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Abstract

In this paper, “full-insurance coverage on
average” 1s defined as the coinsurance rate
that eliminates all insurable risk when the
uninsurable risk is evaluated at its mean.
Using the regressibility assumption, this paper
derives the conditions on the correlation
between background and insurable risks and
the actuarial unfairness of insurance under
which full-, over- or under-insurance on
average is optimal. These conditions are
compared to those for the case of default risk.
Together they explain intuitively the different
results under the cases of background risk and
default risk obtained in the literature.
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In his seminal paper, Arrow [1] shows
that if a risk averse individual is offered an
insurance against a random loss at an
actuarially fair premium rate, she will choose
to buy one-hundred percent coverage.' Recent
research, however, indicates that this result
does not hold in general when insurance
markets become incomplete. Here, market
incompleteness means that individuals are
facing some risks that are uninsurable due to
the absence of the corresponding insurance
markets possibly as a result of moral hazard or
adverse selection.

By using a simple model with only
four states of nature, Doherty and Schlesinger
[5] show that full-insurance coverage may not
be optimal when an individual’s wealth
consists of not only an insurable random loss
(say medical expenditure) but also an
uninsurable idiosyncratic (background) risk
(say income risk). They show that, under their
simple model, traditional theory holds only

" An insurance is actuarially fair (favorable/unfavorabie)
when the premium payment is equal to (smaller
than/higher than) the expected value of the loss.

Mossin [10] and Smith [15] show that actuarial
favorableness (unfaimess) has a positive (negative)
effect on insurance coverage.



when the insurable and uninsurable risks are
statistically independent. Moreover, the
correlation between the two risks seems to
have a monotonic relation with insurance
coverage.*

More recently, Doherty and
Schlesinger [7] study the effect of the
presence of an uninsurable risk of insurer’s
default on insurance coverage. They find
surprisingly that, even in their simple model
with only three states of nature in which the
default risk and the insurable risk are
independent, optimal coinsurance rate can be
equal to, greater than or less than one when
insurance is fair. Unfortunately, the authors do
not provide an intuitive explanation for the
apparent difference between the case of an
idiosyncratic risk and the case of the risk of
insurer’s default. So far, very little progress
has been made in the theory of insurance
demand for the case of default risk.’

Careful inspection of the incomplete
insurance market literature reveals that there
is a lack of an appropriate definition for “full-
insurance coverage.” In general, when an
uninsurable risk exists, a coinsurance rate of
one on the insurable risk does not eliminate all
risk from the individual. Therefore, it is not
always meaningful to use the coinsurance rate
of one as the definition for “full insurance”
and to compare it with an individual’s optimal

2 They show that, under their four-state model, when
the insurable and the background risks are positively
(négatively) correlated, optimal coinsurance rate is
greater (tess) than one. Schlesinger and Doherty [13]
derive similar results under a more general model in
which the background risk and the insurable risk are
perfectly correlated. Eeckhoudt and Kimball {8} show
that traditional theory holds in the case of an
independent background risk. Doherty and Schlesinger
(6] show that optimal deductible equal zero when the
two risks have a bivariate normal distribution.

3 Only very special cases are considered in the
{iterature. For example, Schlesinger and Schulenburg
[14] consider the relation between Arrow-Pratt risk
aversion and insurance demand when a total defauit is
possible.

coinsurance rate. As a consequence, before
comparing the case of uninsurable background
risk and the case of default risk, we need to
have a meaningful and workable definition for
“full-insurance coverage.” To this end, this
paper introduces the concept of “full-
insurance on average” which is defined as the
coinsurance rate at which all risk is eliminated
when the uninsurable risk is evaluated at its
mean.

