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Abstract Automated negotiation under the infrastructure of e-commerce is
becoming an important issue. However, although the communication protocols and
frameworks of automated negotiation have been extensively investigated, the cor-
responding tactics and strategies are still underdeveloped and need to be evaluated
further. Based on the negotiation model proposed by Faratin et al., this paper exam-
ines the performance of automated negotiation tactics and intends to provide concise
suggestions for the users of automated negotiation. First, theoretical analysis is used to
evaluate the behavior-dependent tactics. Constructive conclusions are obtained when
single-issue negotiations are considered. Next, a new framework for applying sin-
gle-issue tactics to multi-issue negotiation is proposed. Based on this framework,
theoretical analysis is then extended to multi-issue cases. Finally, different from the
previous work, exhaustive simulations based on two-issue negotiations are performed
to evaluate the effectiveness of behavior-dependent and time-dependent tactics. The
experimental results provide several important insights into negotiation tactics.
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1 Introduction

In the past few years, the rapid development of e-commerce is obvious to all. The
footprints of e-commerce are ubiquitous and range from simple web shopping to
complex virtual partnership construction through the Internet. Besides, faced with
diverse user groups, different trading models have been developed in e-commerce as
well, including posted-price selling, auctions and negotiations. However, if a human
user is requested to monitor the trading process successively, then the convenience
and efficiency of e-commerce will be greatly reduced. In view of this, automating
e-commerce trading and releasing the users from continued monitoring have become
important research topics.

The software agent technology provides a viable solution for the automation of
trading in e-commerce. A software agent is a package of programs that is created on
behalf of the user (trader) and is able to accomplish a delegated task autonomously
(Bradshaw 1997). At present, agent technologies have been applied to several domains
of e-commerce, such as shopping agents with the capability of price comparison (Maes
et al. 1999) and auction agents that can bid autonomously (Wurman et al. 1998). How-
ever, when considering agent-mediated automated negotiations, there is no evidence to
show a widespread adoption of such a promising framework (Lim 2003). This is not a
surprise in light of the fact that negotiation is a process of resolving disputes among two
or more parties and usually involves complicated strategies and tactics (Oliver 1996;
Lewicki et al. 1999). Even for a well-trained negotiator, it is not uncommon to achieve
breakdowns of negotiations. Thus, convincing the negotiator of adopting automated
negotiation is apparently not an easy task. To remedy such an awkward situation,
more elaborately-designed tactics and strategies need to be developed for automated
negotiation. In particular, their effectiveness also should be clearly identified.

For the development of automated negotiation tactics, Lopes et al. (2001) classi-
fied the tactics into the five categories called stalemate, tough, moderate, soft and
compromise, and corresponding decision functions were also proposed. However, no
evaluation for those tactics is made in their work. Faratin et al. (1998) introduce a wide
spectrum of negotiation decision functions to implement three families of tactics,
behavior-dependent, time-dependent, and resource-dependent, respectively (Faratin
et al. 1998). A package of hypotheses is proposed to clarify the effectiveness of these
tactics and is demonstrated by a set of simulated single-issue negotiations. Follow-
ing the investigations of Faratin et al., Wang and Chou (2003) provided a theoretical
analysis for time-dependent tactics. They proved that, for single-issue negotiation,
if both sides apply time-dependent tactics, the ratio of negotiating time to the nego-
tiation deadline will converge to a finite constant. For the other families of tactics,
simulations for single-issue negotiations are elaborated to compare the performance
of a possible mixture of tactics. A more thorough investigation on the effectiveness
of time-dependent tactics is also proposed by Fatima et al. (2004), and the scope is
extended to multi-issue negotiations.

Although the previous work has paid attention to the evaluations of negotiation
tactics, most of the theoretical analyses focus on time-dependent tactics, and simula-
tion experiments are limited to single-issue negotiations with a random sampling of
preference settings.
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Based on the negotiation model proposed by Faratin et al. (1998), this paper
examines the performance of automated negotiation tactics and intends to provide
concise suggestions for the users of automated negotiation systems. First, a theoretical
analysis is provided for behavior-dependent tactics. Useful conclusions are obtained
when single-issue negotiations are considered. Next, a new framework for applying
single-issue tactics to multi-issue negotiations is proposed. Based on this framework,
theoretical analysis is then extended to multi-issue cases. Finally, different from the
previous work, exhaustive simulations based on two-issue negotiations are performed
to evaluate the effectiveness of behavior-dependent and time-dependent tactics. The
experimental results show that a relatively win-win settlement could be achieved when
both sides use the same tactic. And, when simultaneously considering the value, effi-
ciency and equality of the settled contract, a simple tit-for-tat tactic would obtain better
results than others.

This paper is organized as follows: Sect. 2 introduces the terminologies and assump-
tions used in this paper. The theoretical analysis of behavior-dependent tactics is
described in Sect. 3. Applying single-issue tactics to multi-issue cases is shown in
Sect. 4. Section 5 presents and discusses the experimental results. Section 6 outlines
the conclusions.

2 Preliminaries

For the convenience of further discussion, the concept of the additive scoring model
(Raiffa 2002), proposal tables, settlement spaces, and negotiation tactics will be intro-
duced, respectively.

2.1 Representing the Preferences of Negotiators

In this section, the additive scoring model is introduced to present a possible way to
capture the preferences of negotiators. This model has been widely adopted in various
previous studies (Raiffa 2002; Faratin et al. 2002; Bui et al. 2001; Su et al. 2001; Goh
et al. 2000; Cao 1982; Barbuceanu and Lo 2000).

Before further discussion, some useful terminology will be defined. In two-party
multi-issue negotiations, the negotiator will provide an offer for each issue in each
round. The collection consisting of all the offers in a certain round is referred to as
a proposal. For each issue, the offer zone is the gap between the first offer and the
reservation offer. In addition, to prevent an extended negotiation, the offer for each
issue is usually guided by a predetermined increment. It is worth noting that “issues”
referred to in this paper mean quantitative issues or those which can be quantified.

According to the additive scoring model (Raiffa 2002), a negotiator is possible to
represent his scoring function for a proposal p = (x1, x2, . . ., xn) as follow:

V(p) =
n∑

j=1

w jv j (x j ),

n∑

j=1

w j = 1, w j > 0. (1)
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In Eq. 1, V(p) denotes the value of the proposal p for the negotiator, n is the number of
issues, and w j denotes the weight of issue j , which represents the relative importance
of issue j to others. Also, v j (x j ) represents the value of offer x j , which could be the
desirability value or utility value depending on whether the risk attitude of the nego-
tiator is considered or not (Raiffa 2002, pp. 24–32). In this paper, v j (x j ) is assumed
to be in the range of [0,1], and V(p) is thus restricted to [0,1] as well.

However, the additive scoring model has its limitation. As shown by Keeney and
Raiffa (1976), “an additive scoring system is appropriate if and only if the value trade-
offs between any two issues do not depend on the levels chosen on the remaining
issues.” Consequently, for cases in which the additive template cannot be applied,
more fine-grained techniques, such as hybrid conjoint analysis (Rangaswamy and
Shell 1997; Kersten and Noronha 1999), should be used to construct concrete pref-
erences for users. It is worth noting that, although the negotiators’ preferences can
be captured in different ways, the theoretical analyses presented in this paper are not
dependent on the construction of the V (p).

