
行政院國家科學委員會專題研究計畫 期中進度報告

總計畫(2/3)

計畫類別：整合型計畫

計畫編號： NSC94-2524-S-032-004-

執行期間： 94 年 05 月 01 日至 95 年 07 月 31 日

執行單位：淡江大學英文學系

計畫主持人：衛友賢

共同主持人：柯華葳

計畫參與人員：林筱菁、白琇寶、王學誠、詹益綾

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 95 年 5月 29 日

0 Preface

The overall purpose of the present 3-year E-Learning Technology project is to develop a
framework for innovating digital tools that assist language learners in vocabulary learning in
the context of their unrestricted Web browsing. The report below details our recent extension of
our computational approach to discovering and representing this vocabulary knowledge in such
digital contexts. This latest version of our work takes a radical view of vocabulary knowledge
as contextually determined and proposes a computationally tractable approach to modelling
this knowledge in the form of lexical chunks. Specifically, we now consider the syntagmatic
contexts of a word’s common uses to be one of the central features of a word that learners must
master and which is largely neglected in current language teaching. The paper below was
presented at a computational linguistics workshop in CALL and NLP sponsored by one of our
international research partners whom we collaborate with under one of the EU’s Excellence
Networks (specifically under the Kaleidescope Excellence Network, in which we are an
official partner). This touches upon one of our project’s other major contributions: the
establishment of substantial international research collaborations. Currently we have
established collaborations with three institutions: Teachers College, Columbia University;
Knowledge Forum group (M. Scardamalia) of the University of Toronto; EU’s Kaleidescope
Excellence Network, University of Louvain, Belgium.

Abstract
Lexical chunks have in recent years become widely recognized as a crucial aspect of
second language competence. We address two major sorts of challenge that chunks pose
for lexicography and describe computational approaches to addressing these challenges.
The first challenge is lexical knowledge discovery, that is, the need to uncover which
strings of words constitute chunks worthy of learners’ attention. The second challenge is
the problem of representation, that is, how such knowledge can be made accessible to
learners. To address the first challenge, we propose a greedy algorithm run on 20-million
words of BNC that iterates applications of word association measures on increasingly
longer n-grams. The results include substantial noise in the form of false positives, which
we attempt to isolate by sorting mechanisms. To address the challenge of representation
we propose embedding the algorithm in a browser-based agent as an extension of our
current browser-based collocation detection tool.

Keywords: lexical chunks, computational lexicography, word association, foreign
language learning

1 Introduction
There has been a recent growing trend in foreign language education research to recognize
words as inextricably entwined with a range of syntagmatic contexts and contextual patterns as
opposed to viewing them as discrete units that can be mastered in isolation. With this has come
the recognition that multiword expressions are a central rather than peripheral aspect of lexical
knowledge (See Wray 2002 for an extensive review). Among the range of multiword
phenomena, certain types, such as phrasal verbs and collocations, have enjoyed a long tradition
of attention in lexicography and language pedagogy. Other sorts of multiword expressions such
as lexical chunks and formulaic sequences, however, have only recently begun to attract this
sort of attention. Knowledge resources concerning these expressions are thus correspondingly
scarce. The work reported here is part of a larger project aimed at filling this gap in resources
for the learning of lexical chunks.

2 Lexical Chunks and the Two Challenges to Lexicography
Lexicography traditionally has faced two kinds of challenges: lexical knowledge discovery and
lexical knowledge representation. We want to suggest that lexical chunks introduce novel
requirements to both sorts of challenge. In what follows we consider these two in turn and
present our approach to each as we go. The literature on chunks includes a variety of criteria
for defining what constitutes a chunk (see Weinert 1995 for an overview) from semantic and
syntactic criteria such as (non-)compositionality and (non-)productivity to processing criteria,
the most commonly cited of the latter being that users store and retrieve chunks as single
multiword units rather than by rule-governed composition in real time. Implementing any of
these criteria computationally for real world applications involves serious problems of
scalability. The most promising trait of chunks in this respect is frequency of occurrence, yet
the implementation of frequency must be appropriately nuanced. Taking inspiration from the
achievements of statistical approaches to collocation extraction (Church et al 1991; Smajda
1993, inter alia), we choose as a practical starting point to operationalize the notion of lexical
chunk statistically. Our specific implementation of a statistical approach is elucidated in what
follows as part of our approach to lexical chunk discovery.