The main purpose of this paper is to
check whether “full-insurance on average” is
optimal under the case of idiosyncratic risk
and the case of default risk. A novelty of this
paper is that no specific distributions for the
insurable and uninsurable risks are assumed.
The only restriction being imposed is the
“regressibility assumption” employed in the
literature of indirect hedging of exchange rate
risk (see, e.g., Broll, Wahl, and Zilcha [2] and
Broll'and Wahl 3]). It turns out that this
assumption simplifies the analysis
substantially. Moreover, it will be shown that
this assumption is a generalization of the
bivariate normal and the perfect correlation
assumptions used by Doherty and Schlesinger
(1983b, 1985). It will also be shown in a
footnote that the same results can be reached
with the regressibility assumption replaced by
the “small-risk assumption” together with
second-order Taylor’s approximation.®

This paper is organized as follows. In
Section 2, a model of insurance demand under
uninsurable background risk is analyzed. It is

4 Doherty and Schiesinger (1983a, 1990), Schlesinger
and Doherty [13], and Eeckhoudt and Kimbalt [8]
compare an individual’s optimal coinsurance rate with
the coinsurance rate of one even though they realize
that a coinsurance rate of one cannot eliminate all risk
faced by the insured.

* The second-order Taylor approximation that can be
employed is a iwo-random-variable version of the one-
random-variable Taylor approximation used
extensively in the literature of uncertainty (see, e.g.,
Pratt [11] and Leland [9]). As suggested by Samuelson
[12], when the risks considered have *“small-risk
distributions,” one is justified to use low-order Taylor
approXimation to analyze the individual’s portfolio
selection problem.



found that, under the regressibility assumption,
when the background risk and the insurable
risk are uncorrelated, full- (over-/under-)
insurance on average is optimal if, and only if
insurance is fair (favorable/unfavorable). A
negative (positive) correlation between the
two risks, however, implies that under-
insurance (over-insurance) on average is
optimal whenever insurance is actuarially fair
or unfavorable (fair or favorable). The former
result agrees with that of Eeckhoudt and
Kimball (1992) while the latter result
complements theirs. In Section 3, a model of
insurer’s default is analyzed under the
regressibility assumption. Full insurance on
average in this case requires the coinsurance
rate to be larger than one. It is found that,
when the insurable and the default risks are
independent, under-insurance on average is
optimal if insurance is fair or unfavorable.
When the two risks are not independent, the
relations between optimal coinsurance rate,
loading charges, and the correlation
coefficient of the insurable and the default
risks are derived. It turns out that knowing the
sign of the correlation is insufficient for
determining whether full- (under-/over-)
insurance on average is optimal even when
insurance is fair, These results provide an
intuitive explanation for the ambiguous results
obtained by Doherty and Schlesinger [7].
Section 4 concludes.

2. Additive Idiosyncratic Risk and
Insurance Coverage

The model analyzed in this section is a
variation of that of Eeckhoudt and Kimball [8].
An individual with initial wealth w is facing
an insurable loss Z which is a random
variable with positive realizations, mean Z,
and standard deviation &, . She can choose a

coinsurance rate o to insure against the
potential loss by paying a premium. Let A be
the constant loading factor of the insurance so
that the premium payment equals a(l+ 4)Z.
The insurance is actuarially fair

(favorable/unfavorable) if, and only if

A =(</>)0. In addition to the insurable risk,
the individual is also facing an additive
uninsurable background risk ¥ which is a
random variable with mean y and standard
deviation & . The background risk reduces

(increases) the individual’s wealth when its
realization is positive (negative).® Assume that
the joint distribution of Z and ¥ is known to
the insured while the distribution of 7 is
known to the insurance company. The
individual’s random wealth level is given by

w-y-(1-a)Z-a(l+ 1)z, (1)
Her problem is to choose a to maximize her
von Neumann-Morgenstern expected utility

EU=EUlw-y-(1-a)z —a(l+ 1)Z], (2)
where U/ is assumed to follow standard
assumptions with U/'> 0 and U"< 0. The
first-order condition for an optimum is given
by
(dEU /da)l, .= E[Z -1+ 1)Z)-

Uw=3-(1-a")Z-a*(1+1)z)]=0,
€)
where a * is the optimal coinsurance rate in
the presence of the background risk. The
second-order condition for a unique maximum
is given by
(d*EU/da*)|,_.= E[Z-(1+A)Z)*-
U'(w=y-(1-a®)Z -a*(1+A)z)]<0.
“4)
The strict concavity of U guarantees that (4)
is satisfied.