2.2 Proposal Table and Settlement Space

After exploring all the options of each issue, a proposal table consisting of all feasi-
ble proposals can be readily generated for each negotiator. For instance, referring to
the preference settings for a seller in a two-issue negotiation (shown in Table 1), his
proposal table can be constructed as in Table 2 and has been sorted according to the
total value for each proposal. Obviously, during negotiation, the negotiator can pick
proposals from the top to the bottom to achieve a result of a higher value.

If the proposal tables for both sides have been constructed, the settlement space
consisting of the intersection of the two proposal tables could be identified. An exam-
ple settlement space is shown in Fig. 1. A particular point in the settlement space is
labeled as the Equivalent and Efficient point (EE-point), which is (0.76, 0.76) in the
case of Fig. 1 and is the intersection of the 45-degree line originating from (0,0) and

Table 1 An example of preference setting for a seller in a two-issue negotiation

Issue 1 (Price: US$) Issue 2 (Warranty: years)
w1 u1 max1 min1 Increment w2 u2 max2 min2 Increment

0.6 Linear 100 90 10 0.4 Linear 1 3 1
#feasible offers = (100 − 90)/10 + 1 = 2 #feasible offers = (3 − 1)/1 + 1 = 3

Table 2 The proposal table
of the seller

Price (US$) Warranty (years) USeller

100 1 1
100 2 0.8
100 3 0.6
90 1 0.4
90 2 0.2
90 3 0
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Fig. 1 A settlement space

the efficient frontier. The EE-point represents a solution simultaneously conforming
to the indices of efficiency (located on the efficient frontier) and equality (both sides
obtain the same value according to their own scoring functions) (Mumpower 1991;
Kalai and Smorodinsky 1975).

2.3 Negotiation Tactics

According to the classification by Faratin et al. (1998), negotiation tactics based on
negotiation decision functions can be divided into three families: behavior-dependent,
time-dependent and resource-dependent. For a single-issue negotiation, the target offer
of agent A at tl+1 for issue j is denoted as t xa

j (tl+1), and the actual offer xa
j (tl+1) can

be represented by the following equation:

xa
j (tl+1) =

⎧
⎨

⎩

t xa
j (tl+1), if mina

j ≤ t xa
j (tl+1) ≤ maxa

j ,

maxa
j , if maxa

j ≤ t xa
j (tl+1),

mina
j , if t xa

j (tl+1) ≤ mina
j .

(2)

In Eq. 2, we assume that, at tl+1, agent A will accept the offer of the opponent (agent B)
if the value of t xa

j (tl+1) is no more than that of t xb
j (tl). Alternatively, the negotiation

will break down if the time exceeds ta
max or tb

max.
The difference of the three families of tactics can be identified by the calcula-

tion t xa
j (tl+1). For behavior-dependent tactics, t xa

j (tl+1) is heavily dependent on
the offering history of the other side. For resource-dependent tactics, the calcula-
tion t xa

j (tl+1) does not react to the opponent’s behavior but depends on the resources
already spent on or left for the negotiations. Because time is a kind of resource, time-
dependent tactics are obviously special cases for resource-dependent tactics.
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The process of negotiation can be represented by time ticks (ti for short) or by
rounds. For a negotiation between agent A and agent B, if agent A opens first, then
agent A should offer in time ticks (t1, t3, t5, . . ., ta

max), and agent B provides counter-
offers in (t2, t4, t6, . . ., tb

max), where ta
max and tb

max denote the negotiation deadline for
agent A and agent B respectively. The time ticks for the negotiation can be mapped to
the concept of rounds. One round consists of two time ticks, e.g., t1 and t2 constitute
round 1, t3 and t4 constitute round 2, and so on. For the convenience of discussion,
rounds and time ticks are used interchangeably when describing the details of tactics
in the following sections.

3 Theoretical Analysis of Behavior-dependent Negotiation Tactics

As stated earlier, evaluations of automated negotiation tactics are the cornerstone of
encouraging the user to adopt automated negotiations or negotiation support systems.
Thus, one of the important tactic families, behavior-dependent tactics, will be carefully
examined in this section.

The core concept of behavior-dependent tactics is that the concession of the next
round will depend on the history of the offers by the opponent. That is, behavior-
dependent tactics treat the opponent in a tit-for-tat manner. In Faratin’s paper, there
are three such tit-for-tat tactics proposed, which are Relative Tit-For-Tat, Averaged
Tit-For-Tat, and Random Absolute Tit-For-Tat (Faratin et al. 1998). In the following,
the properties of the three tactics will be investigated in depth. Although the evalua-
tions are performed on single-issue two-party negotiations, we think the results could
be used as the foundation for evaluating multi-issue negotiation tactics as well.

3.1 Relative Tit-For-Tat Tactic

The Relative Tit-For-Tat tactic (RelTFT) calculates the concession of the next round
by the ratio of the opponent’s offers in two successive rounds. If agent A uses Rel-
TFT, then the concession ratio for issue j at time tl+1, Ra

j (tl+1), can be obtained by
Eq. 3. In particular, if δ is 1, then the ratio is determined by the last two offers of
the opponent (i.e., the most recent behavior of the opponent). Thus, the target offer of
the next round for agent A would be the multiplication of his last offer, xa

j (tl−1) and
the concession ratio Ra

j (tl+1) (see Eq. 4). For example, for a price negotiation, if the
last offer of agent A (seller) is $200, and the last two offers proposed by the opponent
(buyer) are $120 and $140, respectively, then the next target offer of agent A would
be 200 ∗ (120/140) = 171.

Ra
j (tl+1) = xb

j (tl−2δ)

xb
j (tl−2δ + 2)

, where δ ≥ 1, l > 2δ. (3)

t xa
j (tl+1) = Ra

j (tl+1) × xa
j (tl−1). (4)
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Table 3 A negotiation example in which agent A uses RelTFT (δ = 1)

Agents/rounds 1 2 3 4 5 6 7 8 9

agent A (seller) 300 290* 264 242 223 207 193 181 171
agent B (buyer) 100 110 120 130 140 150 160 170 accept (180)

* Constant concession is applied at round 2 by agent A

Table 4 The offer sequence when agent A uses RelTFT (δ = 1)

Rounds 1 2 3 4 . . . k . . .

agent A a1 a2 a3 = a2 ∗ (b1/b2) a4 = a2 ∗ (b1/b3) . . . ak = a2 ∗ (b1/bk−1) . . .

agent B b1 b2 b3 b4 . . . bk . . .

The concept of RelTFT sounds reasonable, but we found that the concession calculated
by RelTFT is in fact not that fair. Table 3 shows a negotiation example, in which agent
A (seller) and agent B (buyer) dispute on the price issue. Agent A adopts RelTFT
(δ = 1) as the negotiation tactic, on the other hand, agent B use a simple constant
concession tactic. Moreover, we assume (mina , maxa) is (150, 300) and (minb, maxb)

is (100, 250). According to Raiffa’s research (Raiffa 2002), if no exaggeration occurs
in the first round, the reasonable deal price would be the average of the open offers of
both sides, which is 200(= (300+100)/2) in this example. However, from the offering
sequence in Table 3, agent A using RelTFT proposes a larger amount of concession
than the opponent after round 2. In round 7, agent A’s offer becomes 193, which is
already lower than the reasonable price (200). If the negotiation continues to round 9,
the offer of agent A is further reduced to 171, and agent B will be glad to accept such
a low price. From the above example, it is observed that using RelTFT may not be
beneficial to the seller, and his gain is even worse than that of the buyer who uses a
simple tactic.