3 Lexical Chunks and Knowledge Discovery
A fundamental task of the lexicographer is to uncover facts concerning the behavior and
meaning of words. These facts constitute the substance of any dictionary. One of the most
important developments in this work over the past few decades has been the rise of
machine-readable corpora and computational tools that aid in their analysis. Learner
dictionaries in particular have benefited from the lexicographers’ extended capacity to distill
patterns and nuances governing the use of specific words made possible by access to massive
collections of texts and tools for mining them (Sinclair 1987, inter alia). Certain multiword
expressions have proven particularly susceptible to discovery with such tools. Inspired by the

 2

work of Church and his colleagues in the late 1980’s (Church et al., 1991), researchers have
found, for example, that collocations are detectable by well-understood statistical measures of
word association strength such as mutual information (MI). There are certain characteristics of
collocations and, say, phrasal verbs as well, that render them especially vulnerable to detection
by these statistical tools. Word association measures can detect the association strength
between two event types. Construing a pair of lexemes occurring in close proximity to each
other to be a pair of events in running text, lexicographers can use these word association
measures to determine the strength of association between these two events and thus detect
which word pairs have sufficiently strong association to be collocations.

Lexical chunks as a class of multiword expression, however, are much less homogeneous in
this respect. A chunk could consist of two words (e.g., in fact) or five words (as a matter of
fact). In fact, there would seem to be no principled limit to the size of a chunk. What we want
to suggest is, first, that this property of chunks creates a non-trivial challenge to computational
lexicography and, second, that it is tractable.

We have developed a computational approach to the extraction of lexical chunks from very
large corpora. Our algorithm takes as its kernel a simple word association measure (any such
measure can serve as this kernel, for example, mutual information or simple conditional
probability, inter alia) and iterates its application. Unlike traditional word association measures,
then, our algorithm is greedy. As a consequence, our approach is insensitive to chunk size. The
same algorithm that detects in fact also detects as a matter of fact.

The current interface is designed for lexicographers, not for learners (the design of a
representation for learners is the topic of the next section). The algorithm takes as its input a
single word/POS pairing. A sample input would be fact/N (i.e., the noun fact). The current
version of the algorithm runs both a conditional probability measure and MI for the target word
paired with each possible candidate collocate occurring within a five-word window of the
target word in a 20-million-word portion of BNC (See Wible et al., 2004a for details). The user
selects a minimum association score to set as a threshold for each of the two measures; a
default threshold is used if the user makes no selection of score threshold. Word association
scores are then tabulated for every word that has tokens which occur within the five-word span
of any token of the target word (e.g., fact). These pairings are sensitive to linear order; for
example, tokens of the pair in…fact and fact…in are scored separately. Those pairings with
association scores that satisfy the threshold are considered hits and are highlighted in the
results display.1 To this point, this process resembles closely the extraction of collocations.
Since chunks are not limited to word pairs, however, we iterate this process, and all (ordered)

1 The results display distinguishes three conditions: word pairs that meet the conditional probability threshold only
are highlighted in red, those meeting the MI threshold only are displayed in blue, and those meeting both in purple.
This makes it easy to compare the performance of the two measures or the value of using both.

 3

pairings with the target word (e.g., X fact or fact X) serve as the input to the next iteration. We
therefore refer to these inputs as bigrams. Word association measures look at the strength of
association between two events x and y. In traditional collocation detection, as in our first
iteration, x and y are individual words. At the second iteration, however, we use the same
measures but change the definition of the events x and y. Here x is a word pairing (or bigram)
from the first iteration (rather than just a word) and y is a word. This iteration then is
measuring the association between each bigram (or a word pair) on the one hand and each
word appearing within the five-word span of that bigram on the other. The output of this next
iteration would consist of a set of ordered trigrams (potentially discontinuous due to our
five-word window). Those trigrams that achieve the threshold word association score at this
iteration are considered hits and highlighted in the results representation. All trigrams from this
iteration in turn serve as input to the next iteration, and so on, in greedy fashion until no
candidate strings meet the threshold association score. A hit for this algorithm, then, is a string
of any number of words that results from satisfying the threshold score at the last iteration of
any number of iterations. The system then creates a link from each such string to a display of
all of the BNC sentences that instantiate that string.