Notice that, when 7 is absent, we are
back to the case of complete insurance market.
Denote the optimal coinsurance rate in the
absence of ¥ by a, . It is easy to verify from

(3) that, &, =(>/ <)1 if, and only if

% In Eeckhoudi and Kimball's i8] paper, the
background risk is added to the individual’s wealth.
However, in this paper, the background risk is
subtracted from the individual’s wealth. This
formulation makes the discussion of the results derived
in this section easier.



A =(</>)0.In the absence of ¥, an
individual has “full-insurance coverage” if all
risk is eliminated after the purchase of an
insurance (in this case when « =1). Clearly,
an individual has optimal full- (over-/under-)
insurance coverage if, and only if insurance is
fair (favorable/ unfavorable) which is a
standard result in the literature of complete
insurance markets (see, e.g., Eeckhoudt and
Kimball [8]).

Under what conditions does an
individual have full-insurance coverage in the
presence of background risk? Unfortunately,
in the presence of background risk, the above
definition of “full-insurance coverage” is no
longer workable. It is apparent from (1) that it
is impossible to eliminate all risk by means of
purchasing insurance, except for the special
case in which ¥ and Z are perfectly

correlated (see Schlesinger and Doherty
(1985)), i.e., ¥ = bZ , almost surely, where b
is a constant. A workable and yet reasonable
definition that can be employed in the context
of incomplete insurance markets is as follows:

Definition: An individual has “full-insurance
coverage on average”’ if the insurable risk is
eliminated when the uninsurable risk is
evaluated at its mean.

In the presence of background risk,
“full-insurance coverage on average” requires
that the coinsurance rate equals one, which by
coincidence coincides with the definition of

“full-insurance coverage” in complete markets.

To see this, it suffices to check that, when
a =1 and y =y, the wealth level becomes
w—y —(1+ A1)z which does not involve z'.
One should not, however, expect that full-
insurance coverage on average is always
equivalent to o =1. It will be shown in
Section 3 that, in the presence of default risk,
full-insurance coverage on average requires
a>1.

Before proceeding, let us define a new
random variable £ which is uncorrelated with

the insurable risk. To do that, let constant

b =cov(y,z)/var(Z) and p, , bethe
correlation coefficient of Z and ¥ . Clearly, b
and p, , have the same sign. Construct the

new random variable £ suchthat £ =5 - b7,
almost surely. Rearranging terms yields

y =bz + &, almost surely. (5)
Clearly, the perfect correlation assumption
simply restricts £ to be degenerate. Finally, it
can be checked that cov(Z,£) =0’

It turns out that if we employ the
“regressibility assumption” used in the
literature of indirect hedging of exchange rate
risk (see, e.g., Broll, Wahl, and Zilcha [2] and
Broll and Wahl [3]), the analysis will be
substantially simplified.® The “regressibility
assumption” specifies that there exists &
satisfying (5) and £ is independent of Z

” To see this, take expectation on both sides of (5) and
rearrange to get £ = ¥ —bZ, where £ denotes the
mean of £ . This together with (5) implies that

£ -8 =(Yy —¥)-b(Z —2)), almost surely.
Multiplying both sides by 7 — Z and taking
expectation gives the result.

* Broll, Wahl, and Zilcha {2] and Brolt and Waht [3]
analyze the case in which an exporting firm facing
domestic exchange rate risk purchases alternative
futures contracts which are not perfectly correlated to
the domestic exchange rate when a forward exchange
market for domestic exchange does not exist.