To further understand the characteristics of RelTFT, we continued to investigate
whether a negotiator using RelTFT could obtain his expected value. First of all, the
example in Table 3 is formalized as shown in Table 4, in which the offer sequences
of agent A and agent B are represented by (a1, a2, a3, . . .) and (b1, b2, b3, . . .)
according to the negotiation round. In addition, only agent A is assumed to use RelTFT.
It is worth noting that, RelTFT cannot be applied in the first two rounds, therefore we
use a1 and a2 to represent the offers in these two rounds.

In Table 4, it can be seen that the offer by agent A in round k, ak, would be

ak = a2(b1/bk−1), (5)

which is reduced from a2(b1/b2)(b2/b3). . .(bk−2/bk−1). In fact, for any δ ≥ 1,
if agent A proposes his offer first in each round, ak would be

ak = aδ +1(b1/bk− δ), where δ ≥ 1 and k > δ + 1. (6)
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agent B(buyer)

(a1-b1)

agent A(seller)

a1

(a1-b1)/2

b1 =(a1+b1)/2

(a1-b1)/2

The offer zone

The mid point

e

Fig. 2 The offer zone created by the negotiation setting in Theorem 1

This result shows a surprising fact: ak only depends on b1 and bk− δ but not on
b2,b3, . . .,bk−δ−1. For the case of agent B opening his offer first, the calculation of
ak is somewhat different from that in Eq. 6, and would be

ak = aδ(b1/bk−δ+1), where δ ≥ 1 and k > δ. (7)

Based on the above discussions, we next propose two theorems to show the prop-
erties of the RelTFT tactic.

Theorem 1 Assume that agent A and agent B conduct a price negotiation and the
negotiation settings are organized as follows:

(a) agent A plays the seller and agent B plays the buyer,
(b) agent A adopts the RelTFT tactic,
(c) both sides apply the linear value function to the price issue,

then the offer of agent A would reach the mid point, (a1 + b1)/2, before agent B
does. That is, agent B can make less accumulated concessions than (a1 − b1)/2 in
exchange for agent A’s concession to (a1 + b1)/2.

Proof The proof is divided into the following two cases (please refer to Fig. 2 for
better understanding of the proof).
Case 1 agent A (seller) propose his offer first in each round, let e be (a1+b1)/2, and
assume agent A propose e in round k, then we have

ak = aδ+1(b1/bk− δ) = (a1 + b1)/2,

or bk−δ = 2aδ+1b1/(a1 + b1). (8)

Based on Eq. 8, if bk− δ < e is true, then the induction of the theorem can be demon-
strated.

Given a1 ≥ aδ +1, Eq. 8 can be further rewritten as

bk− δ = 2aδ +1b1/(a1 + b1) ≤ 2a1b1/(a1 + b1).
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Because

2a1b1/(a1 + b1) − e = 2a1b1/(a1 + b1) − (a1 + b1)/2

= −(a1 − b1)
2/(2(a1 + b1)) < 0,

we have 2a1b1/(a1+b1) < e, which implies bk− δ < e. Thus, Theorem 1 is proven
to be true in this case.
Case 2 agent B (buyer) proposes his offer first in each round.

Referring to Eq. 7, if agent A proposes e in round k, i.e., ak = e, then we have

ak = aδ(b1/bk− δ +1) = (a1 + b1)/2,

or bk− δ +1 = 2aδb1/(a1 + b1). (9)

Based on Eq. 9, if bk− δ +1 < e is true, the theorem can be proven. Given that

bk− δ +1 − e = 2aδb1/(a1 + b1) − (a1 + b1)/2.

Because aδ ≤ a1, the above equation can be rearranged as

bk− δ +1 − e <
(
4(a1b1) − (a1 + b1)

2) /2(a1 + b1) < 0.

Therefore, bk− δ +1 < e is true, and Theorem 1 is proven to be true in this case. ��

From Theorem 1, it can be seen that the seller applying RelTFT to a price negotia-
tion would put himself in a disadvantageous situation. However, a negotiator adopting
RelTFT has an opportunity to predict when his offer will be lowered to his expectation
price, say (a1 + b1)/2. For the example in Table 3, if the expectation price of agent
A is (a1 + b1)/2 = (300 + 100)/2 = 200, then he can predict he will propose $200
in round k when bk−1 is $145(= a2(b1/ak) = 290 ∗ (100/200)). That is, when
the accumulated concession amount of agent B is only $45(= $145 − $100), agent A
would make accumulated concessions of $100(= $300 − $200).

To provide a deeper insight of the RelTFT tactic, the situation of a buyer using
RelTFT will be investigated in Theorem 2.

Theorem 2 Assume that the negotiation settings are the same as those in Theorem 1,
but agent A plays the buyer and agent B plays the seller, then the offer of agent A
would reach the mid point, (a1 + b1)/2, after agent B does if one of the following
conditions is satisfied:

(a) agent A proposes his offer first in each round, and (aδ +1 − a1) < (a1 −
b1)2/(4b1).

(b) agent B proposes his offer first in each round.

Proof
Case 1 agent A proposes his offer first in each round.
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Refer to Eq. 8, we have bk− δ = 2aδ +1b1/(a1 + b1). The difference between
the mid-point price and bk−δ is

(a1 + b1)/2− (2aδ +1b1/(a1 + b1)),

or ((a1 + b1)
2 − 4aδ +1b1)/(2(a1 + b1)).

If the difference is greater than zero, then we can prove that agent B would make much
concession than |a1 − b1|/2 in exchange for agent A’s concession to (a1 + b1)/2.

Let ‘d’ be agent A’s concession between aδ+1 and a1, i.e., aδ +1 = a1 + d, then
the above equation becomes

((a1 + b1)
2 − 4(a1 + d)b1)/(2(a1 + b1)) > 0,

or d < (a1 − b1)
2/(4b1).

Case 2 agent B proposes his offer first in each round.
This proof is similar to the proof in Case 2 of Theorem 1. Because bk− δ +1 < e is

true, then this case can be proven. ��

We use an example to explain the application of (Case 1) in Theorem 2. For a price
negotiation between agent A and agent B with an offer zone in [$100, $300], assume
agent A plays the buyer and adopts RelTFT (δ = 1), agent B plays the seller and uses
an arbitrary tactic. Thus, according to conclusions of Theorem 2, if a1 is $100 and
a2 is less than $133.3(= 100 + (100 − 300)2/(4 ∗ 300)), agent A would not propose
$200 before agent B does. That is, if a settlement is reached in the negotiation, then
the price settled on would be less than the mid-point price, $200, and be beneficial to
agent A (buyer).

