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Abstract

This report deals with the dynamic
response and the contact phenomena of the
slab track (ballastless track) systems of
railways under the action of high-speed trains
by considering the vehicle-track interaction.
The vehicle-bridge interaction element
developed by Yang and Yau (1997) is used.
By modeling the train as a series of sprung
masses, the track supported by the rail-pads
as an Euler-Bernoulli beam supported by
uniformly distributed springs, and the
concrete slab with cement asphalt mortar
(CA mortar) as a beam resting on an elastic
(Winkler) foundation, the dynamic response
of the track and the contact forces between
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the wheels and track can be computed. The
result shows that when the vehicle speed
meets the resonant condition, the dynamic
response of the track and the wheel/track
contact forces will be significantly amplified.
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1. Introduction

Since the commercial operation of the
Japanese Shinkansen railway lines between
Tokyo and Osaka in 1964, high-speed
railway systems emerge as a convenient
transportation  tool  for linking two
long-distance cities. In the mean time, the
dynamic interaction between the moving
vehicles and tracks has brought a new
challenge to the railway engineers. In the
past two decades, a number of researchers
devoted themselves to the investigation of
the dynamics of rail mechanics (Newton and
Clark, 1979; Grassie et al., 1982; Grassie and
Cox, 1984; Fryba, 1987; Knothe and Grassie,
1993; Dong and Dukkipati, 1994; Luo et al.,
1996; Igeland, 1996; Popp et al., 1999;
Dukkipati and Dong, 1999; Zheng et al.,
2000). Traditionally, a railway with ballasted
tracks has been used for high-speed trains.
However, because of the repeated action of
high-speed trains moving at different speeds,
the ballast layers often encounter permanent
settlement due to the disaggregation and
cracking of the constituting particles of the
ballast and substrate. To overcome this
problem, some new track systems, such as
the ballastless track system, were developed
in Germany (Pintag, 1989), France and Japan.
Unlike the traditional ballast system, the
balllastless track of the slab type is composed
of a pair of rails, rail-pads, track slabs and



cement asphalt mortar (CA mortar), as shown
in Figure 1.
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Figure 1 Ballastless track of the slab type

Conventionally, the ballast system has
been modeled as an elastic (Winkler)
foundation, and the rails in a pair supported
by the ballast as an elastic beam resting on
the elastic foundation. By so doing,
numerous studies have been carried out for
the dynamic response of a beam resting on an
elastic foundation subjected to moving loads.
To consider the contact effect between the
moving wheels and the track using the finite
element method, the track represented by a
beam resting on a series of discrete
pad-sleeper-ballast supports has been used to
simulate the dynamic behavior of rails
subjected to moving vehicles. According to
the research results for the dynamic response
of the ballasted track to moving trains, Dong
and Dukkipati (1994) and Luo et al. (1996)
pointed out that there exists a resonance peak
related to the coupled wheel-rail resonance
frequency.

In contrast, concerning the dynamic
response of railways with ballastless tracks
due to moving trains, relatively few works
have been conducted previously. In the
present study, a finite element model taking
into account the vehicle-track interaction
developed by Yang and Yau (1997) will be
employed to study the dynamic response of
ballastless tracks of the slab type caused by
high-speed trains. The numerical results
indicate that the dynamic response of the
track and the wheel/track contact forces will
be significantly amplified when the speed of
vehicle meets the resonant condition.

2. Formulation of the Problem
Because of the development of
long-welded rails, researchers began to

investigate the dynamic behavior of an
infinite beam supported by an elastic
foundation subjected to moving loads
(Kenny, 1954; Keer, 1972; Chonan, 1975;
Chen and Huang, 2000). Recently, to
improve the passengers’ comfort and to
reduce the railway maintenance cost, some
new ballastless track systems have been
employed in high-speed rail transportation of
Japan, Germany, and France. In this section,
a finite element model of the track-slab type
with long-welded rails lying on rail-pads will
be used to study the dynamic response of
ballastless track systems subjected to the
action of moving vehicles that constitute a

train.
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Figure 2 Vehicle-track system:
(a) General model; (b) Lumped mass model
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Figure 3 Ballastless track of the slab type



To simplify the finite element model
used for the vehicle-track interaction
problem, a vehicle is model as a sequence of
moving sprung masses sustaining a
concentrated load lumped from the weight of
the car body. Only the vertical excitation of
the track induced by the moving vehicles is
considered herein. No consideration is made
of rail irregularities and any nonlinear
contact or separation between the wheels and
the track.