? Notice that the independence of & and Z implies
cov(£,Z) = 0 but not vice versa. In fact, the
regressibility assumption is a strengthening of the fact
that cov(&,Z) = 0 by ignoring higher-order joint
moments of £ and Z . Imagine that Z is the insurable
medical expenditure risk, ) is the risk of wage income

loss, and & is a linear combination of all other factors
affecting the risk of wage income loss that is
uncorrelated to the risk of medical expenditure. For

instance, £ may include (mainly) random productivity
shocks, random demand for the product that the
individual produces, and frictional or structurat
unemployment, etc, The risk of medical expenditure, on
the other hand, depends mainly on the hospital (or
doctor) randomly picked, the random price of a certain
treatment, and the random health condition of the



Under the regressibility assumption, (5) can
be interpreted as the regressionof ¥ on 7

with an independent noise £ and regression
cocfficient & . Apart from the consideration of
parsimony, the regressibility assumption is
employed because it serves as a generalization
of the independence assumption, the perfect
correlation assumption, and the bivariate
normal assumption used by Eeckhoudt and
Kimball [8], Schlesinger and Doherty (19853),
and Doherty and Schlesinger {6], respectively.
Clearly, if ¥ is independent of Z, then £ is
also independent of Z satisfying the
regressibility assumption. Finally, the
following states that the bivariate normal
assumption implies regressibility:

Claim If v and Z have a bivariate normal

distribution, then 7 and € are statistically
independent satisfying the regressibility
assuymption.

Proof: The claim can be inferred from the
results in Casella and Berger [4, pp.167-8]. A
detailed proof is available from the author
upon request. {1

The following theorem states the
relation between optimal coinsurance rate,
loading factor, and the regression coefficient
of the insurabie risk on the background risk:"

Theorem 1 If the regressibility assumption
holds, then a* =(>/ <1+ b if, and only if

At (</>)0.

Proof: Define 8 =(1+5)"'a,

O*=(1+b)'a*, f=(1+b)Z,and
77 = (1+b)Z. Substituting these into (2) and
using (5), the individual can be thought of as
choosing @ to maximize

EU =EU[w-€ -(1-6)7-0(1+ A)7]. (6)
The regressibility assumption implies that 77
and £ are independent. Therefore, from
Eeckhoudt and Kimball’s [8] Proposition 1 for
the case of independent background risk,
4 =0 implies (the optimum of (6)) 6* = |
and hence a* =1+5h. We can infer from their
Proposition 2 that when 4 > (<)0, 6* < (>)1
and hence a* < (>)1+4. O

Before explaining the intuition behind
the theorem, notice that, the regressibility
assumption can be replaced by the “small-risk
assumption” (as defined by Samuelson (1970))
together with second-order Taylor
approximation.”" Theorem 1 says that, when
the regressibility assumption holds, optimal
insurance coverage depends crucially on the
loading factor A and the value of b . First, in
the presence of an uncorrelated background
risk (i.e., & = 0), an individual fully insures
(over-insures/under-insures) on average if,
and only if insurance is fair (favorable/
unfavorable). Eeckhoudt and Kimball [8]
derive a similar result for the case of
independent background risk.

Second, when the background risk is
positively correlated to the insurable risk (i.e.,
b > 0), the individual over-insures on average
when insurance is fair or favorable. This is
rather intuitive as a positive correlation
between Z and ¥ means that it is more likely

that the insurable loss is large when the

individual, In this case, the marginal probabilities and
the probabilities of random factors other than medical
expenditure risk conditional on medical expenditure
risk do not seem to deviate by much. Therefore, the
assumption that £ and Z are independent seems
appropriate.

'* | thank a referee for suggesting how [ can simplify
the proofs of the two theorems in this paper.