3.2 Averaged Tit-For-Tat Tactic

The Averaged Tit-For-Tat tactic (AvgTFT) is similar to RelTFT, the only difference is
the calculation of Ra

j (tl+1). Equation (10) shows the Ra
j (tl+1) of AvgTFT. For example,

if agent A (seller) applies AvgTFT (γ = 3) to a price negotiation, then he will consider
the offers in the previous four rounds by agent B (buyer). If the last offer of the seller is
$200 and the last four offers of the buyer are $100, $110, $120 and $130, respectively,
then the next target offer of agent A, t xa

j (tl+1), would be $153(= $200 ∗ (100/130)).
It is worth noting that AvgTFT is the same as RelTFT (δ = 1) when γ is 1.

Ra
j (tl+1) = xb

j (tl−2γ )

xb
j (tl)

, where γ ≥ 1, l > 2γ. (10)

The characteristic of AvgTFT can be further clarified by Table 5, in which the
negotiation setting is the same as Table 4 except that agent A adopts AvgTFT but not
RelTFT. According to Eq. 10, agent A cannot apply AvgTFT before round γ + 2, but
could adopt any tactic in the first γ + 1 rounds. According to AvgTFT, agent A will
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Table 5 The offer sequence when agent A adopts AvgTFT

1 2 . . . γ + 1 γ + 2 γ + 3 . . . k − 1 k . . .

agent A a1 a2 . . . aγ+1 aγ+1∗ aγ+1∗ . . . . . . . . . . . .

(b1/bγ+1) (b1b2/bγ+1bγ+2)

agent B b1 b2 . . . bγ+1 bγ+2 bγ+3 . . . bk−1 bk . . .

propose aγ +1(b1/bγ +1) in round γ + 2, aγ +1(b1b2/bγ+1bγ+2) in round γ + 3,
and so forth. Thus, the offer by agent A in round k should be

ak = aγ+1(b1b2. . .bk− γ −1/bγ+1bγ+2. . .bk−1), k ≥ γ + 2.

When k = 2(γ + 1), the above equation can be rewritten as

ak = aγ +1(b1b2. . .bγbγ+1/bγ+1bγ+2. . .b2γ+1),
or ak = aγ+1(b1b2. . .bγ /bγ+2. . .b2γ+1).

In fact, when k ≥ 2(γ + 1), the numerator of the second term of ak would be fixed to
(b1b2. . .bγ ). Consequently, ak can be represented as

ak = aγ +1(b1b2. . .bγ /bk− γ . . .bk−1), where k ≥ 2(γ + 1),

or ak = aγ+1(b2. . .bγ /bk− γ . . .bk−2)(b1/bk−1), k ≥ 2(γ + 1). (11)

Based on Eq. 11, the concession amounts for RelTFT and AvgTFT are then com-
pared, and the conclusions of Theorem 1 is tried to applied to AvgTFT. Before pro-
ceeding to Lemma 1, we first define a successive concession used by agent X for issue
j as an offering sequence (o1, o2, . . ., on), where ux

j (o1) ≥ ux
j (o2) ≥ . . . ≥ ux

j (on)

and n is the round limit.

Lemma 1 Assume agent A and agent B conduct a price negotiation in which agent A
uses RelTFT(δ ≥ 1) and agent B makes a successive concession. If agent A changes
his tactic to AvgTFT(γ > δ) before the negotiation begins, in each round k, he would
make more concession than the case of using RelTFT, where k ≥ 2(γ + 1).

Proof The proof can be divided into the following four cases:
Case 1 agent A plays the seller and proposes his offer first in each round.

By applying Eq. 11, we have

ak,AvgTFT = aγ +1(b2. . .bγ /bk−γ . . .bk−2)(b1/bk−1). (12)

Alternatively, if agent A changes his mind to adopt RelTFT, ak would be

ak,RelTFT = aδ+1(b1/bk−δ). (13)
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Divide (12) by (13), we have

ak,AvgTFT /ak,RelTFT =(aγ +1/aδ +1)(b2. . .bγ /bk− γ . . .bk−2)(bk−δ/bk−1). (14)

Because agent A is the seller and γ > δ, aγ +1/aδ +1 would be less than 1.
Similarly, because agent B is the buyer and δ ≥ 1, (b2. . .bγ /bk− γ . . .bk−2) < 1 and
(bk− δ/bk−1) ≤ 1 are true. Therefore, ak,AvgTFT /ak,RelTFT < 1 or ak,AvgTFT <

ak,RelTFT can be concluded. That is, Lemma 1 holds for Case 1.
Case 2 agent A plays the buyer and proposes his offer first in each round.

In this case, ak,AvgTFT /ak,RelTFT > 1 should be proven. Using Eq. 14, since
agent A plays the buyer, (aγ +1/aδ +1) > 1, (b2. . .bγ /bk− γ . . .bk− 2) > 1, and
(bk−δ/bk−1) ≥ 1 are all true, therefore ak,AvgTFT > ak,RelTFT can be concluded.
Case 3 agent A plays the seller and agent B proposes his offer first in each round.

The proof of this case is similar to Case 1. Because agent B proposes his offer first
in each round, ak,AvgTFT and ak,RelTFT would be as follow.

ak,AvgTFT = aγ (b2. . .bγ /bk−γ+1. . .bk−1)(b1/bk),
ak,RelTFT = aδ(b1/bk−δ+1).

Then, we have

ak,AvgTFT /ak,RelTFT = (aγ /aδ)(b2. . .bγ /bk−γ+1. . .bk−1)(bk−δ+1/bk). (15)

Clearly, in this case, (aγ /aδ) < 1, (b2. . .bγ /bk−γ+1. . .bk−1) < 1 and (bk−δ+1/
bk)≤ 1 are all true. Thus, ak,AvgTFT /ak,RelTFT < 1 or ak,AvgTFT < ak,RelTFT holds
for this case.
Case 4 agent A plays the buyer and agent B proposes his offer first in each round.

In this case, ak,AvgTFT /ak,RelTFT > 1 needs to be proven. Using Eq. 15,
since agent A plays the buyer and agent B plays the seller in this case,
(aγ /aδ)> 1, (b2. . .bγ /bk−γ+1. . .bk−1)> 1 and (bk−δ+1/bk)≥ 1 should be true,
thus ak,AvgTFT > ak,RelTFT holds for this case. ��

Through Lemma 1, the performance of AvgTFT then can be formulated by
Theorem 3.

Theorem 3 Theorem 1 still holds true if agent A (the seller) changes his tactic from
RelTFT (δ ≥ 1) to AvgTFT (γ > δ) and agent B makes a successive concession in
negotiation.

Proof The proof can be obtained by directly applying Lemma 1. ��

Table 6 shows a negotiation example in which agent A uses AvgTFT (γ = 3). It
can be seen that agent A quickly lowers his offer after round 4. The negotiation would
be settled in round 7 and agent B accepts agent A’s humble offer, $130. In comparison
with the example shown in Table 3, in which agent A adopts RelTFT and the negoti-
ation is settled at $171 in round 9, the performance of AvgTFT is clearly inferior to
that of RelTFT.

