
Anonymous Proxy Automatic Signature Schemes

with Compiler Agents for (Unknown) Virus Detection

Shin-Jia Hwang* and Kuang-Hsi Chen

Department of Computer Science and Information Engineering, TamKang University,

Tamsui, Taiwan 251, R.O.C.

Abstract

Many (proxy) automatic signature schemes are proposed to guard against the (unknown) virus

infection with the help of honest compiler makers. In these proposed schemes, the used compiler

agents’ public keys should be certificated and maintained by verifiers. If verifiers only keep the

compiler makers’ public key, it is more convenient. So an anonymous proxy automatic signature

scheme with compiler agents is proposed. In the new scheme, the compiler agents are anonymous and

verifiers do not need to store compiler agents’ public key. Moreover, verifiers can authenticate the

source of received executable problems and detect compiler agents’ deviation in advance. Our

schemes are suitable for adopting any discrete logarithm based signature schemes. Our scheme has

provides strong moderator’s judgment to detect of virus infection sources.

Key Words: Compilers, Distributed System, Computer Virus, Digital Signature, Proxy Signature,

Automatic Signature, Anonymous

1. Introduction

With the progress of network techniques, the Internet

is more and more popular in our real life. By utilizing the

convenience of the Internet, many services are realized

on the Internet. For examples, electronic mails, elec-

tronic voting, bulletin board system, and world-wide-

web are some popular services. Through the services on

the Internet, Digital data can be exchanged and broad-

casted over Internet.

Recently, because of unreliable environment of In-

ternet, computer viruses have become a serious problem.

Computer viruses can spread everywhere through In-

ternet, and cause big damage to users’ computer systems.

The virus infection can be detected by checking the in-

tegrity of executable programs. In order to guarantee the

integrity of executable programs, digital signature sc-

hemes are adopted. Any modification of signed original

files is easily detected by checking the corresponding

signatures. The virus detection by using signatures [1] is

better than the detection by using anti-virus software,

because anti-virus software cannot detect the infection

caused by unknown virus [2�4].

Usuda et al. first proposed an automatic signature

scheme to detect (unknown) computer viruses [5]. In

their automatic signature scheme, the viruses can be de-

tected in advance with the help of an honest compiler

maker. In their scheme, the infection source can be found

out. The compiler maker manages the compiling process

and the automatic signature generation. Later, Lin and

Jan [6] proposed an automatic signature scheme using a

compiler in distributed system. The client-server model

is more efficient, such that the compiler maker’s load can

be shared by distributed servers. Unfortunately, Tseng

[7] pointed out that Lin and Jan’s scheme is insecure

against forgery attacks. Moreover, source programs have

the length restriction. To remove these flaws, Hwang and

Li [8] proposed their proxy automatic signature scheme

based on the concept of proxy signature schemes. The

proxy agreement between servers and compiler makers

are guaranteed by two signatures in their scheme. But us-

ing two signatures between a compiler maker and a

Tamkang Journal of Science and Engineering, Vol. 10, No 1, pp. 77�88 (2007) 77

*Corresponding author. E-mail: sjhwang@mail.tku.edu.tw

server is inefficient. Moreover, only the compiler maker

can validate the agreement of the server in their scheme.

It is unfair for the server. To remove this inconvenience

and unfairness, Hwang and Chen [9] proposed a new

proxy automatic signature scheme. But, in Hwang and

Chen’s scheme, one flaw is that the customer cannot val-

idate the real source of the executable program in ad-

vance. A customer may receive an executable program

that is no written by legal requesters. Furthermore, the

server’s public key must be obtained and certificated to

validate (proxy) automatic signatures. Since servers’

public keys may be revoked or the authorized servers

may be changed, it is inconvenient for verifiers to main-

tain the used authorized server’s public keys.

To remove this flaw and inconvenience, an anony-

mous proxy automatic signature scheme with compiler

agents is proposed to detect (unknown) virus. In the next

section, the basic assumptions and models for the new

scheme is described first. The same section also gives the

security goals of an anonymous proxy automatic signa-

ture scheme with compiler agents. Because our scheme

adopts Hwang and Chan’s anonymous proxy signature

scheme [10], their scheme is reviewed in Section 3. The

new scheme and the corresponding security analysis are

given in Sections 4 and 5, respectively. Section 6 is the

performance analysis of the new scheme. The compari-

son among Lin-Jan’s scheme, Hwang and Li’s scheme,

Hwang and Chen’s scheme, and the new scheme are

stated in Section 7. The last section is our conclusions.

2. Basic Assumptions and Models

The assumptions and models in our anonymous pro-

xy automatic signature scheme are first mentioned. Then

the security goals of our scheme are given.

The assumptions can be classified into the assump-

tions about computer viruses, the ones about compiler

makers, and the ones about security.

Assumptions about computer viruses

� Viruses infect executable files but not text files.

� Viruses damage both executable and text files.

Assumptions about compiler makers

They honestly create compilers by finishing the fol-

lowing work.

� Create the system library, macro library, I/O li-

brary and include files.

� Sign all library files following every subroutine,

procedure, and initial structure.

� Calculate the fingerprints of the included files with

a one-way hash function and create the database of

the fingerprints.

� Create a compiler including both a preprocessor

and a linker for machine dependence and inde-

pendence.