' There is a full discussion of this claim in the next
section. Here, small risks are risks with (joint) small-
risk distributions. A family of small-risk or compact
distributions is such that, as some specified parameter
goes to zero, all the distributions converge to a sure
outcome. For a detailed discussion of the definition of a
small-risk distribution and the limitations of applying
this assumption to the porifolio selection problem, see
Samuelson [12].



uninsurable loss is also large. When insurance
is fair, the individual over-insures in the
insurable risk so as to insure (at least partly)
against the uninsurable loss provided that

there is no upper bound on insurance coverage.

Actuarial favorableness serves to further
increase the insurance coverage, Notice that a
coinsurance rate of greater-than-one is
possible for the case of life insurance but not
for the case of health insurance. For the latter
kind of insurance, the insured can at most be
compensated for the realized value of the
insurable loss; therefore, actual coinsurance
rate is less than or equal to the optimal
coinsurance rate.

Finally, when the background risk is
negatively correlated with the insurable risk
(i.e.,b < (), the individual under-insures on
average when insurance is fair or unfavorable.
In this case, the uninsurable risk serves to
offset (at least partly) the insurable risk. These
results generalize the results of Doherty and
Schlesinger [5] and Schlesinger and Doherty
(1985). However, these results are less general
but more intuitive than those of Eeckhoudt
and Kimball [8]. Their results involve the
concepts of ‘third-order conditional stochastic
dominance’ and ‘absolute prudence.’’?

3. Default Risk and Insurance Coverage”

In this section, a much more
generalized version of Doherty and
Schlesinger’s [7] three-state model is
formulated and analyzed. Suppose an

' Interested readers should consult Eeckhoudt and
Kimball’s [8] paper for the exact definitions of these
concepts. Notice that the case of a negative correlation
between the background and the insurable risks in this
paper corresponds to the case of a positive correlation
in their paper. This difference is due to the fact that the
background risk is treated as a random loss in this paper
but a random gain in their paper.

B As suggested by a referee, another name for ‘default
risk’ is the ‘risk of partial payment.” The model in this
section covers all the cases under which there exists
some possibility that the insurance company may not
fully compensate for the insured losses of the insured.

individual is subject to an insurable risk as
before. Assume now that there is some
possibility that the insurance company may
default; i.e., the individual may not be fully
compensated for the covered part of the
realized loss. Furthermore, assume that this
default risk is not insurable. Denote the
compensation ratio by ¥ which is a random

variable with realizations 0 <y <1, mean
7 >0, and standard deviation o, . Assume

also that the joint distribution of ¥ and 7 is
known to both the insurer and the insured.
Finally, the definitionsof w, 2, Z,and U
follow those in the previous section.
When a coinsurance rate « is chosen,
the individual has to pay a premium
a(l+ A)E(¥ Z) after taking into account the
default risk. Let X =¥ Z and
X = Ex = E(¥ 7) . Here, X 1s the random
compensation when the coinsurance rate
equals one. The individual’s random wealth is
given by
w—Z+ay Z —a(l+A)EF Z) 7
=w-Z+ax —a(l+A)x ' ™
Her problem is to choose ¢ to maximize her
von Neumann-Morgenstern expected utility
EU = EU(w-Z +&X —a{l + 2)X). (8)
The first-order condition for an optimum is
given by
(dEU | dax) |, pee = E[(X = (1+ 2)X)- ©
U'(w=Z+a**3—a**(1+A)D)]=0" )
where a ** is the optimal coinsurance rate in
the presence of default risk. The second-order
condition for a unique maximum is given by
(d*EU /da?)|,_ = E[F-(1+A)%)*-
U'(w-Z +a** % —a**(1+ A)x)] <0.
The strict concavity of U/ guarantees that (10)
is satisfied.
Similar to the previous section,
construct a random variable & such that

(10)

—~—

£ =7 -c¥Z=7-cX, almost surely, where
¢ = cov(Z,X)/var(X) . Rearranging terms
yields



7 =X+ E . almost surely. (1
It is easy to verify that cov(g ,X}=0. Under

the regressibility assumption, ‘};; 1s assumed to

be statistically independent of ¥ . (11) can be
interpreted as the regression of Z on ¥ with

independent noise ¢ and regression

coefficient c.