Numerical Model of Track-Sab Systems

Figure 3 shows a physical model of the
slab tracks used in this paper, in which a pair
of long-welded rails supported by the
rail-pads laid on the track-slabs is modeled as
an infinite Euler-Bernoulli beam with
flexural rigidities El and mass m per unit
length supported by discrete springs of equal
spacing Lgy and linear stiffness Kgyr, and the
track-slab on the CA mortar as a beam
element with flexural rigidity Egl, resting on
a continuous viscoelastic foundation of
stiffness Kca and viscous damping
coefficient C. On the other hand, to simulate
the boundary conditions of the long-welded
rails, the two infinite ends of the ballastless
track-slab system will be represented by the
semi-infinite beam elements supported by
viscoelastic foundations, as derived by Yin
(1997). The following is a summary of the
positive and negative semi-infinite elements
derived by Yin (1997).

Negative semi-infinite element of track
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Positive semi-infinite element of track
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where €y = the viscous damping coefficient, k
= the stiffness coefficient of the -elastic
foundation, and A = (k/4E1)"*,

Vehicle-Track Interaction Element

A typical vehicle model is shown in
Figure 2(a), in which a vehicle of weight
Wear is represented as a car body resting on
two bogies. In practice, concerning the riding
comfort of trains moving at high speeds,
there always exists an isolation device
between the bogies and the car body, so as to
reduce the feedback response exerted by the
bogies. Therefore, for the vehicle-track
interaction problem shown in Figure 2(b), a
train traveling over the rails in pair is
idealized as a series of lumped masses
sustaining one quarter of the car body weight
and supported by the suspension units
interconnected by an un-sprung mass to
represent the wheel load. To analyze the
dynamic response of the rails caused by the
moving train, the track is represented by a
number of beam elements. At certain instant
during the passage of the train over the track,
some elements of the track will be directly
acted upon by the sprung masses, while the
others are not. The number of vehicles
directly acting on the track changes as the



train moves, so do the contact points between
the track and moving vehicles. Following
Yang and Yau (1997), a beam element that is
directly under the action of a sprung mass
and dashpot system is referred to as the
vehicle-track interaction element in this
study (see Figure 4). By the concept of
dynamic condensation, the degrees of
freedom (DOFs) of the sprung mass are
condensed to the associated DOFs of the
beam element directly in contact, after the
former were discretized by Newmark's finite
difference formulas. The will result in a
vehicle-track interaction element which
possesses the same number of DOFs as the
parent element, while the properties of
symmetry and bandedness are preserved.
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Figure 4 Vehicle-track interaction element

Typically, a beam element will be acted
upon by a sprung mass, as shown in Figure 4.
For this element, two sets of equations of
motion can be written, one for the track
element and the other for the sprung mass:

[y 140} +G, 140} + [k, 1t} = {1} — { ) Ga.b)
[m 10,3 +[6, 10 +IK W = {p s+ ()

where [my], [Cb], [Ko] = the mass, damping,
and stiffness matrices of the beam clement,
and {pp} and {fc} = the external nodal loads
and the contact forces existing between the
sprung mass and the beam element; [m,], [C/],
[ky] = the mass, damping, stiffness matrices
of the sprung mass, and {p,} = the weight
lumped from the car body of the vehicle. The
preceding two equations (3a, b) are coupled
through the contact forces {fc}, while the
coefficient matrices of the sprung mass vary
according to its acting position on the track.
To overcome the time-varying nature of the
problem, Yang and Yau (1997) proposed a
method for condensing the DOFs of the
sprung mass into those of the element in

contact, after the sprung mass equations are
discretized in advance by Newmark's finite
difference formulas. The result is the
vehicle-track interaction element desired.
Such an element is particularly suitable for
analyzing the dynamic response of the
vehicle-track interaction problems
concerning both the track and vehicle
responses. Readers who are interested in
derivation of this element should refer to the
paper by Yang and Yau (1997) for further
details.