123



Tactics for Automated Negotiations 527

Table 6 An example of the offering sequence when agent A adopts AvgTFT (γ = 3)

Agents/rounds 1 2 3 4 5 6 7

agent A (seller) 300 290* 280* 270* 208 163 130
agent B (buyer) 100 110 120 130 140 150 accept (160)

* Constant concession is applied before round 5 by agent A

3.3 Random Absolute Tit-For-Tat Tactic

The Random Absolute Tit-For-Tat tactic (AbsTFT) computes the concession amount
of the next round by adding the difference of the opponent’s offers in the last two
rounds to the last offer of my own side. Thus, if agent A adopts AbsTFT, then his tar-
get offer at tl+1 can be obtained by Eq. 16. R(M) denotes a random number between
0 and M, and s can be 0 or 1 depending on which one is more beneficial to agent A.

t xa
j (tl+1) = xa

j (tl−1) + (xb
j (tl−2r ) − xb

j (tl−2r+2)) + (−1)s R(M),

where γ ≥ 1, l > 2γ. (16)

Among the three behavior-dependent tactics, AbsTFT seems to be the fairest one
because it has the potential to make a deal near the mid-point of the zone of agreement
(Raiffa 2002). However, such a statement is only valid for single-issue negotiations but
not multi-issue cases (discussed in Sect. 4). Moreover, an exaggerated opening offer
by the opponent would affect the effectiveness of all the behavior-dependent tactics,
and of course, including AbsTFT.

3.4 Remarks on Time-dependent Tactics

The main difference of time-dependent tactics and behavior-dependent tactics is that
time-dependent tactics completely ignore the reaction (counter offers) by the oppo-
nent and only propose offers according to a predetermined time-dependent sequence.
If agent A adopts a time-dependent tactic, his offer at time t can be formulated in the
following equation (Faratin et al. 1998; Wang and Chou 2003):

xa
j (t) =

{
mina

j +αa
j (t)(maxa

j − mina
j ), if ua

j is decreasing,
mina

j + (1 − αa
j (t))(maxa

j − mina
j ), if ua

j is increasing,
(17)

where αa
j (t) can be either polynomial or exponential families of functions, but only

the polynomial functions are used here for simplicity (see Eq. 18).

αa
j (t) = κa

j + (1 − κa
j )

(
min(t, ta

max)

ta
max

)1/β

, where κa
j is a constant. (18)

As shown in Eq. 17, the concession amount of time-dependent tactics is completely
determined by αa

j (t) if mina
j and maxa

j are given. And, according to Eq. 18, αa
j (t)
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Fig. 3 The relationship between αa
j (t) and β

further depends on β if ta
max is constant. The relationship between αa

j (t) and β is
shown in Fig. 3. Apparently, the value of β determines the type of αa

j (t) and there-
fore induces different types of tactics. If β = 1, αa

j (t) will be a linear function with
respect to time and thus the resultant tactic is a Linear tactic. In the case of β < 1,
αa

j (t) grows slowly at first but jumps markedly when the time is near ta
max (referred as

Boulware tactics). In contrast to Boulware tactics, if β > 1, it will result in Conceder
tactics, which make large concessions at first but shrink the concession gradually as
time passes. It is worth noting that the offer sequence of any time-dependent tactic is
completely unrelated to the opponent’s counter offers.

The effectiveness of time-dependent tactics has been discussed intensively in previ-
ous studies (e.g., Wang and Chou 2003; Fatima et al. 2004). Though the investigation
of time-dependent tactics is not the main objective of this paper, we still propose the
following comments on these tactics. Because of ignoring the opponent’s reaction,
applying time-dependent tactics may result in an unconditional concession even if the
opponent yields nothing. On the other hand, tactics of the Boulware type are likely
to enrage the opponent because no obvious concession is given until near tmax even
if the opponent makes huge concessions. Therefore, we suggest that time-dependent
tactics should be applied in combination with other families of tactics but not alone.

4 Applying Single-Issue Tactics to Multi-Issue Negotiations

In the previous sections, the performance of different tactics in single-issue negoti-
ations was discussed. Unfortunately, the results obtained cannot be directly applied
to multi-issue cases. This is mainly due to the unique nature in multi-issue negotia-
tions, i.e., trade-offs among issues. In fact, it is not trivial to apply single-issue tactics
to multi-issue negotiations. To tackle this problem, we first introduce two possible
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methods to formulate strategies in multi-issue negotiations. After that, a discussion
on how to extend the theoretical result of Sect. 3 to multi-issue cases is given.

4.1 Strategies for Multi-issue Negotiations

Faratin et al. (1998) have defined a strategy for a multi-issue negotiation as the linear
combination of tactics for different issues. A strategies can be composed of different
tactics, which are applied to different issues. However, to further explore the trade-off
feature, two possible means for applying tactics to multi-issue negotiations are pro-
posed and described in order.

4.1.1 Offer-based Strategies

The offer-based strategies are refined from the strategy model of Faratin et al. (1998)
and described as follows. Assume the target offer of agent A for issue j at time tl+1
is t xa

j (tl+1) and the actual offer xa
j (tl+1) is obtained by applying Eq. 3. To obtain the

next proposal, different from the work of Faratin et al. (1998), we do not propose
(xa

1 (tl+1), xa
2 (tl+1), . . ., xa

n (tl+1)) directly but proceed to formulate the target value of
the next proposal T V a(tl+1) as

T V a(tl+1) =
n∑

j=1

wa
j v

a
j (xa

j (tl+1)), where
n∑

j=1

wa
j = 1, wa

j > 0. (19)

Please note that the value of T V a(tl+1) should be restricted in [0,1].
The calculation of T V a(tl+1) creates the possibility to make trade-offs among is-

sues. In fact, there is no difference for agent A to provide any proposal with the value
of T V a(tl+1). However, these proposals of T V a(tl+1) may bring different meaning
to the opponent. Thus, with the target value, the candidate proposals at time tl+1 can
then be selected in the following set:

pa(tl+1) = {p|p ∈ PT a ∧ |V a(p) − T V a(tl+1)| ≤ λ, λ ∈ R}. (20)

It can be seen that, in Eq. 20, the value of each proposal in pa(tl+1) is not exactly equal
to T V a(tl+1) but allows a small difference of λ with T V a(tl+1). This arrangement can
prevent an empty pa(tl+1). In addition, λ can be enlarged from 0 to a predetermined
boundary according to the preferences of agent A.

4.1.2 Proposal-based Strategies

The offer-based strategy has the advantage of applying different combinations of tac-
tics to different issues, thus fully utilizing the unique feature of each tactic. However,
according to offer-based strategies, the calculation of the next target offer for a certain
issue would not be affected by the offers of other issues. Therefore, the trade-offs
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among issues are still restricted. To remedy the above problem, in multi-issue negoti-
ation, the scope of tactics should be enlarged from distinct offers for single issues to
a proposals, which is simultaneously relative to all the issues.

An example is given below to explain the concept of proposal-based strategies.
Suppose agent A uses AbsTFT alone as his tactic in a multi-issue negotiation. Then
the target value at time tl+1, T V a

AbsTFT (tl+1), can be formulated as

T V a
AbsTFT (tl+1)=V a(pl−1)+(V a(pl−2r )−V a(pl−2r+2)) + (−1)s R(M). (21)

The case above is referred to a single-tactic proposal-based strategy. When computing
the next target value, not the offer for each issue but the total utilities of the last two
proposals of the opponent, V a(pl−2r ) and V a(pl−2r+2), are considered. That is, the
tactic is applied to a proposal (a bundle of offers) and provides a better chance to
explore the possible trade-offs.

