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Microwave Imaging of Multiple 
Conducting Cylinders 

Chien-Ching Chiu and Yean-Woei Kiang, Member, IEEE 

Abstract-In this paper the inverse scattering for multiple 
conducting cylinders is investigated. Assume that a plane wave 
is incident upon separate perfectly conducting cylinders of un- 
known shapes and the scattered field is measured outside. Using 
prior knowledge of the rough positions of the scatterers, the 
shapes of the conducting scatterers can be reconstructed. The 
Newton-Kantorovitch method is employed to solve nonlinear 
integral equations and the pseudoinverse technique is used to 
overcome the ill-posedness. Numerical examples are given to 
demonstrate the capability of the inversion algorithm. Good 
reconstruction is obtained even when the multiple scattering 
between two conductors is serious. In addition, the effect of 
noise on the reconstruction result is also investigated. 

1. INTRODUCTION 

NVERSE scattering of conducting objects has been a I subject of interest to researchers for many years. It is 
applied to many fields of physical science for remotely 
sensing unknown objects and reconstructing their physical 
properties. Generally speaking, two kinds of approaches 
have been developed. The first is an approximate ap- 
proach. It makes use of the Bojarski identity to recon- 
struct the shape of a perfectly conducting scatterer [11-[51. 
However, this method requires physical optics approxima- 
tion. In contrast, the second approach is a rigorous one. It 
solves the exact equations of the inverse scattering prob- 
lem by numerical methods [61-[12]. This technique needs 
no approximation in formulation, but the calculation is 
more complex than the approximate approach stated 
above. Also, this rigorous approach can be further classi- 
fied into three categories by different physical concepts 
and numerical techniques. 

1) Newton-Kantorouitch method [6]-[8]: Roger [6] first, 
in 1981, applied this method to solving the inverse scatter- 
ing of a perfectly conducting cylinder by the knowledge of 
bistatic scattering cross sections. His principal idea is to 
solve the integral equation by an iterative procedure. 
Owing to the deficiency of the phase information, the 
reconstructed result is not satisfactory. Therefore, Kris- 
tensson and Vogel [7] used the angular diversity and 
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least-squares method to overcome the ill-posedness to get 
a better result in 1986. Later on, Tobocman [81 utilized 
both angular and frequency diversities to obtain more 
accurate results. 

2) Colton-Monk method [9]-[11]: Colton and Monk [91, 
[lo] proposed a novel method, without solving the direct 
scattering problem, to carry out a series of acoustic wave 
inverse scattering calculations in 1985 and 1986. This 
method consists of two steps. The first step solves a 
boundary value problem in the interior of the unknown 
scatterer using Herglotz wavefunctions. Then in the sec- 
ond step, the boundary of the scatterer is found as the 
curve where the boundary condition from the first step is 
satisfied. They also presented some numerical results for 
three-dimensional sound-soft impenetrable targets in 1987 

3 )  Equiualent source method [12]: Kirsch and Kress [12] 
proposed the equivalent source concept to solve the in- 
verse scattering problem. A set of fictitious electric cur- 
rent filaments, of which the amplitudes can be determined 
by the scattered field, are properly distributed inside the 
conductor. The scattered field produced by the current 
filaments and the incident field are summed up and the 
nodal line that corresponds to the scatterer surface is 
then reconstructed. 

However, the above-mentioned rigorous approaches 
merely dealt with the object of starlike shape, i.e., an 
arbitrary point on the surface of a two-dimensional object 
can be represented in polar coordinates as ( F ( 8 ) ,  81, 
where F ( 8 )  is a real single-valued function of 8. To our 
knowledge, there is still no numerical result for the case 
involving multiple conducting scatterers where the condi- 
tion of starlike shape is violated. 

In this paper the inverse scattering for two separate 
conducting cylinders in free space, i.e., the case of non- 
starlike shape, is investigated. We propose an algorithm to 
reconstruct the shapes of the conducting scatterers by the 
prior knowledge of the rough locations of the scatterers. 
The algorithm makes use of the Newton-Kantorovitch 
method for numerical computation. In Section 11, the 
theoretical formulation for the inverse scattering is pre- 
sented. We then introduce numerical techniques to solve 
the integral equations and to overcome the ill-posedness 
in Section 111. Numerical results for reconstructing objects 
of different shapes and the effect of multiple scattering 
are discussed in Section IV. Finally, some conclusions are 
drawn in Section V. 