Our searches provide two levels of results, which we will refer to as string types and string
tokens. An example of a string type would be the string point of view whereas string tokens
would be specific attested instances in the corpus that instantiate this string type. One reason
this distinction becomes important is that our algorithm allows a five-word span for
co-occurrence at any iteration. Thus, the string type point of view includes not only tokens
where the three words are contiguous (e.g., According to her point of view…), but also tokens
where the same three words are non-contiguous (e.g., The point of mentioning this view is
to…).

There is no way of us predicting a priori which of these patterns within the tokens of one string
type constitutes a true positive, so we cast our net wide in this way for the sake of recall at the
cost of introducing noise. In the case of point of view, for example, it is the completely
contiguous string tokens that are the true positives while the non-contiguous example (the point
of mentioning this view…) illustrates a false positive. There are cases, however, where the
reverse holds, that is, where discontinuity is a true property of a particular chunk. For example,
our algorithm detects the longer string type from point of view as well. Notice, however, that
for this case, in the true positives, from and point are non-adjacent (from a logical point of view;
from their point of view, etc).

Thus, while our use of a five-word window at each iteration is motivated, it also introduces
substantial noise in the results. To address the noise, we apply to these results some sorting
mechanisms intended to help distinguish noise from the true positives. While this sorting falls

 4

short of actually affecting the precision of the results, it is aimed at organizing the results into
groups of patterns for the hand inspection of the lexicographers at the user end.

We illustrate our approach to the sorting with a specific string type: tell the time. This string
token is extracted by taking the noun time as the query target. At the second iteration, the
trigram tell the time is detected as satisfying both the conditional probability and the MI
thresholds. Moreover, 54 tokens of this type are found in the 20-million-word portion of BNC
that we use. While the string type tell the time would appear at first glance to be a true positive,
a look at the 54 tokens shows the noise. Our original version of the system left these 54 tokens
unsorted and displayed them in the order they were detected in BNC. A sample of these 54
tokens is provided here:

She told herself sternly that the time had passed when sympathy
You tell me lies all the time
and one half could not tell the time or correctly select a medicine bottle
He found messages telling him that the time was not ripe
observation of the sun was a useful way of telling the time
I’m telling you for the last time, Harvey
I was told at the time that this system had been adopted because…
No mechanical indicator can tell you the right time to strike
…activities of daily living (such as counting money, telling the time, reading…)
observation of the sun was a useful way of telling the time

Our current version of the algorithm adds two stages of sorting to these 54 examples. The first
step sorts the examples according to the patterns of contiguity of the string members. Thus, at
this stage, all tokens where the string members (tell, the, time) are contiguous (tell the time) are
grouped together, then all tokens where the first and second word (tell and the) are separated
by one word are grouped together (tell him the time; tell of the time), and those with two words
intervening there (tell him that the time), and so on. This stage of sorting, thus, is sensitive to
the existence and location of any gaps separating the words in the string type and to how many
words appear in those intervening gaps. These patterns are displayed in order of frequency.
Thus, in the case of tell the time, the most frequent pattern is the one with no intervening words,
such as So what if you can’t tell the time? These comprise 16 of the 54 tokens. The second most
common is the pattern where three words separate tell from the time, as in She told herself
sternly that the time has passed. There are 8 tokens of this pattern. A look at these 8 tokens,
however, will illustrate the motivation for adding a second stage to this sorting. A glance at
these examples will reveal that there is no coherent pattern here. The common characteristic
that tell and the time are separated by three words in all eight examples follows from nothing
interesting.

 5

1. The court was told that teenagers were made to suck dummies and wear nappies , were
bathed like babies and told to regress to the time they were last happy .

2. But , I told myself , by the time you are standing at the airport terminal (not the train or the
bus station) , you have burned off the top ones and , come on , lad , you can afford to relax
a little .