Because the vehicle-track interaction

element and its parent element are fully
compatible, conventional element assembly
process can be applied with no difficulty to
forming the equations of motion for the
entire vehicle-track system, that is,
[IMIUp} +[CHU  +[KI{Up ={R} (D)
where [M], [C], [K] respectively denote the
mass, damping, and stiffness matrices of the
entire vehicle-track system, {Up} the track
displacements, and {Pp} the external loads
acting on the track. The preceding equations
are  typical second-order  differential
equations, which can be solved by a number
of time-marching schemes. In this study, the
Newmark B method with constant average
acceleration is employed to render the
preceding equations into a set of equivalent
stiffness equations, from which the track
displacements {Up} can be solved for each
time step. Once the track displacements {Up}
are made available, the track accelerations
and velocities can be computed accordingly.
By a backward procedure, the response of the
sprung masses can be computed as well on
the element level, which serves as an
indicator of the riding comfort (Yang and
Yau, 1997).

3. Loaded Track Resonant Speed
According to the research result of Dong
and Dukkipati (1994), the loaded track
frequency fux of a coupled wheel-track
system on an elastic foundation of uniform
stiffness can be approximately estimated by
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where ky and my are the effective stiffness
and mass respectively, and ki is the
equivalent stiffness per unit length of the
elastic foundation. For a moving wheel-load
system with constant speed V travelling
along a track supported by discrete rail-pads
of constant intervals, the excitation frequency
fex to the wheel-load system due to the
discrete rail-pads is

f.=V/L (6)
wehre Le = the effective spacing between two
adjacent rail-pads.

When the excitation frequency equals the
loaded track frequency, resonance can be
excited between the bogies and the rails. By
setting Equation (5a) equal to Equation (6),
the resonant speed V;es can be solved as

Vres —_ Le klr
27 \f m, +m,

It is expected that under the condition of
resonance, the response of the track will be
built up as there are more vehicles passing
the track.

(5a-¢c)

(7)

4. Impact Factor

In design practice, the impact factor | is
used to account for the amplification effect
on the response of the track or rails due to the
passage of the moving vehicles through
increase of the design forces and stresses.
The impact factor is defined as follows
(Yang and Lin, 1995):
| = Rd(x)_ |1()() (8)

R(¥)

where Ry(X) and Ry(X) respectively denote the
maximum dynamic and static responses of
the beam at position X due to the action of the
moving loads.

5. Numerical Example

To investigate the dynamic response of the
ballastless track system of the slab type due
to moving vehicles, let us consider a single
sprung mass carrying one quarter of the

vehicle weight, that is Wy /4, and moving
along the ballastless track of the slab type, as
shown in Figure 5. The following are the
properties adopted for this example:
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Figure 5 Single sprung mass moving over
ballastless track

Sprung mass system:
Wcar:40.75t, Mb:304t, Lb:25m, kS:
1180 kN/m, ¢s<=39.2kN-s/m, my,=1.78 t.

Ballastless track system:

L=81.55m, EI=1.26x10"kN-m?, m=
60kg/m,  Lep=0.6m,  Kgpr=1.177x10°
kN/m/m, Eplp=2.06x10'kN-m*, my=1067
kg/m, Lp,=4.8 m, Kca=2.823x10°
kN/m?, C=0.

Semi-infinite element:
k= ke, m=my, cq= 0.

Based on the finite element analysis of the
vehicle-rail interaction problem as mentioned
in the previous section, the impact factor |
solved for the midpoint of the track and the
increase rate of the contact force between the
wheel and the track have been plotted with
respect to the train speed V in Figures 6 and 7,
respectively. Here, the increase rate of the
contact force between the wheel and the
track is defined as the ratio of maximum
dynamic to static contact force minus one. As
can be seen, there exist multiple resonant
peaks for the impact response and contact
force of the track. This is mainly due to the
coincidence of some of the excitation
frequency fex implied by the moving sprung
mass model at different speeds with the
coupled frequency ot of the
wheel/track/rail-pad system. In the present
study, the effective spacing L. of the rail pads
can be expressed as NLgy|n=123... as they are



regularly distributed. By substituting the data
assumed for the sprung mass and the
ballastless track system into Equations (5)
and (7), the resonant speeds can be computed
as 37, 74, 111 m/s, which are consistent with
the resonant peaks shown in Figures 6 and 7.
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Figure 6 Impact response of track
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Figure 7 Increase rate of wheel/track contact
force

6. Concluding Remarks

Based on the vehicle-track interaction
analysis by the finite element procedures, the
impact response and the wheel/track contact
force of ballastless track of the slab type due
to high-speed trains is investigated. The
numerical results indicate that there exist
multiple resonant peaks for the impact
response and wheel/track contact force of the
ballastless track system of slab type, due to
coincidence of the inherent frequencies of the
constituting subsystems.
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