Assumptions about security

The following states three security assumptions of

our scheme.

� The discrete logarithm program is the computa-

tional hard program.

� One-way hash functions are strong against finding

the collisions.

� Underlying discrete logarithm based signature sc-

hemes are secure.

� The distributed systems must properly execute the

verification program.

Client-server model

In order to distribute the compiling load of the com-

piler maker, our scheme adopts client-server model. In

our scheme, there are six kinds of participates: compiler

makers, servers, requesters, a trusted moderator, custom-

ers, and a trusted third party.

Compiler maker uM

Compiler maker honestly creates compilers and is

able to authorize an anonymous server to use his/her

compiler to share compiling load.

Server uS

A server first obtains the (anonymous) compiling

proxy authorization from compiler makers. Then the (an-

onymous) server helps requesters compile source pro-

grams to generate executable programs and correspond-

ing (anonymous) proxy automatic signatures.

Requester uR

A requester writes and sends source programs to the

server to compile source programs into executable pro-

grams. A requester then broadcasts his/her executable

78 Shin-Jia Hwang and Kuang-Hsi Chen

programs to customers.

Customer uC

A customer gets an executable program and corre-

sponding signatures from a requester. Then the customer

detects whether or not the executable program is infected

viruses with the help of the corresponding (anonymous)

proxy automatic signatures.

Trusted moderators

When customers find that some executable program

is infected with viruses, he/she needs the moderator’s

help to detect the infection source. If the infection source

is some anonymous server, the trusted moderator can

identify the server with the aid of compiler makers. If the

infection source is the requester, the moderator can also

prove this accusation. The moderator can also filter out

the groundless accusation from customers.

Trusted third party

The trusted third party (TTP for short) certificates

the public keys of all participates.

Figure 1 illustrates the client-server model and the

relations among participates in our scheme. In Figure 1,

the compiler maker honestly creates compilers, which

also automatically generates signatures on its generated

executable programs. The compiler maker may need

many anonymous servers to share the compiling load, so

the compiler maker authorizes these servers as its anony-

mous proxy agents by issuing anonymous proxy certifi-

cates. Each anonymous server accepts the compiling re-

quest and source programs from a requester. For the

source programs, the authorized compiler being execu-

ted on the server generates the executable program and

the corresponding anonymous proxy automatic signature

at the same time. The server sends the executable pro-

gram and proxy automatic signature to the requester. The

requester first validates the anonymous proxy certifica-

tes to check the server’s anonymous authorization. Then

the requester checks the correctness of proxy automatic

signatures to confirm the integrity of the executable pro-

grams. The requester also generates his/her signature on

the executable programs and anonymous proxy automa-

tic signatures. Then the requester sends his/her execut-

able programs, anonymous proxy automatic signatures,

and the requester’s signatures to customer. Using anony-

mous proxy automatic signatures of executable programs,

the customer checks the virus infection of executable

Anonymous Proxy Automatic Signature Schemes with Compiler Agents for (Unknown) Virus Detection 79

Figure 1. Client-server model in distributed systems.

programs. Customers use the requester’s signatures to

confirm the broadcasting source of the received execut-

able programs. When virus infection is found, a modera-

tor detects the infection source. In our scheme, all public

keys of participates must be certificated by a trust third

party.

Security goals in our scheme

The security goals for our scheme are divided into

two classes. One class consists of the security goals about

an anonymous proxy automatic signature schemes. An-

other class consists of the security goals about the virus

detection and virus source identification. The security

goals about an anonymous proxy automatic signature sc-

hemes are given below.

� Anonymity: Besides the compiler maker, anyone

cannot find the server’s identity from anonymous

proxy automatic signatures or proxy certificates.

� Unforgeability: Only the authorized servers can

generate valid anonymous proxy automatic signa-

tures. Anyone cannot forge anonymous proxy au-

tomatic signatures even if he/she is a compiler

maker.

� Verifiability: Anyone can verify anonymous pro-

xy automatic signatures that a valid server gener-

ated by using the server’s proxy secret key.

� Identifiability: The server’s anonymity can be re-

voked by the compiler maker when disputes occur.

� Undeniability: The server cannot deny his/her gen-

eration of anonymous proxy automatic signature.

The compiler maker cannot deny the proxy autho-

rization (or the generation of the proxy certificate)

to the server.

� Distinguishability: Signatures of the compiler ma-

ker, servers, requesters and proxy automatic signa-

ture signatures can be distinguished in polynomial

time.

� Server’s protection: Beside the server itself, no one

can impersonate the server to compile the source

program and forge server’s proxy automatic signa-

tures.

The security goals about the virus detection and virus

source identification are given below.

� Server’s deviation: A server cannot falsely incrim-

inate any requester to write source programs with

viruses.

� Requester’s protection: No one can impersonate

the requester to distribute executable programs.

The requester can promise which source codes are

written by himself/herself. On the other hand, no

one can success to falsely incriminate the requester

writes a source code but he/she dose not.

� Executable program’s integrity: To guard against

the virus infection, no one can modify the content

of executable programs. Then anyone can verify

the integrity of executable programs.

� Source program’s secrecy: Besides the requester

and the server who compiling the requester’s so-

urce code, no one can find the source code from the

executable programs and anonymous proxy auto-

matic signatures.