The above case can be extended to a multiple-tactic negotiation. The following is an
example equation used by agent A who uses both AbsTFT and Boulware to compute
T V a(tl+1):

T V a(tl+1) = 0.3 × T V a
AbsTFT (tl + 1) + 0.7 × T V a

Boulware(tl + 1).

Based on the above discussion, the general form of tua(tl+1) used by the multi-tactic
proposal-based strategy can be represented as follows:

T V a(tl+1) =
m∑

i=1

wta
i T V a

taci
(tl+1), where

m∑

i=1

wta
i = 1, wta

i > 0. (22)

In Eq. 22, m is the number of applied tactics, taci is the i-th tactic, and wti is the cor-
responding weight of each T V a

taci
(tl+1). Thus, in addition to exploring the trade-off

feature, the proposal-based strategy can also provide the negotiator diverse types of
tactical combinations.

4.2 Theoretical Analysis for Multi-issue Negotiations

Based on the investigation in Sect. 4.1, we continue to examine the possibility of
extending theoretical analyses for single-issue negotiations to multi-issues cases. To
focus on the effectiveness of a specific tactic, the single-tactic proposal-based strategy
is adopted for the following discussions. The analyses begin with the effectiveness of
RelTFT, followed by the AvgTFT, and finally with the RndAbsTFT.

Theorem 4 Agent A and agent B conduct a multi-issue negotiation with the negotia-
tion settings organized as follows:

(a) agent A applies the RelTFT tactic to his single-tactic proposal-based strategy,
(b) for each proposal p in the settlement space of the negotiation, V a(p)+V b(p)=1.
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(c) Assume V a(pa(t1))=1−w, V a(pb(t1))=w, V b(pb(t1))=1−w, V b(pa(t1))=w,
where 0 < w < 1 and pa(t1) and pb(t1) are the first proposals of agent A and
B respectively.

then, according to their own value functions, agent B can make smaller accumulated
value concessions than 0.5 in exchange for agent A’s concession to the value of 0.5.

Proof Similar to Theorem 1, the proof is divided into the following two cases.
Case 1 agent A proposes his offer first in each round. Assume agent A’s proposal value
is 0.5 in round k, then we have

Va(pa(tk)) = Va(pa(tδ+1))(Va(pb(t1)/Va(pb(tk−δ)) = 1/2, or

Va(pb(tk−δ)) = 2wVa(pa(tδ+1))

Given V a(pa(t1)) ≥ Va(pa(tδ+1)), the above equation can be rewritten as

Va(pb(tk−δ)) ≤ 2w(1− w).

Because,

2w(1− w) − 1/2 = −(2w− 1)2/2 ≤ 0 ⇒ 2w(1− w) ≤ 1/2

We have:

Va(pb(tk−δ)) ≤ 1/2 ⇔ 1− Vb(pb(tk−δ)) ≤ 1/2

⇔ (1− w) − Vb(pb(tk−δ)) ≤ 1/2− w

⇔ Vb(pb(t1)) − Vb(pb(tk−δ)) ≤ 1/2− w

Because the right-hand side of the above equation is exactly the accumulated conces-
sion value of agent B, Theorem 4 is proven to be true in this case.
Case 2 agent B proposes his offer first in each round. Assume agent A’s proposal value
is 0.5 in round k, then we have

Va(pa(tk)) = Va(pa(tδ))(V
a(pb(t1)/V

a(pb(tk−δ+1))) = 1/2,

or Va(pb(tk−δ+1)) = 2wVa(pa(tδ))

The succeeding proof is analogous with Case 1 and is omitted for simplicity. Finally,
we also have:

Vb(pb(t1)) − Vb(pb(tk−δ+1)) ≤ 1/2− w

That is, the accumulated concession value of agent B is less than 1/2, and Theorem 4
is also proven to be true in this case. ��

It can be seen from Theorem 4 that using RelTFT along in multi-issue negotiations
would put the negotiator in an unfavorable situation. By applying the AvgTFT tactic to
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the single-tactic proposal-based strategy, similar conclusions such as Theorem 3 can
be obtained by demonstrating that the concession amount of AvgTFT in each round
would exceed that of RelTFT.

In applying AbsTFT to multi-issue negotiations, a different outcome was ob-
served from that in single-issue cases and is described as follows. Assume agent A
and agent B conduct a multi-issue negotiation, and the last two proposals of agent
B are pb(tk−1) and pb(tk). According to AbsTFT, agent A should make a value
concession of an amount preferably equal to Da = V a(pb(tk)) − V a(pb(tk−1)).
However, because both sides have different value functions, agent B’s concession,
Db = V b(pb(tk)) − V b(pb(tk−1)), may be less (or greater) than Da and result in a
non-reciprocal situation. That is, the effect of applying AbsTFT to multi-issue nego-
tiations is not as definite as that in single-issue cases. Even so, applying AbsTFT is
not harmful to the negotiations. Instead, such an uncertainty brings new opportunities
to both sides of the negotiation, which can help make the strongly distributed nature
(zero-sum) of AbsTFT become more integrative (win–win). For example, in the above
case, agent B can carefully pick the next proposal from the settlement space and try
to make a small concession (Db) in exchange for a large return (Da). Similarly, agent
A can do as agent B does. As a result, a relatively win–win settlement could possibly
be obtained in such a mutual exploration by both agents.

5 Simulation Experiments

In this section, to evaluate the effectiveness of different tactics for multi-issue negoti-
ations, extensive simulation experiments are performed. And, the statistics of exper-
imental results are then presented to provide helpful suggestions for negotiators.

5.1 Experiment Setting

5.1.1 Generation of Negotiation Cases

To provide an objective view of evaluations, we designed a pseudo-exhaustive simula-
tion for two-issue negotiations based on the additive scoring model. In addition, some
restrictions have also been introduced to limit the complexity of the simulation. First,
the increment of weight for each issue is set at 0.1. Consequently, there could be C(9,1)
possible weight combinations for the two issues, and thus 81(= C(9, 1) ∗ C(9, 1))

combinations in total for a two-party negotiation. Next, for the value function of
each issue, a limited type of function forms are allowed in the simulation, which
are: linear-increasing, linear-decreasing, convex-increasing, convex-decreasing, con-
cave-increasing and concave-decreasing (Mumpower 1991). Therefore, there would
be 324(= (6 ∗ 6) ∗ (3 ∗ 3)) possible combinations of value functions for a two-party
negotiation if the opponent always has an opposite interest for each issue. As a result,
26, 244(= 81 ∗ 324) negotiation cases can be generated by the above arrangement.
Please refer to Table 7 for a better understanding. A similar enumeration for three-issue
negotiations would obtain up to 7, 558, 272(= C(9, 2)∗C(9, 2)∗(6∗6∗6)∗(3∗3∗3))

cases. Thus, only two-issue negotiations are considered here for sake of efficiency.
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Table 7 Preference settings of
two-issue negotiations for a
negotiator

Parameters Assumptions Possible combinations

w1, w2 Assume the range of wi is
from 0.1 to 0.9, and 0.1 is
the smallest increment.