3. She told herself sternly that the time had passed when sympathy , hope , tender care , even
love could have anything to do with the figure on the bed .

4. You tell me lies all the time !
5. Once the commotion had died down , he told them to break the time pencils and get to

work .
6. I told her I thought The Times would probably have a man on the spot and it was late , and

I prised my Toshiba away from her grasping hands .
7. Junior accountants at Price Waterhouse , one of the big six firms , have been told that now

is the time to take their once-in-a-lifetime world tour or perhaps a summer stint as a yacht
deckhand and that applications for extended unpaid leave bquo will be looked on
favourably " .

8. Carter had told the police at the time they had a row over money and his wife had walked
out , never to return .

While this group is the second most common pattern for tell the time string type, it is a false
pattern, one that represents no interesting regularity. In this case, then, the first stage of sorting
does not contribute directly to chunk detection. Part of the motivation of the second stage is to
bring us closer to detecting such results as noise automatically, eventually enabling us to not
only sort examples but also filter out noise. To help achieve this, the second stage examines the
POS of the intervening words in the string tokens within a pattern. The POS tags are from the
CLAWS tagset used to tag BNC2. Listed here are the eight different POS trigrams representing
the three words separating tell from the time in this group.

1. TO0_VVI_PRP 3. PNX_AV0_CJT 5. PNP_TO0_VVI 7. CJT-DT0_AV0_VBZ

2. PNX_PUN_PRP 4. PNP_VVZ_DT0 6. PNP_PNP_VVD 8. AT0_NN2_PRP

The fact that the eight sentences, while all sharing a 3-word gap between tell and the time, each
has a different POS trigram in that gap suggests that this group of eight tokens does not reflect
an interesting regularity concerning tell the time. Eventually our goal is to represent results to
learners and teachers, not only to lexicographers. For this reason, precision becomes much
more important than it is when the users are researchers or lexicographers. In what follows, we
describe our approach to representing our lexical chunk knowledge for learners and teachers.

2 http://www.natcorp.ox.ac.uk/what/garside_allc.html

 6

4 Lexical Chunks and Knowledge Representation
In addition to discovering lexical chunks with the approach described above, a corresponding
challenge arises for representation of this knowledge. We propose here embedding the
representation of chunk knowledge directly within the contexts where learners encounter
chunks. The underlying concept is that as learners encounter the target language in contexts of
authentic use, for example as they read magazines or books, they are exposed to chunks
(whether they recognize them as such or not). Our aim is to identify these chunks in real time
directly within digital contexts. We illustrate how we have already implemented this approach
with collocations and describe the novel challenges that arise in extending this approach to
chunks. Our collocation tool (called Collocator) is a browser-based tool that can detect
collocations in real time within the web pages that the user browses (Wible et al., 2004a).

The core component of Collocator that detects collocations in web pages in real time works
much like the first iteration of our chunk detecting algorithm. The collocation-extracting
scheme is part-of-speech sensitive, which means we have to detect the part-of-speech
information of each word in browsed web pages in real time. We train a Markov Model-based
POS tagger (Brants, 2000) and use British National Corpus (BNC)3 as our training data. The
internal evaluation shows this tagger has 93% precision including identifying unknown words.
After part-of-speech tagging, the agent uses the following equation from (Wible et al., 2004b)
to measure the word association score for all candidate word pairs:

 () ()
()

()
()

()⎟⎠
⎞⎜

⎝
⎛⋅⎟

⎠
⎞⎜

⎝
⎛

=

ysn
yP

xsn
xP

yxPyxnormMI ,log, 2

where x, y mean the word with specific part-of-speech and sn means the number of distinct
senses for that word listed in WordNet. This adaptation of traditional MI takes into account the
polysemy of the words x and y by normalizing for the number of senses of x and y, helping
overcome traditional MI’s under-extraction of collocations that contain high frequency words.
For example, traditional MI does not detect take as a collocate of the noun temperature (The
nurse took the patient’s temperature), but our normalized MI does detect take in this case.