� Requester’s deviation: A requester cannot falsely

incriminate any server to generate any executable

program containing viruses.

3. Review of Anonymous Proxy Signature

Scheme with Undeniable Agents

In Hwang and Chan’s scheme [10], there are four

participates in the anonymous proxy signature scheme:

the original signer O, the proxy signer P, the verifier V,

and the trusted third party TTP. In their scheme, there are

four algorithms: AuthAPDW (O, P, MW, b, proxy certifi-

cate), VerAuthAPDW (O, P, b�, proxy certificate), Ver-

CertAPDW (O, proxy certificate), and IDAPDW (TTP, O, yP,

MW, b�, proxy certificate). By using these four algorithms,

Hwang and Chan’s scheme is realized.

An original signer O executes the algorithm AuthAPDW

(O, P, MW, b, proxy certificate) to generate the proxy cer-

tificate on the proxy warrant MW and the proxy public

key Y to authorize an anonymous proxy signer P. Then

the authorized secret value b is securely transmitted to

the proxy singer P. Then the proxy signer P executes the

algorithm VerAuthAPDW (UO, UP, b�, proxy certificate) to

validate the proxy certificate and the received authorized

secret value b�. Anyone validates the proxy certificate

and the proxy public key Y by the algorithm VerCertAPDW

(O, proxy certificate). When there are some disputes with

the proxy signer, the original signer O can execute

IDAPDW (TTP, O, yP, b, proxy certificate) to revoke the an-

onymity of some proxy signer P, where yP is the certifi-

80 Shin-Jia Hwang and Kuang-Hsi Chen

cated public key of the proxy signer P.

Hwang and Chan’s realization of anonymous proxy

delegation scheme by warrant is described below. The

following are some public system-wide parameters and

functions in their scheme. The parameters p and q are

two large prime numbers and p = 2q + 1. The parameter g

is an element in Z p

* with order q. A public function h(�) is

a public cryptographic hash function. Each user U has a

secret key xU�Zq
*, and a certificated public key yU = gxU

mod p. The proxy warrant MW specifies the identity of

the original signer O, the certificated public key yO of the

original signer O, the delegation period, and the other

necessary proxy details. The four algorithms are de-

scribed, respectively.

AuthAPDW(O, P, MW, b, proxy certificate)

The original signer O randomly selects a secret inte-

ger b�Zq
* and computes gb mod p. Then O computes the

proxy public key Y = yP � (gb) mod p. The original signer

O uses his/her secret key xO to generate the signature (r,

s) on the digest h(MW, Y, h(bgb mod p)) by adopting a

discrete-logarithm-based signature scheme. Then proxy

certificate is (MW, Y, h(bgb mod p), (r, s)). Then the origi-

nal signer O sends proxy certificate and the secret value b

to the proxy signer O through a secure channel.

Suppose that the proxy signer received proxy certifi-

cate and the secret value b�, then the proxy signer exe-

cutes the following algorithm to validate b� and proxy

certificate.

VerAuthAPDW(O, P, b, proxy certificate)

The proxy signer P first computes the proxy public

key Y� = yP � (gb�) mod p, and h� = h(b�gb� mod p). Then

the proxy signer checks whether or not h(MW, Y, h(bgb

mod p)) = h(MW, Y�, h(b�gb� mod p)) and the correctness

of proxy certificate by VerCertAPDW(O, proxy certifica-

te). If VerCertAPDW(O, proxy certificate) returns true,

proxy signer P computes the proxy secret key X = xP + b

and return true.

VerCertAPDW(O, proxy certificate)

A verifier computes H = h(MW, Y, h(bgb mod p)).

The verifier validates the correctness of proxy certificate

by adopting the certificated public key yO and the corre-

sponding discrete-logarithm-based verification and H. If

(r, s) is correct, then VerCertAPDW(O, proxy certificate)

returns true and that the proxy certificate is validated.

IDAPDW(TTP, O, yP, b�, proxy certificate)

The TTP validates proxy certificate by VerCertAPDW

(O, proxy certificate) to confirm that the proxy public

key Y is certificated by the original signer O. TTP com-

putes gb� mod p and Y� = gb� � yP mod p. Then TTP checks

whether or not h(bgb mod p) = h(b�gb� mod p) and Y = Y�.

If h(bgb mod p) = h(b�gb� mod p) and Y = Y� hold, TTP

confirms that the proxy secret key X for the proxy public

key Y is only known by the one knowing xP.

Hwang and Chan’s scheme consists of the following

phases.

System Set-up phase

The public system parameters and functions are the

same as above. The public key and secret key of some

user Ui with identity IDi are xi and yi = gxi mod p, respec-

tively. The notation MW also denotes the proxy warrant.

Proxy authorization phase

The original signer O executes AuthAPDW(O, P, MW,

b, proxy certificate) to authorize the proxy signer P on

behalf of the original signer O in anonymous way. Then

the proxy signer P obtains the proxy certificate and the

secret value b form the original signer O in secure man-

ners. Then the proxy signer P validates the correctness of

the proxy certificate, and the secret value b by adopting

the algorithm VerAuthAPDW(O, P, b, proxy certificate). If

VerAuthAPDW(O, P, b�, proxy certificate) returns true, the

proxy signer UP accepts the proxy authorization and

owns a valid proxy certificate (MW, Y, h(b � gb mod p), (r,

s)). Then the proxy secret key and proxy public key are X

= xP + b mod q and Y = gX mod p = yP � (gb) mod p, re-

spectively.

