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根據過去數年的高鐵橋樑受高速列車作用的動態反應顯示，高鐵橋樑將會因

為列車輪軸距的軌則排列施力現象而產生共振反應，更進而影響到橋樑安全及列
車行車品質。然而就鐵路設計而言，除了需考慮垂直自重、地震力、風力及車體
活載外，也需要考量車行時所引起的衝擊反應，對此衝擊反應的涵蓋，在鐵路橋
樑設計中，係以一衝擊係數(I)來作為車體活載的額外放大倍數(1+I)。然誠如先前
所言，當車速達到共振速度的情況，在現行大部分的鐵路橋（尤以高速鐵路橋樑）
規範中，卻甚少提及。對此，本研究將利用含阻尼彈性結構系統在共振諧和
力作用情況下，其穩態反應仍具有上限的特性，考慮在無限個移動力量情
形，於共振車速時，進行鐵路橋衝擊反應的簡化公式推導。然後，並輔以
有限元素之數值計算結果，以驗證本研究之鐵路橋衝擊公式的合理性。

：

鐵路橋衝擊公式、高鐵橋、衝擊反應

Abstract



In this report, the dynamic response of bridge girders with simple supports to 
moving train-loads is studied using an analytical approach. The present results 
indicate that the dynamic response of the beam at resonance remains rather bounded, 
if the effect of damping is taken into account. An envelope impact formula is 
proposed for the deflection of the girder with light damping, which serves as a useful
and preliminary design aid to railway engineers.

Keywords:
impact envelope formula, high speed trains, resonance.

1. Introduction

The dynamic response of bridge structures to moving loads at high speeds is a 
problem of great concern in the design of high-speed railway bridges.  In the 
literature, a larger number of analytical investigations have been carried out.  
Frequently, a bridge has been modelled as a beam-like structure and a vehicle as a 
moving load or moving mass [1]. Recently, Yang et al. [2] presented a closed form 
solution for the dynamic response of simple beams subjected to a series of moving 
loads at high speeds, in which the phenomena of resonance and cancellation have 
been investigated, along with optimal design criteria proposed. By considering the 
effect of damping, Li and Su [3], Yau et al. [4] investigated the fundamental 
characteristics and dominant factors for the resonant vibration of a girder bridge under 
high speed trains. The objective of this paper is to analytically investigate the dynamic 
behaviour of simple beams subjected to moving loads in the high speed range. Based 
on the analytical results, an envelope impact formula that takes into account the effect 
of damping will be proposed for the deflection of the beam. The accuracy of such a 
formula will be demonstrated in the numerical examples through comparison with the 
finite element solutions.

2. Equation of Motion
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Figure 1 Simple Beams Subjected to 

Moving Train Loads



As shown in Figure 1, by modelling a bridge as a Bernoulli-Euler beam, a simple 
beam with length L and uniform cross section is considered. The train moving over 
the beam at speed v is modelled as a sequence of equidistant length d and moving 
loads with constant weight p. The equation of motion for the beam travelled by the 
moving loads can be written as [2]:
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where m = the mass per unit length of the beam, u(x, t) = vertical displacement, c =
damping coefficient, E = elastic modulus, I = moment of inertia of the beam, δ = 
Dirac's delta function, H(t)=unit step function, N = total number of moving loads, and 
tk = (k!1)d/v = arriving time of the kth load at the beam.  By assuming the 
displacement u(x,t) in equation (1) to be q(t)sin(πx/L), according to the principle of 
virtual work, one obtains the equation of motion in terms of the generalized 
coordinate q(t) as
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where ξ is the modal damping ratio, ω = (π/L)2√(EI/m) = the fundamental frequency 
of the simple beam, Ω (= πv/L) is the driving frequency by the moving loads, and Fk(v, 
t) is the generalized forcing function.

3. Resonance and Cancellation

To simplify the derivation procedure, readers who are interested in derivation of 
the resonant response should refer to the paper by the writers [2] for further details, 
which will not be recapitulated herein.  By neglecting the damping effect in equation 
(2), the closed form solution of the dynamic response u(x, t) in equation (1) is 
expressed as:
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(3)
where ∆st = 2pL3/(π4ΕΙ ) . the maximum static deflection of the simple beam, and
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In equation (4), S = Ω/ω = the speed parameter. From equations (4b), it can be 
seen that the response reaches a maximum when the denominator sin(ωd/2v) equals 
zero.  This is exactly the condition for resonance to occur, and a closed form solution 
for the resonant response ures(x,t) of the simple beam can be written as
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where the subscript res means resonance. As can be seen, under the condition of 
resonance, larger response will be induced on the beam, as there are more loads 
passing the beam.  On the other hand, whenever the cancellation condition is met, 
that is, cos(ωL/2v) = 0, the dynamic response for cancellation ucan(x,t) becomes
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where the subscript can means resonance. This implies that the excitation effects of 
all the previous N-1 moving loads sum to zero.