81 = C(9, 1) ∗ C(9, 1)

u1, u2 Only six typical function
forms are allowable, and
assume the two sides have
opposite interests for each
issue.

324 = (6 ∗ 6) ∗ (3 ∗ 3)

Table 8 Parameters of
negotiation tactics

Tactic group Parameters

Behavior-dependent RelTFT δ = 1
(Relative Tit-for-Tat)

AvgTFT γ = 4
(Averaged Tit-for-Tat)

AbsTFT γ = 1,
(Random Absolute Tit-for-Tat) M ∈ [0, 5]

Time-dependent Boulware β = 0.2
Linear β = 1
Conceder β = 2

5.1.2 Parameter Settings of Negotiation Tactics

In the experiment, to clearly demonstrate the effectiveness of each tactic, single-tactic
proposal-based simulations were performed. Table 8 shows the parameter settings for
each tactic. The offer zone for each issue for both side is set in [0,100], in which the
increment of each offer is 5. As described in Sect. 2, agent A will accept the proposal
of agent B, pn , if U a(pn) > U a(pn+1), where pn+1 is the next target proposal of
agent A, and vice versa. The limit of negotiation rounds is set to be 200.

5.1.3 Evaluation Indices

The following three indices are used to evaluate and compare the effectiveness of these
tactics.

(a) Settled utilities (for both sides): this is the most common index to show whether
or not a tactic brings benefits to a negotiator. As shown in Sect. 2, the total utilities
of the settled proposal p can be obtained by U a(p) and U b(p).

(b) Distance to EE-point: the distance between the settled point and the EE-point in
the settlement space can be used to evaluate whether the settlement is efficient
and fair or not. The smaller the distance to the EE-point is, the more efficient and
fairer the settlement is.
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(c) Rounds to reach an agreement: A lengthy negotiation incurs penalties for
resource consumption, thus shrinking the utilities obtained by the negotiators
indirectly.

5.2 Experimental Results

This section presents the experimental results based on the setting described in 5.1.
The evaluations of each tactic according to the three feature indices are also provided.

5.2.1 Settled Utilities

Table 9 presents the averaged settled utilities for both sides (agent A and agent B).
Note that, only settled cases are considered here. The first column in Table 9 shows
the tactics employed by agent A and the first row shows those used by agent B. In
negotiation, agent A always proposes his offers before agent B in each round. The
results shown in each cell of Table 9 are generated by averaging the settled utilities
of all 26,244 negotiation cases corresponding to a certain tactic pair. For all, up to
944, 784(= 36 ∗ 26,244) negotiation cases are simulated in this experiment. Besides,
to obtain a macro-scope of the effectiveness for each tactic, these averaged settled
utilities are also averaged again for each tactic and are shown in the last column: Avg.
(Rank). The implications of these results are discussed below.

(1) A relatively win-win result could be obtained when both sides use the same tactic.
Referring to the diagonal cells of Table 9, we find that high utilities are simulta-
neously achieved by agent A and agent B. Besides, the differences of both sides
in these cases are smaller than those of using different tactics. Especially, when
considering the AbsTFT–AbsTFT pair, a significantly mutually beneficial result
is obtained (0.633/0.631). Thus, an important conclusion can be formulated as
follows. Without revealing the preferences of both sides, it is proper to suggest
both sides adopt the same tactic for the win–win purpose.

(2) AbsTFT is the best one of the behavior-dependent tactics. Among the three
behavior-dependent tactics, the ranking order is AbsTFT (2), RelTFT (4) and
AvgTFT (6). This result matches the conclusions of Sect. 3 for single-issue
negotiations, and demonstrates the excess concessions generated by RelTFT and
AvgTFT are unfavorable to the negotiator. In fact, the performances of RelTFT
and AvgTFT are even worse than that of the simple Linear tactic.

(3) Boulware achieves the best performance of all the six tactics, but AbsTFT pro-
vides the most promising results. It is not a surprise that, because of its delayed
concession feature, Boulware obtains high utilities in the Boulware/Linear and
Boulware/Conceder pair. However, we can find that Boulware loses its advantage
when competing with AbsTFT (the result is 0.482/0.738). Besides, the AbsTFT
obtains better utilities consistently than the opponent adopting any other tactics.
Thus, of the six tactics, AbsTFT is the most promising tactic. (In fact, there is
no need to show the friendship first to a pure time-dependent tactician.)

123



Tactics for Automated Negotiations 535

Ta
bl

e
9

T
he

se
ttl

ed
va

lu
es

fo
r

bo
th

si
de

s
ac

co
rd

in
g

to
th

e
ta

ct
ic

pa
ir

s
us

ed

Ta
ct

ic
pa

ir
s

(s
et

tle
d

va
lu

es
)

ag
en

tB
A

vg
.(

R
an

k)

R
el

T
FT

A
vg

T
FT

A
bs

T
FT

C
on

ce
de

r
L

in
ea

r
B

ou
lw

ar
e

ag
en

tA
R

el
T

FT
0.

59
9/

0.
59

7*
0.

61
/0

.5
33

0.
57

6/
0.

63
5

0.
59

6/
0.

61
9

0.
57

4/
0.

64
0.

57
4/

0.
63

7
0.

58
9/

0.
61

0
(4

)
A

vg
T

FT
0.

52
7/

0.
61

7
0.

55
7/

0.
55

9
0.

50
5/

0.
65

4
0.

48
6/

0.
70

1
0.

40
1/

0.
76

9
0.

38
4/

0.
77

6
0.

47
7/

0.
67

9
(6

)
A

bs
T

FT
0.

63
8/

0.
57

6
0.

65
1/

0.
51

1
0.

63
3/

0.
63

1
0.

71
8/

0.
50

4
0.

70
6/

0.
52

0.
72

7/
0.

49
8

0.
67

9/
0.

54
0

(2
)

C
on

ce
de

r
0.

60
2/

0.
61

0.
68

3/
0.

50
6

0.
50

2/
0.

71
5

0.
61

3/
0.

61
7

0.
49

8/
0.

72
5

0.
24

3/
0.

88
8

0.
52

4/
0.

67
7

(5
)

L
in

ea
r

0.
63

4/
0.

57
9

0.
76

8/
0.

40
4

0.
50

9/
0.

71
4

0.
72

4/
0.

49
8

0.
61

9/
0.

62
1

0.
33

7/
0.

82
9

0.
59

9/
0.

60
8

(3
)

B
ou

lw
ar

e
0.

62
7/

0.
58

0.
78

/0
.3

77
0.

48
2/

0.
73

8
0.

88
7/

0.
24

5
0.

82
7/

0.
34

0.
61

3/
0.

61
9

0.
70

3/
0.

48
3

(1
)

*
W

he
re

0.
59

9
is

th
e

av
er

ag
e

se
ttl

ed
ut

ili
tie

s
of

ag
en

tA
,a

nd
0.

59
7

is
th

at
of

ag
en

tB

123



536 C.-F. Lee, P.-L. Chang

Table 10 The averaged distance to the EE-point of each tactic-pair

Tactic pairs (Dist. to EE) agent B Avg.