Similar to the first iteration in our chunk detector, Collocator takes as collocation candidates all
possible pairings of POS-specific words (x and y above) in which the two words appear within
a five-word window of each other in our 20 million-words of running text of the BNC. Using
the above measure, each x,y ordered pair yields a word association score. Collocations are
word pairs that show a sufficiently strong word association between the two words in the pair.
Thus, a minimum score threshold is used to select which of the candidate word pairs constitute
collocations. This threshold can be lowered or raised to adjust the agent’s precision and recall.

3 http://www.natcorp.ox.ac.uk/

 7

The collocation knowledge thus extracted from our POS-tagged BNC feeds our browser-based
Collocator, enabling it to detect and highlight collocations that appear in the web pages that the
user browses (See Figure 1).

Figure 1: Dropdown list of detected collocations with highlight and example options

Figure 2: Example sentences

Using Collocator as our reference point, we can now describe how our lexical chunk
extraction is to be applied to learners. In brief, our purpose is to enrich Collocator so that it
detects and represents not only collocations (typically, word pairs) but longer strings, that is,
chunks. This tool will then detect and highlight chunks in real time within the web pages that
the user browses. The approach to lexical chunk discovery described above is intended, then,
as the knowledge source supporting this tool. The fundamental challenge this application poses
is that of precision. As shown above, each iteration of the chunking algorithm introduces noise
and leads to more false positives with each iteration. A ubiquitous browser-based version of the
chunker would detect strings in the web page that match any string types that have achieved a

 8

threshold word association measure at our ‘discovery’ stage. Recalling the example of tell the
time, this means that a browser-based chunk detector would treat as a match not only the true
positive He hasn’t learned to tell the time, but also false positives like Tell him that
unfortunately the time has not arrived. These failures in precision, while forgivable for a tool
intended for lexicographers, are unacceptable for a tool intended directly for learners as they
browse the Web. We choose to retain the higher recall created by our 5-word window and focus
on increasing precision by adding a second stage that sorts these results into patterns, as
described above. While our current sorting method does make it much easier to filter out false
positives by hand, this is not improvement enough for a browser-based version for learners.
The sorting strategy that we mentioned early of exploiting POS patterns, though requiring
refinements, does hold promise. For example, it would enable the chunker to discard false
positives like Tell him that unfortunately the time has not arrived since, as we have seen, it can
discover that cases like this with a 3-word gap between tell and the time exhibit no regularities
in the POS sequences appearing in that gap. However, the implementation of this strategy must
be much more fully articulated and tested. Recently, we have added entropy measures to detect
how stable the POS patterns are that occur within the strings. Preliminary results suggest high
entropy as a promising indicator of false positives, allowing for automatic filtering for
increased precision of our results.

References

BRANTS, T. (2000). TnT-A statistical part-of-speech tagger. In Proceedings of ANLP-2000,
Seattle, Washington.

Church, K., Gale, W., Hanks, P., Hindle, D. (1991). Using statistics in lexical analysis. In
Lexical Acquisition: Exploiting On-Line Resources to Build a Lexicon, edited by Zernik, U.
(ed.) 115-164. Hillsdale, NJ: Lawrence Erlbaum Associates.

Sinclair, J. (ed.) (1987). Looking Up: An Account of the COBUILD Project in Lexical
Computing. London: Collins.

Smadja, F. (1993). Retrieving Collocations from Text: Xtract. Computational Linguistics. 19,
143-177.

Wible, D., Chin-Hwa Kuo, and Nai-Lung Tsao. (2004a). Contextualizing Language Learning
in the Digital Wild: Tools and a Framework. In Proceedings of IEEE International Conference
on Advanced Learning Technologies (ICALT), Joensuu, Finland.

Wible, D., Kuo, C.-H., Tsao, N.-L. (2004b). Improving the Extraction of Collocations with
High Frequency Words. In Proceedings of International Conference on Language Resources
and Evaluation (LREC), Lisbon, Portugual.

 9

Weinert, R. (1995). The Role of Formulaic Language in Second Language Acquisition : A
Review. Applied Linguistics, 16, 180-205.

Wray, A. (2002). Formulaic Language in the Lexicon. Cambridge: Cambridge University
Press.

 10