Proxy signature generation and verification phase

First of all, the proxy signer P uses the proxy secret

key X to generate the anonymous proxy signature (R, S)

on the message m by using any secure discrete-loga-

rithm-based signature generation algorithm. Then the

anonymous proxy signature (R, S) along with proxy cer-

tificate is sent to the verifier. After receiving m, (R, S)

and proxy certificate, the verifier executes VerCertAPDW

(O, proxy certificate) to check whether or not proxy cer-

tificate and the proxy public key Y are really authorized

Anonymous Proxy Automatic Signature Schemes with Compiler Agents for (Unknown) Virus Detection 81

by the original signer O. Using the proxy public key Y

and the signature verification, the verifier validates the

correctness of the anonymous proxy signature (R, S) on

m. Finally, the verifier validates the anonymous proxy

signature (R, S) on the message m and the proxy certifi-

cate authorized by the original signer O.

Proxy signer identification phase

If the anonymous proxy signature (R, S) along with

the proxy certificate (MW, Y, h(bgb mod p), (r, s)) has any

disputes, the original signer O must run the algorithm

IDAPDW(TTP, O, yP, b�, proxy certificate) to convince

TTP that the proxy secret key X is only known by some-

one who has the secret key xP. Only the singer P knowing

the secret key xP can generate anonymous proxy signa-

ture (R, S) by using the proxy secret key X for X = b + xP

mod q. After adopting the proxy public key Y to validate

the disputed anonymous proxy signature (R, S), TTP is

convinced that the proxy signer P generates the disputed

anonymous proxy signature (R, S). Otherwise, TTP does

not be convinced.

The anonymous proxy signature scheme satisfies the

following properties.

(1) Unforgeability: Proxy signatures can be generated

only by authorized proxy signers. All unauthorized

users cannot forge proxy signatures even though

the original signer is included in them.

(2) Verifiability: Anyone can validate proxy signa-

tures generated by an authorized proxy signer.

(3) Proxy signer’s deviation: Each proxy signer can-

not obtain the secret key of the original signer or

other proxy signers. Moreover, any proxy signer

cannot forge signatures of the original signer, or

other proxy signers.

(4) Distinguishability: Proxy signatures, original sign-

ers’ signatures and proxy signers’ signatures can

be distinguished in polynomial time.

(5) Identifiability: Only the original signer can deter-

mine or prove the identities of all proxy signers.

(6) Proxy protection: The original signer cannot ob-

tain the proxy secret key of the proxy signer. When

original signers illegally authorize themselves to

be the anonymous proxy group, they are able to

generate some illegal proxy signatures. But origi-

nal signers cannot falsely incriminate any proxy

signer who ever generated these proxy signatures.

(7) Undeniability: The proxy signer cannot deny the

proxy signature generation. Moreover, the original

signer cannot deny the generation of the proxy cer-

tificates generated by him/her

(8) Strong anonymity: Verifiers cannot directly dis-

covery the identity of the proxy signer. Moreover,

each proxy signer cannot know or discover the

identity of any other proxy signer.

(9) Original signer’s deviation: The original signer

cannot obtain the secret key of any proxy signer.

The original signer cannot forge the signatures of

any proxy signer.

4. Our Realization of Anonymous Proxy

Automatic Signature Schemes with Compiler

Agents for (Unknown) Virus Detection

Our scheme contains these phases: Compiler-maker

authorization phase, server-requester execution phase,

customer verification phase, and moderator judgment

phase.

The following are some public system-wide parame-

ters and functions. The parameters p and q are two large

prime numbers and p = 2q + 1. The parameter g is an ele-

ment in Z p

* with order q. A public function h(�) is a public

cryptographic hash function. Each one Ui has a secret

key xi�Zq
*, and a certificated public key yi = gxi mod p.

The proxy warrant MW specifies the identity of the com-

piler maker uM, the certificated public key yM of the com-

piler maker uM, the delegation period, and the other nec-

essary proxy details.

Compiler-maker authorization phase

The server uS sends the compiler maker uM the com-

piler agent request RSM for the compiling authorization.

After validating the request RSM, the compiler maker uM

gives the server an authorized compiler and the proxy

certificate. Then the compiler maker authorizes the

server as his/her compiler agents.

Step 1.

The server uS generates the signature (rSM, sSM) on

the digest h(uS||RSM) by any discrete logarithm based sig-

nature scheme [11,12] and sends (RSM, uS, (rSM, sSM)) to

the compiler maker, where RSM denotes the compiler

agent request. Here and after, any signatures are gener-

ated and validated by adopting any discrete logarithm

82 Shin-Jia Hwang and Kuang-Hsi Chen

based signature scheme. It is better to select the same dis-

crete logarithm based signature schemes.

Step 2.

After receiving (RSM, uS, (rSM, sSM)), the compiler

maker uM performs the following steps:

(1) Select a secret random number b�Zq
*.

(2) Compute h.

(3) Use the secret key xM to generate the signature

(rMS, sMS) on h(MW, h(CR), Y, h(bgb mod p)).