RelTFT AvgTFT AbsTFT Conceder Linear Boulware

agent A RelTFT 0.185 0.206 0.183 0.221 0.254 0.233 0.214
AvgTFT 0.206 0.213 0.21 0.228 0.334 0.328 0.253
AbsTFT 0.184 0.207 0.176 0.271 0.273 0.281 0.232
Conceder 0.205 0.211 0.262 0.125 0.191 0.485 0.247
Linear 0.242 0.327 0.277 0.189 0.118 0.373 0.254
Boulware 0.227 0.335 0.294 0.481 0.368 0.127 0.305

5.2.2 Distance to EE-point

As described in Sect. 2, a settled point near the EE-point implies the deal conforms
to the principles of being fair and efficient (Pareto-optimal). The average distances to
the EE-point of each tactic-pair negotiation are listed in Table 10. And, the averages
of the averaged distance are shown in the last column (Avg.). The discussion of the
results is given below.

(1) If both sides use the same tactic, the averaged distances are relatively small.
Again, refer to the diagonal cell of Table 10, the averaged distances in these
cases range from 0.125 to 0.213 and are relatively smaller than those of the other
tactic-pair. This result encourages us again to suggest both sides use the same
tactic in negotiation.

(2) On average, Boulware incurs the largest distance to the EE-point (0.305). This
implies that, although applying Boulware obtains high rewards (as shown in Ta-
ble 9), it is quite possible to cause an unfair and inefficient settlement. Thus, a
negotiator using Boulware alone could make a negative impression (e.g., greedy,
non-reciprocal) on his opponent. On the contrary, the averaged distance to the
EE-point of the AbsTFT tactic is 0.232 and significantly smaller than that of
Boulware. In conclusion, AbsTFT is still superior to Boulware according to the
index of distance to the EE-point.

5.2.3 Rounds to Reach an Agreement

The rounds (time) required to reach an agreement are related to the resource consump-
tion in the negotiation. To realize the time penalty incurred by each tactic, the average
rounds to reach an agreement for each tactic-pair are shown in Table 11. Note that
only the settled cases are considered in the table.

(1) On average, behavior-dependent tactics cause less negotiation rounds than time-
dependent tactics do. Especially, the RelTFT and AvgTFT lead early settlements
which need 54 and 42 rounds on average. Clearly, this is caused by the excess
concessions generated by these two tactics.

(2) The Boulware tactic causes lengthy negotiations (151 rounds on average) and
thus incurs a large amount of time consumption, which is not surprising because
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Table 11 The average rounds to reach an agreement of each tactic-pair

Tactic pairs (Avg Round) agent B Avg. (Rank)

RelTFT AvgTFT AbsTFT Conceder Linear Boulware

agent A RelTFT 15 11 25 41 74 159 54 (5)
AvgTFT 10 9 20 22 47 144 42 (6)
AbsTFT 24 21 28 67 99 171 68 (3)
Conceder 42 24 65 33 56 128 58 (4)
Linear 75 47 100 56 78 139 82 (2)
Boulware 160 143 171 127 139 166 151 (1)

Table 12 The statistics of settlement ratio for each tactic-pair

Tactic pairs (settlement ratio) agent B

RelTFT AvgTFT AbsTFT Conceder Linear Boulware

agent A RelTFT 0.766 0.93 0.762 1 1 1
AvgTFT 0.932 0.999 0.932 1 1 1
AbsTFT 0.754 0.931 0.584 1 0.999 1
Conceder 1 1 1 1 1 1
Linear 1 1 1 1 1 1
Boulware 1 1 1 1 1 1

of its delayed concession feature. However, suppose the round limit is shortened
from 200 to 130, there would be few deals made by using Boulware in these
negotiations. These results demonstrate the comments shown in Sect. 3.4.

The above two statements imply that, if time is critical to the negotiator and rea-
sonableness is also required in negotiations, behavior-dependent tactics would be the
better choices than time-dependent tactics.

5.2.4 Settlement Ratio

All the above statistics with respect to different tactic-pairs are based on settled cases.
However, if the ratio of settlement for a certain tactic is relatively low, its effectiveness
will be negatively affected no matter how well it behaves in these settled cases. To pro-
vide more insight into the effectiveness of different tactics, the ratio of settlement for
each tactic-pair is given in Table 12. It can be seen that the settlement ratio of behavior-
dependent tactic-pairs (the upper-left corner of this table) is relatively lower than those
of other pairs. The results show that, if both sides simultaneously behave in a tit-for-tat
manner, the possibility of settlement would be decreased and especially in cases where
the AbsTFT–AbsTFT pair is used, which resulted in the lowest ratio of 0.584. One pos-
sible reason for the above observation is that, in negotiation, sincere concessions may
not be appreciated by the opponent and may result in an indifferent return (because
his value function is different from yours). Then, a misunderstanding may occur and
mutual revenge may be taken by both sides according to the “reciprocal” principle.
Obviously, such a destructive procedure will lead to a breakdown in negotiations.
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6 Conclusions

This paper presented theoretical analyses for evaluating the effectiveness of behav-
ior-dependent tactics; first considering single-issue negotiations and then extending
those results to multi-issue cases. A framework for applying single-issue tactics to
multi-issue negotiations was also proposed as the basis for analysis. After that, exten-
sive simulation experiments were performed to examine the effectiveness of three
tactic families. The main results achieved by our work included: (i) showing that
RelTFT and AvgTFT did not act in a tit-for-tat manner, causing the negotiator to pay
more in exchange for less return; furthermore, AvgTFT behaved even more poorly
than RelTFT; (ii) if both sides used the same tactic, a relatively win-win settlement
could be obtained; (iii) depending on the value, efficiency, and equality of the settled
contract, the simple tit-for-tat tactic, AbsTFT, obtained better results than the others.

The application of our work is manifold and may include the following: First, after
understanding the effectiveness of each tactic, the negotiator can formulate a proper
strategy to fulfill his predetermined objective more accurately. Second, in a semi- or
fully-automated negotiation environment, these evaluations would make the negotia-
tor (at least partially) more comfortable to delegate his role to software agents, which
would be helpful to further bring negotiations into the territory of e-Commerce. Finally,
when third-party intervention is allowed in negotiations, the mediator can provide con-
structive suggestions for each negotiator according to the results obtained in this work.

To popularize semi-/fully-automatic negotiations in e-Commerce, in addition to
elaborating evaluations for existing tactics as in this paper, some diverse thinking can
be further considered. First, new tactics for multi-issue negotiations, which intrinsi-
cally consider the trade-off nature of this type of negotiations, should be developed.
Borrowing tactics from single-issue negotiations, such as price haggling, is not always
profitable for multi-issue cases. Next, as discussed in Sect. 5, misunderstandings could
occur often because both sides have different value functions. To remove the ultimate
causes of trouble, we think developing techniques for predicting the opponent’s pref-
erences are definitely required. Through the results of prediction, a negotiator is more
likely to make an “effective concession”, which is actually beneficial to his opponent.
Certainly, a suitable preference model will be necessary for a successful prediction.
Besides the above considerations, as stated earlier, negotiators more easily accept a
well-simulated negotiation tactic or strategy before it is put to practical use. Thus,
developing more complete and efficient simulation techniques is also critical. For this
purpose, the genetic algorithm could be a good candidate to take both completeness
and efficiency into account simultaneously.
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