The following theorem shows that the .
case of default risk is somehow different from
the case of background risk. Such a difference
is due to the fact that, while the background
risk is additive to the insurable risk, the
default risk is multiplicative to the insurable
risk.

Theorem 2 If the regressibility assumption
holds, then a** = (>/ <)c if, and only if

A=(</>)0.

Proof: Redefine 8 =a/c, §*=a**/c,

7i =cX, and 77 = ¢x. Substituting these into
(8), using (11), and setting & = &, the
individual’s maximization problem can be
thought of as choosing & to maximize (6).
The regressibility assumption allows us to
infer from Eeckhoudt and Kimball’s {8]
Proposition 1 that when A =0, #* =1 and
hence & ** = ¢ . We can infer from their
Proposition 2 that when 4 > (<) 0, 6* <(>)1
and hence a** < (>)c. O

Before explaining the implication of
THeorem 2, notice that, similar to Theorem 1,
the regressibility assumption can be replaced
by the “small-risk assumption” as a sufficient
condition." To understand the implication of

" The following shows how the small-risk assumption
replaces the regressibility assumption. The first-order
condition of (6} is given by

E[(7 -+ )7)-
U'(w=8~-(1-%)7 -0*(1+ A)if]=0.

The L.H.S. can be written as

Theorem 2, it suffices to focus on the value

= cov(Z,X)/var(X) . Consider first the
benchmark case in which the default risk is
degenerate, i.c., ¥ = ¥, almost surely. It is
easy to check that

o SOVGFZE) _ yo,. 1
vayz)  plel 7

Equation (12) together with Theorem 2
implies that o ** = (> / <} 1/7 if, and only if,
A =(</ >)0. The individual has full-
insurance on average if, and only if insurance
1s fair while over-insurance and under-
insurance on average are associated with
favorable and unfavorable insurance,
respectively. To see this, substitute 7 = 7 into
the L.H.S. of (7) to get

w~(l-ay)Z -a(l+ )y z. (13)
Equation (13) implies that Z is eliminated if,
and only if & =1/ . Therefore, full insurance
on average is equivalent to & =1/7 . Notice
that full insurance on average in the presence
of certain default is larger than that in the
absence of any default whenever 7 < 1. The

(12)

cov(ij, U'(w—£ - (1-8%)

-8+ A7) - AgEU".
Clearly, the sign of the first term is the same as that of

A . When the “small-risk assumption” holds, second-
order Taylor series expansion of the first term at

(77,€) gives

~[eov(if, &) + (1 - @*)var(#)}- U” . Since
cov(#j,€) = cov(Z,£) = 0 by construction. The
sign of the first term, which is the same as that of A | is

the same as that of 1 -8 yielding the same result as
shown in the proofs of the Theorems. Notice that while
a real-world example for the sufficient condition of
regressibility to hold is not edsy to construct for the
case of default risk, we can stili justify the results in
Theorem 2 by invoking the “small-risk assumption.” In
fact, the second-order Taylor expansion shows that the
above results hold whenever the third and higher joint-
moments of Z and £ or the third- and higher-

derivatives of U/ are sufficiently small. The former
condition is met whenever the default and the insurable
risks have sufficiently low probabilities for ‘extreme’
realizations.



presence of certain default requires the
individual to raise her insurance coverage by
1/y times so as to eliminate the insurable risk.