4. Der ivation of Impact Envelope Formula



In order to derive the impact envelope formula of simple beam subjected to 
moving loads at high speeds, first, consider the case when only a single moving load 
is crossing the bridge. The equation of motion (2) becomes
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For most of the vehicle-bridge problems encountered in practice, the speed 
parameter S is less than 0.3.  In this study, only simple beams with light damping (ξ
<0.05) are considered, which implies that terms involving ξ2 and ξS, can be neglected. 
As a result, the response in equation (7) can be reduced to
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Further, when a series of moving loads of constant intervals d are crossing the 
bridge as shown in Figure 1, the response in equation (8) can be extended as follows:
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Figure 2 The Nth moving load is acting at position vtE

Consider the resonance condition in equation (4b), i.e., sin(ωd/2vres) = 0, as 
shown in Figure 2, when the Nth moving load is acting on the beam at time t =  tE +tN , 
i.e., t =  tE + (N !1)d/vres. The resonant response in equation (9) for the beam under the 
action of the Nth moving load can be expressed as
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Further, by the approximation in expansion for the exponential function, exp(>Β/Sres) 
.1+>Β/Sres for >Β/Sres # 0.3, and series sum, and let us assume that there is an infinite 
number of moving loads crossing the beam, i.e., N 6 4, the dynamic response in 
equation (12) can further be expressed as
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Since sin(Τt !Β/2S) and cos(Τt !Β/2S) are out of phase, when the function sin(Τt !
Β/2S) reaches the maximum, the function cos(Τt !Β/2S) is at its minimum. Also, since 
2S/>Β+1>2 and we are interested only in the maximum response, the preceding 
expression can be approximated by dropping the term in the third line as follows:
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(14)
At this point, we have derived the maximum response for the simply supported 

beam in equation (14) considering the effect of damping. To obtain the maximum 
response in equation (14), by letting ωtE be equal to π(1+1/Sres)/2, the maximum 
response in equation (14) can be reduced as
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              (15)
For the case of light damping considered in this study, implying that ξπ/Sres < 0.3,  
the maximum response in equation (15) can be further approximated as
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which is applicable for the case where the resonance condition is met, but the 
cancellation condition is not.  To consider such a situation, when both the resonance 
condition and the cancellation condition given in equation (16) are satisfied, i.e., Sres

= Scan,  the response in equation (6) becomes
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By letting sinΩtE=1 and using the relations exp(->Β/2Scan).1->Β/2Scan and 
Scan/(1- S2

can) . Scan, the maximum response in equation (17) can be represented as
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This formula is valid for the case when both the condition of resonance and the 
condition of cancellation are satisfied.

The impact factor for the deflection of a simply supported beam subjected to the 
moving loads is defined as the ratio of the maximum dynamic to the maximum static 
response of the bridge under the same load minus one. By the use of equations (16) 
and (17), the deflection impact formula for the simple beam subjected to a sequence 
moving loads can be expressed as:

( )

2

2

2

2
cos                                

2

    
1 2

res

res

can
can

can

SL for resonance
d S

I
S S for resonance cancellation

S

π
ξπ

ξπ

  
  
  = 

  + − +  −  

                                 

(19)
This is exactly the envelope impact formula for the deflection of the simple beam 
subjected to the moving loads.

5. Illustrated Example



As shown in Figure1, the bridge length is 23m and the train moving over the 
bridge is assumed to have interval length d = 25m.  To investigate the effect of 
damping on the resonant response of an elastically supported beam due to an infinite 
series of moving loads, 30 moving loads are considered in this example.  A damping 
ratio ξ of two percent and the resonant speed parameter Sres of d/4L are assumed for 
the beam. As can be seen from Figures 3, due to the presence of damping, the 
vibration of the beam remains rather bounded, in a steady state manner, even when 
the resonance condition is met. This is very different from the undamped case, in 
which the response amplitude tends to grow increasingly when the resonance 
condition is met, as there are more loads passing the beam. 
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Figure 3 Comparsion of time history responses at resonant speed Sres =  d/4L

The envelope impact formula of equation (19) has been plotted in Figure 4 for 
the simple beam with two different damping ratios, i.e., > = 0.02, 0.04, in comparison 
with the more accurate impact factors I computed using the finite element method. As 
can be seen, the envelope impact formula shows a trend in good consistency with the 
impact response for different ratios of damping for the entire range of speed 
parameters considered.
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Figure 4 Envelope Impact Formula for Different Damping Ratios



6. Conclusions

In this study, an analytical approach is adopted to investigate the envelope 
impact formula of simple beams subjected to a sequence of moving loads. Light 
damping is assumed for the beam. Both the conditions of resonance and cancellation 
are identified. It is observed that the resonant responses remain very well bounded due 
to the presence of damping.  For the case of infinite number of moving loads, an 
envelope impact formula is derived for the simple beam with the effect of damping 
taken into account.
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