(4) Send the server uS the proxy certificate (MW,

h(CR), Y, h(bgb mod p), (rMS, sMS)), the compiler

CR, and the secret value b through a secure channel.

Step 3.

After receiving the proxy certificate (MW, h(CR), Y,

h(bgb mod p), (rMS, sMS)), the compiler CR�, and secret

value b� from compiler maker, the server uS validates

them by executing the following steps.

(1) Compute Y� = yS � gb� mod p.

(2) Validate the secure value b� by checking h(bgb

mod p) = h(b�gb� mod p).

(3) Check the correctness of the proxy certificate (MW,

h(CR), Y, h(bgb mod p), (rMS, sMS)) by validating

the signature (rMS, sMS) on the message (MW,

h(CR), Y, h(bgb mod p)) with the compiler maker

uM�s public key yM.

If the proxy certificate (MW, h(CR), Y, h(bgb mod p),

(rMS, sMS)) is correct, then the proxy secret key is X = xS +

b mod q and the proxy public key is Y = gX mod p.

Server-requester execution phase

Suppose that a requester writes a source program and

wants to compile it with an anonymous server’s aid.

Step 1.

The requester validates the proxy certificate (MW,

h(CR), Y, h(bgb mod p), (rMS, sMS)) by verifying the signa-

ture (rMS, sMS) on the message (MW, h(CR), Y, h(bgb mod

p)). If the proxy certificate is not correct, the requester

stops.

Step 2.

The requester generates the signature (rRS, sRS) on

h(P, (uR||RRS)) and sends (P, (uR||RRS), (rRS, sRS)) to the

server, where RRS denotes the compiling request of the

requester.

Step 3.

After receiving (P, (uR||RRS), (rRS, sRS)), the server

validates the signature (rRS, sRS). If the signature is cor-

rect, the server accepts requester and prepares to compile

the requester’s source program; otherwise the server re-

fuses the requester.

Step 4.

The server checks the correctness of the compiler

CR� by verifying the proxy certificate (MW, h(CR), Y,

h(bgb mod p)) and h(CR�) = h(CR).

Step 5.

If the above tests pass, the server compiles the source

program P by CR to generate the executable program E.

The compiler CR not only generates E but also uninter-

ruptedly adopts the proxy secret key X and discrete loga-

rithm based signature scheme to generate the proxy auto-

matic signature (rSR, sSR) on h(uR, E, h(CR), h(P), (rMS,

sMS)). Then the server sends (uR, E, (rSR, sSR)) to the re-

quester.

Step 6.

After receiving (uR, E, (rSR, sSR)), the requester che-

cks the signature (rSR, sSR) on h(uR, E, h(CR), h(P), (rMS,

sMS)). If the signature is correct, the requester begins to

publish his/her program to customers.

Step 7.

The requester generates the signature (rRC, sRC) on

h((rSR, sSR), E, h(CR), h(P)).

Step 8.

The requester sends the proxy certificate (MW, h(CR),

Y, h(bgb mod p), (rMS, sMS)) and ((rSR, sSR), (rRC, sRC), uR,

E, h(P)) to the customer. The signature (rRC, sRC) can

guarantee the real source of the executable program E.

Customer verification phase

Before the customer executes the program E, the

software may be infected with some viruses. The cus-

tomer has to check the corresponding signature of the ex-

ecutable program. At the first time, the customer per-

forms the following verifications.

Step 1.

Check the signature (rRC, sRC) on h((rSR, sSR), E,

h(CR), h(P)) by using the requester uR’s public key yR.

Step 2.

Verify the proxy certificate (MW, h(CR), Y, h(bgb mod

p), (rMS, sMS)) by using the compiler maker uM’s public

key yM.

Step 3.

Use the proxy public key Y to verify the proxy auto-

matic signature (rSR, sSR) on h(uR, E, h(CR), h(P), (rMS, sMS)).

Anonymous Proxy Automatic Signature Schemes with Compiler Agents for (Unknown) Virus Detection 83

If anyone of the above verifications is failure, the

customer refuses the execution of E. Otherwise, the exe-

cutable program E is safe from viruses, and the customer

can executes it. Later on, the customer just needs to ver-

ify the proxy automatic signature (rSR, sSR) on h(uR, E,

h(CR), h(P), (rMS, sMS)) for detecting virus infection.

Moderator judgment phase

After receiving the software published by a reque-

ster, the customer verifies the corresponding signature. If

the verification is not correct, the executable program

may be infected by viruses. So the customer sends some

information to the moderator, and then the moderator can

find out the source of the viruses. Moreover, if the source

of the viruses is the server, the moderator has to revoke

the anonymity of the server.

Step 1.

The customer sends the following data to the moder-

ator.

(1) Proxy certificate (MW, h(CR), Y, h(bgb mod p),

(rMS, sMS)),

(2) Anonymous proxy automatic signature (rSR, sSR)

on h(uR, E, h(CR), h(P), (rMS, sMS)), and

(3) uR, E and h(P).

Step 2.

The moderator checks the proxy certificate (MW,

h(CR), Y, h(bgb mod p), (rMS, sMS)) by using the signature

(rMS, sMS) on the digest h(MW, h(CR), Y, h(bgb mod p))

and the compiler-maker’s public key yM. The moderator

also checks the correctness of (rSR, sSR) on the digest

h(uR, E, h(CR), h(P), (rMS, sMS)) by using the proxy public

key Y. If both (rMS, sMS) and (rSR, sSR) are correct, the

moderator continues this process; otherwise, the moder-

ator rejects the customer’s request for the requester or the

server is framed by the customer.

