 2008. His current research interests include
wireless sensor networks, Bluetooth radio networks, ad hoc wireless networks,
and WiMAX broadband technologies.

Dr. Chang is a member of both the IEEE Computer and Communications
Societies.

Chao-Tsun Chang was born in Taipei, Taiwan. He
received the Ph.D. degree in computer science and
information engineering from the National Central
University, Taoyuan, Taiwan, in 2006.

In 2006, he joined the faculty of the Depart-
ment of Information Management, Hsiuping Institute
of Technology, Taichung, Taiwan, as an Assistant
Professor. Over the past ten years, he has directed
11 research projects, including three National Sci-
ence Council (NSC) projects and eight information
system development projects. His current research

interests include wireless sensor networks, Bluetooth radio networks, ad hoc
wireless networks, and mobile computing.

Dr. Chang is a member of both the IEEE Computer and IEEE Communica-
tions Societies.

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: OBSTACLE-RESISTANT DEPLOYMENT ALGORITHMS FOR WIRELESS SENSOR NETWORKS 2941

Yu-Chieh Chen received the B.S. degree from
Ming Chuan University, Taipei, Taiwan, in 2005 and
the M.S. degree from Tamkang University, Tamsui,
Taiwan, in 2007, both in computer science and infor-
mation engineering. Since 2007, he has been work-
ing toward the Ph.D. degree with the Department
of Computer Science and Information Engineering,
Tamkang University.

He has received numerous scholarships in Taiwan
and participated in many wireless sensor network-
ing projects. His research interests include wireless

sensor networks, ad hoc wireless networks, mobile/wireless computing, and
WiMAX.

Hsu-Ruey Chang received the B.S. and Ph.D. de-
grees in computer science and information engineer-
ing from Tamkang University, Tamsui, Taiwan, in
2003 and 2007, respectively.

He is currently a Software Engineer with Inventec,
Taipei, Taiwan. He has received numerous scholar-
ships in Taiwan and participated in many Bluetooth
and wireless sensor networking projects. He has pub-
lished extensively in the wireless networking area.
His research interests are wireless sensor networks,
ad hoc wireless networks, and mobile/wireless com-

puting, including both theoretic results and algorithm design.

Authorized licensed use limited to: Tamkang University. Downloaded on June 04,2010 at 03:52:32 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