Next, consider the case in which 7 is
non-degenerate and is independent of Z . It
can be verified that cov(¥ %,%) = ¥ &, and

var(y 7) = E(F e, + o, E(Z?). Therefore,

7o, Ze 1

= < .
EF’s+0EEY) EFHe,! 7

(14)
(14) together with Theorem 2 implies that
a** <1/y when A 2 0. In other words,

under-insurance on average is optimal when

insurance is fair or unfavorable. This result
together with that of the benchmark case
suggests that the effect of an independent
default risk on insurance coverage can be
broken down into two parts:

1. The increase in insurance coverage due
to the decrease in average
compensation.

2. The decrease in insurance coverage
due to the additional risk introduced by
the uncertainty of the compensation
rafe.

The above decomposition explains the
ambiguous results obtained from Doherty and
Schlesinger’s [7] simple three-state model.
That 1s, in the presence of an independent
default risk, optimal coinsurance rate may be
one, less-than-one or greater-than-one even
when insurance is fair. With fair insurance, an
average compensation rate of less than one
tends to push up the coinsurance rate (fowards
1/¥). The uncertainty of the compensation
rate, on the other hand, tends to pull down the
coinsurance rate (below 1/¥ ) as a higher
insurance coverage raises the default risk
faced by the individual. Consequently, the
optimal coinsurance rate can be larger or
smaller than one depending on the relative
strength of the two opposing forces.

Finally, suppose ¥ and 7 are not

statistically independent. Applying second-
order Taylor expansion around ¥ and Z
yields

cov(y Z,7) = zcov(y,Z) + ¥ var(Z) ; (15)

var(y z) ~ y*var(z) + z *var(7) |

+27 7 cov(F, 7) ~[cov(7, 3)]* (16)
Letk,, =0,/0, and p, , be the cotrelation
coefficient of ¥ and Z . Furthermore, let
- 2%k,

p = : <0 and
V7 +do + 7

_ 2zk,,

p = < 0. It can be verified
S +40,’ -7

from (15) and (16) that, subject to
~-1< p, . £1, the following (approximate)
relations hold:"*

(D'e<l/7iff p,, e(p”,p")
(D e=Vyilfp,,=p orp,,=p
(i) c>1V/y iffp,, ¢[p7,p"]
These relations together with Theorem
2 imply that, when the default risk and the
insurable risk are uncorrelated (i.e., when
P, . =0), optimal coinsurance rate is less

than 1/ and hence under-insurance on
average is optimal when insurance is fair or
unfavorable. This reinforces the conclusion
derived for the case when ¥ and 7 are

independent. Another observation is that
merely knowing the sign of p, , is not

enough for determining whether full- (under-
fover-) insurance on average is optimal even
when insurance is fair. This result contradicts
that of the case of uninsurable background
risk in which a positive (negative) correlation
with the insurable risk tends to raise (reduce)
insurance coverage.

+

" A detailed proof of this result is available from the
author upon request,



4. Concluding Remarks

This paper has compared an
individual’s optimal insurance coverage under
two types of market incompleteness, namely,
the presence of uninsurable background risk
and the presence of default risk. In both cases,
under the regressibility assumption, it is found
that optimal insurance coverage is affected by
actuarial unfairness as well as the correlation
between the insurable and the uninsurable
risks. With fair insurance, while full insurance
on average is optimal for the case of
uncorrelated background risk, under-insurance
on average is optimal for the case of
independent default risk. The main reason for
this difference is that, unlike the background
risk which is additive to the insurable risk, the
default risk is multiplied to it. The
multiplicative nature of the independent
defauit risk tends to suppress insurance
coverage as the ‘total’ risk faced by the
individual gets larger when more insurance is
purchased. Finally, it is found that the sign of
the correlation between the idiosyncratic and
the insurable risks determines whether over-
or under-insurance on average is optimal
when insurance is fair. On the other hand, the
multiplicative nature of the default risk
renders the relation between its correlation
with the insurable risk and the optimal
coinsurance rate much more complicated. A
positive (negative) correlation between the
default risk and the insurable risk does not
negessarily imply over-insurance (under-
insurance) on average when insurance is fair.
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