Step 3.

The moderator obtains the source program P� and the

signature (rRS, sRS) from the server. The moderator vali-

dates the signature (rRS, sRS) by using the requester’s pub-

lic key. If the signature (rRS, sRS) is correct, the received

source program P� is indeed written by the requester;

otherwise the moderator runs the identification process

IDAPDW(TTP, uM, yS, b, proxy certificate) to revoke the

anonymity of anonymous servers.

Step 4.

The moderator gets the original authorized compiler

CR� from the compiler-maker.

Step 5.

The moderator applies CR� on the source program P�

to generate E�.

Step 6.

The moderator validates whether or not h(P) � h(P�),

h(CR) � h(CR�), and h(E) � h(E�). If anyone of h(P�) �

h(P), h(CR) � h(CR�), and h(E) � h(E�) occurs, the moder-

ator runs the identification process IDAPDW(TTP, uM, yS,

b, proxy certificate) to revoke the anonymity of anony-

mous servers.

Step 7.

If h(P�) = h(P), the moderator checks P line by line to

find out whether or not the requester writes a program

with viruses.

5. Security Analysis

The security of our scheme is based on the underly-

ing discrete logarithm signature scheme and Hwang and

Chan’s anonymous proxy signature scheme [10]. By

adopting secure discrete logarithm signature schemes,

all the secret key of each user and secret random numbers

are secure in our scheme. Moreover, the signatures used

in our scheme cannot be forged and repudiated. In

Hwang and Chan’s scheme [10], the anonymity of proxy

singers is guaranteed by the security of the secret value b.

Fortunately, the secret value b is protected by the discrete

logarithm problem and one-way function. In Hwang and

Chan’s scheme [10], the unforgeability of proxy signa-

tures is based on the fact that the proxy secret key is only

known by the proxy singer. Since the proxy secret key is

the sum of the secret value b and the proxy signer’s secret

key, only the authorized proxy singer knows the proxy

secret key.

Some security considerations for our scheme are li-

sted below.

(1) Anonymity: Since our scheme adopts Hwang and

Chan’s anonymous proxy signature scheme, the

distributed servers’ identities cannot be detected

besides the compiler maker. The anonymity is gua-

ranteed by Hwang and Chan’s scheme.

(2) Unforgeability: The discrete logarithm signatures

and the proxy automatic signatures are both based

on the discrete logarithm problem, so all the signa-

tures are unforged.

84 Shin-Jia Hwang and Kuang-Hsi Chen

(3) Verifiability: In our scheme, all signatures can be

verified by the corresponding verification equa-

tion and signers’ public keys. Proxy automatic sig-

natures can also be verified by using the compiler-

maker’s public key because the underlying Hwang

and Chan’s anonymous proxy signature scheme

satisfies the verifiability property.

(4) Identifiability: The moderator can identify the an-

onymous servers with the aid of compiler maker.

Because the anonymity of severs can be revoked in

Hwang and Chan’s scheme, the moderator can find

out the real server that compiles the source pro-

gram in the moderator phase.

(5) Undeniability: The proxy automatic signature and

discrete logarithm based signature must be gener-

ated by the signer’s secret key. If the verification

of signatures is satisfied, the signer cannot deny

he/she generated the verified signatures.

(6) Distinguishability: The proxy automatic signatures,

the server’s original signatures, the compiler ma-

ker’s original signatures are generated by different

secret keys, respectively. These signatures have to

be validated with different public keys, respec-

tively. So these signatures can be distinguished for

the verification using different public keys.

(7) Server’s protection: A malicious user wants to

falsely incriminate the server that he/she compiles

a source program with virus and generate the cor-

responding proxy automatic signature. That is the

malicious user has to forge the proxy automatic

signatures or has the proxy secret key X of the

server. Fortunately the proxy secret key X = xS + b

mod q is known only by the server and proxy auto-

matic signatures are unforged. So the proxy auto-

matic signatures can be used to guarantee that the

executable program is generated by the server it-

self.

(8) Server’s deviation: In the moderator judgment

phase, the moderator can confirm the correct so-

urce of the source program and compiler. So the

server cannot falsely incriminate any requester

writing programs with virus.

(9) Requester’s protection: The requester sends ((rSR,

sSR), (uR, E, h(CR), h(P))), the signature (rRC, sRC)

on ((rSR, sSR), (E, h(CR), h(P))) and the proxy certif-

icate to the customer. The customer can confirm

that the program is distributed from some re-

quester by validating the signature (rRC, sRC). Be-

cause the signature (rRC, sRC) is not forgeable, no

one can falsely incriminate the requester writes

source codes but he/she does not.

(10) Executable program’s integrity: The integrity of

executable programs is protected by proxy auto-

matic signatures. Anyone can verify the proxy au-

tomatic signature by using the proxy public key Y

to detect modification of executable programs.

(11) Source program’s secrecy: Because h(P) is used to

generated signatures (rSR, sSR) and (rRC, sRC), signa-

tures (rSR, sSR) and (rRC, sRC) can be verified by only

using h(P) without releasing the content of the

source program P. Except the server and the re-

quester, no one knows the source program P of the

executable program E.

(12) Requester’s deviation: The integrity of executable

programs is guaranteed by the proxy automatic

signatures. Since proxy automatic signatures are

unforged, the requester cannot incriminate any ser-

ver to generate any executable program containing

viruses.

6. Performance Analysis and Discussion

The performance analysis of our scheme is stated be-

low. First, some notations are defined below.

Tmp: The computation cost for one modular multiplica-

tion modular p.

Tmq: The computation cost for one modular multiplica-

tion modular q.

Texp: The computation cost for one modular expon-

entiation modular p.

Thash:The computation cost for one-way hash functions.

Tinv: The computation cost for inverse operation modu-

lar q.

Tsig: The computation cost for the discrete logarithm

based signature generation, which includes one

Thash to generate the message digest.

Tver: The computation cost for the discrete logarithm

based signature verification, which includes one

Thash to generate the message digest.

Because the underlying signature scheme is not spe-

cified in our scheme, the signature generation cost Tsig

including one Thash and the signature verification cost

Anonymous Proxy Automatic Signature Schemes with Compiler Agents for (Unknown) Virus Detection 85

Tver including one Thash denote the signature and verifica-

tion cost of the underlying signature scheme, respecti-

vely. Now the computational cost of our scheme is given

phase by phase.

Figure 2 shows the computational cost in the com-

piler-maker authorization phase. First, one Tsig is used to

generate the signature (rSM, sSM) on the proxy request

RSM from the server to the compiler maker and one Tver is

used to verify (rSM, sSM). After the verification of signa-

ture (rSM, sSM), the compiler maker computes (MW, h(CR),

Y, h(bgb mod p). This computation costs Texp + 2Tmp +

1Thash. Then the compiler maker needs one Tsig to gener-

ate the signature (rMS, sMS) on the digest of (MW, h(CR), Y,

h(bgb mod p). After receiving the proxy certificate (MW,

h(CR), Y, h(bgb mod p), (rMS, sMS)), the secret value b, and

the compiler maker CR, the verification of the signature

(rMS, sMS) and the validation of (b, CR) cost the server one

Tver and Texp + 2Tmp + 2Thash, respectively.

Figure 3 shows the computational cost in the server-

requester execution phase. The first one Tver is used to

check the correctness of the proxy certificate (MW, h(CR),

Y, h(bgb mod p), (rMS, sMS)). Then the generation of the

signature (rRS, sRS) on the digest of (P, (uS||RRS)) costs the

requester one Tsig. After receiving (P, (uS||RRS), (rRS,

sRS)), the verification of the signature (rRS, sRS) costs one

Tver. If the verification of signature (rRS, sRS) is correct,

the server needs Tver + Thash to check the compiler CR by

verifying the proxy certificate (MW, h(CR), Y, h(bgb mod

p)) and h(CR) = h(CR). Then one Tsig is used to generate

the proxy automatic signature. After receiving the proxy

automatic signature (rSR, sSR), the requester needs one

Tver to verify (rSR, sSR). If (rSR, sSR) is correct, the re-

86 Shin-Jia Hwang and Kuang-Hsi Chen

Figure 2. Computational cost in compiler-maker authorization phase.

Figure 3. Computational cost in server-requester execution phase.

quester needs one Tsig to generate the signature (rRC, sRC).

Figure 4 shows the computational cost in the customer

verification phase. The first time verification, the cus-

tomer totally needs 3Tver to verify signature (rRC, sRC), the

proxy certificate (MW, h(CR), Y, h(bgb mod p), (rMS, sMS))

and the automatic signature (rSR, sSR). Later, the customer

only needs one Tver to verify the proxy automatic signature

(rSR, sSR) before executing the received program.

In the moderator phase, the verification of three sig-

natures (rMS, sMS), (rSR, sSR) and (rRS, sRS) costs 3Tver.

Then the moderator coasts 3Thash and one Tsig to generate

the proxy automatic signature on the CR, P, and E. If the

moderator finds out the source of infection is server, he/

she needs Texp + 2Tmp + Thash to revoke the anonymity of

the server. Therefore, the upper bound for the computa-

tional cost in the moderator phase is 2Texp + 4Tmp + 5Thash

+ 3Tver + Tsig.

Table 1 summarizes the computational cost of each

kind of participates in our scheme.

7. Comparison

There are many related signature schemes for virus

detection had been proposed previous. Table 2 gives the

comparison among our scheme, Hwang and Chen’s sc-

heme [9], Hwang and Li’s scheme [8], and Lin and Jan’s

scheme [6].

By adopting Hwang and Chan’s anonymous proxy

signature scheme, our new proxy automatic signature

scheme can provide servers anonymity while the other

three schemes do not. By the anonymous property, ve-

rifiers can store only compiler makers’ public keys to

verify proxy certificates. Then verifiers obtained certifi-

cated proxy public key to verify automatic signatures.

Because the other three schemes do not provide server

anonymity, public keys of servers should be also stored

and certificated. Moreover, because using the signature

Anonymous Proxy Automatic Signature Schemes with Compiler Agents for (Unknown) Virus Detection 87

Figure 4. Computational cost in customer verification phase.

Table 2. Comparison among four automatic signature schemes

Our Scheme Hwang and Chen’s

Scheme

Hwang and Li’s

Scheme

Lin and Jan’s

Scheme

Anonymity � � � �

Source confirmation of executable

programs in advance

� � � �

Storage only for compiler maker’s

public key and proxy certificate

� � � �

Pre-detection of servers’ deviation � � � �

Suitability for any discrete logarithm

based signature schemes

� � � �

Judgment capability � � � �

No forgery attack � � � �

No length restriction � � � �

Client-server models � � � �

Table 1. Computational cost of participates in our scheme

Participates Computational cost

Compiler-

maker

Texp+2Tmp+2Thash+Tver+Tsig

Server Texp+2Tmp+3Thash+3Tver+2Tsig

Requester 2Tver+2Tsig

Customer [1] 3Tver (First time) [2] Tver (Afterward)

Moderator 2Texp+4Tmp+5Thash+3Tver+Tsig (Upper bound)

(rRC, sRC), the server’s deviation can be detected in ad-

vance and the customer can confirm the source of the re-

ceiving program. In the other three schemes, the server’s

deviation and program sources cannot be detected and

confirmed in advance. Only our new scheme and Hwang

and Chen’s scheme do not specify underlying discrete

logarithm signature schemes while the other two sche-

mes do. Both our new scheme and Hwang and Chen’s

scheme have the advantage that any discrete logarithm

based signature scheme can be used. This advantage pro-

vides flexibility for the practical implementation. Fur-

thermore, only the first three schemes have the modera-

tor phase to exactly detect the source of infection except

Lin and Jan’s scheme. So only the first three schemes

have judgment capability. Among the four schemes, only

Lin and Jan’s scheme has length restriction on source

codes and is vulnerable under forgery attacks [7]. Ac-

cording to Table 2, our scheme provides more functions

and services than the other three schemes.

8. Conclusion

A new anonymous proxy automatic signature sc-

heme with compiler agents is proposed to detect infec-

tion of (unknown) virus. In the new scheme, customers

can always verify the proxy automatic signature by using

the proxy public key which is first validated by only the

compiler maker’s public key. Even if the authorization of

some server is terminated, customers still easily verifies

proxy automatic signatures because only the compiler

maker’s public key is necessary. The source of the exe-

cutable program can be validated by customers when

they received. Moreover, the new scheme provides ro-

bust infection detection of viruses. If some viruses exist,

the infection source can be exactly found out. Our sc-

heme has the properties about protection and deviation

for servers and requester mentioned in Section 2. Finally,

our scheme satisfies all the other security goals stated in

Section 2 for a virus detection system.

References

[1] Okamoto, E., “Integrated Security System and its Ap-

plication to Anti-viral Methods,” Proc. 6th Virus and

Security Conf (1993).

[2] Hedberg, S., “Combating Computer Viruses: IBM’s

New Computer Immune System,” Parallel & Distrib-

uted Technology: Systems & Applications, IEEE, Vol.

4, pp. 9�11 (1996).

[3] Nachenberg, C., “Computer Virus-antivirus Coevolu-

tion,” Communications of the ACM, Vol. 40, pp. 46�

51 (1997).

[4] Subramanya, S. R. and Lakshminarasimhan, N.,

“Computer Viruses,” Potentials, IEEE, Vol. 20, pp.

16�19 (2001).

[5] Usuda, K., Mambo, M., Uyematsu, T. and Okamoto,

E., “Proposal of an Automatic Signature Scheme

Using a Compiler,” IEICE Transactions Fundamen-

tals, Vol. E79-A, pp .94�101 (1996).

[6] Lin, W.-D. and Jan, J.-K., “An Automatic Signature

Scheme Using a Compiler in Distributed Systems,”

IEICE Transactions on Communications, Vol. E83-B

pp. 935�941 (2000).

[7] Tseng, Y.-M., “Cryptanalysis and Restriction of an

Automatic Signature Scheme in Distributed Systems,”

IEICE Transactions on Communications, Vol. E86-B

pp. 1679�1681 (2000).

[8] Hwang, S.-J. and Li, E.-T., “A Proxy Automatic Signa-

ture Scheme Using a Compiler in Distributed Sys-

tems,” 2004 Information Security Conference, Taipei,

Taiwan, R.O.C., pp. 345�352 (2004).

[9] Hawng, S.-J. and Chen, K.-H., “A Proxy Automatic

Signature Scheme Using a Compiler in Distributed

Systems for (Unknown) Virus Detection,” Advanced

Information Networking and Applications 2005, Tai-

wan, R.O.C., pp. 649�654 (2005).

[10] Chan, C.-C., “Anonymous (Multi-) Proxy Signature

Schemes with Undeniable Agents,” Master Thesis,

Tamkung University, Taiwan, R.O.C. (2005).

[11] ElGamal, T., “A Public Key Cryptosystem and a Sig-

nature Scheme Based on Discrete Logarithm,” IEEE

Transactions on Information Theory, Vol. 31, pp.

469�1985 (1985).

[12] FIPS PUB 186, February 1991, Digital signature Stan-

dard.

Manuscript Received: Jan. 6, 2006

Accepted: May. 17, 2006

88 Shin-Jia Hwang and Kuang-Hsi Chen