[Ill. 
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11. THEORETICAL, FORMULATION 

ders with cross section described in polar coordinates in 

Ei(F2(e,) COS e, - d ,  COS $, F,( e,) sin 6, - d ,  sin $) 

Let us consider two separate perfectly conducting cylin- 

xy plane by the equations p1 = F,(B,) and p, = F,(O,) 
c e n t e r e d  a t  ( d ,  c o s  $ ,  d ,  s in  $ 1  a n d  
( - d ,  cos $, - d ,  sin I)), respectively, in free space. Let 
( E , ,  pol denote the permittivity and permeability respec- 
tively of free space. A plane wave whose electric field 

roi(ei ,  0’) = JIFi(ei)cos e, - E;;:(e’)cos et]’ + [F , (o i )  sin ei - Fi(e’)sin er]’, 

= f f HA,)( kr,, J,( e de  

+ ~ T ~ H i z ) ( r U , , ) J 2 ( e r ) d e f  (4) 

where 

i = 1 ,2  

rM( e,, 6 ’) = J[ F2( e,) cos e, - F,( e ’) cos 8’ - d cos $1, + [ F2( e,) sin O2 - Fl( e’) sin 0’ - d sin $1, , d = d ,  + d ,  . 

vector is parallel to z-axis (i.e., transverse magnetic or TM 
polarization) is incident upon the scatterers. We assume 
that the time dependen5e of the field is harmonic with the 
factor exp(jot). Let Ei denote the incident field with 
incident angle 4, as shown in Fig. 1. Then the incident 
field is given by 

For the direct scattering problem, the scattered field E, 
is calculated by assuming that the positions and the shapes 
of the objects are known. This can be achieved by first 
solving J ,  and 5, in (3) and (4) and calculating E, in (2). 

Next, we consider the following inverse problem: given 
the scattered field E, measured outside the scatterers, 
determine the positions and the shape functions, F,(e , )  

,S(x, y )  = , - j ~ x s i n  b + ~  cos $ ) A  z ,  kz = w z E o p o .  (1) 

At an arbitrary point ( x ,  y) in Cartesian _coord@ate_s out- 
side the scatterers, the scattered field, E, = E - Ei, can 
be expressed by 

and F,(O,), of the objects. From [51, the approximate 
centers of the scatterers can be easily found by the 
Bojarski identity based on the physical optics approxima- 
tion. Here the details of finding the reference centers of 
the scatterers are omitted for simplicity. After each cen- 

with ter, which in fact can be any point inside each scatterer, is 

~ ~ ( 0 , )  = - j o p o ~ ~ z ( e i )  + 4 t z ( o , ) J , i ( 6 , ) ,  = 1,2  determined, the Newton--&ntorovitch method is then 
employed to obtain the final shape functions of the scat- 
terers. 

First, we define the nonlinear functional systems as 

= ( x + d , c o s $ , y + d , s i n $ )  h l ( F 1 7 F 2 , J 1 , J 2 )  = E i ( F I ( ~ , ) c o s 0 ,  +d ,cos$ ,  
F,( 0 , )  sin 8, + d ,  sin $) 

- c m ; H , j z ) (  kr,, J1( 8 ’1 de 

- i2T f HA,)( kr,, J ,  ( e ) de ( 5 )  

where Hi2) is the Hankel function of the second kind of 
order zero, and JSi(@,) is the induced surface current 
density which is proportional to the normal derivative of 
electric field on the ith conductor surface. 

The boundary condition states that the total tangential 
electric field at the surface of the scatterers must be zero 
and this yields two integral equations for J,(8,)  and h , ( F , ,  F,, J , ,  J 2 )  = Ei( F,( e,) COS 8, - d ,  COS $, 
J,(B,): 

E,(F,( e,) cos 8, + d ,  cos $, Fl( e,)  sin 8, + d ,  sin $) 
F2( e,) sin e, - d ,  sin $) 
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and let symbols Sh,, ah2,  and Sf denote variations of the - cv+p( bo,) SJ,( e r )  de 
quantities h, ,  h,, and f, respectively, due to small varia- 
tions of SF,,  SF,, S J ,  and 61,. By differentiating (5), (6), 
and (71, one obtains 

s ~ , ( F , ,  F,, J , ,  J , )  

= ( -jk)(cos 8, sin 4 + sin 8, cos 4) 
ah,( F,  9 F2 9 J ,  , J ,  

Ei( F2( e,) cos e, - d, COS JI, F,( e,) sin 8, 

- /:“s [ 
= (-jk)(cos 8, sin 4 + sin e, cos 4) 

- d ,  sin @ ) S F 2 ( 0 2 )  . Ei( F,( e,)  cos e, + d ,  cos JI, F,( e,) sin e, 

+ d ,  sin J I )  SF,( e,) krO4) ] J1( 8 ) de 
r .  

935 

(8) 

where 
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To satisfy the boundary condition, Sh, and Sh, are set 
to zero. By using the least-squares method to solve (S), 
(9), and (lo), one obtains the differential increments of 
the shape functions in each iteration. Then we can solve 
this inverse problem accordingly by an iterative proce- 
dure. 

calculation. For convenience, a vector F’ is defined by 

O I i i N  

N + 1 I i I 2 N  + 1 

(qi7 
(G)i-(N+l), i (F‘)1= 

0 1 j i N / 2  
N/2 + I I 

111. COMPUTATIONAL TECHNIQUE 

the moment method [13], [14] to solve (31, (4), and (2) with 
i = 1,2. For numerical calculation of the direct problem, we use 

pulse basis functions {Pn(8)}  for expanding and Dirac By point-matching technique [14], (S), (9), and (10) can be delta functions for testing. Let cast into matrix form as 
Md 

J ~ (  e,) = B~,P,( e i ) ,  i = 1,2  
n = l  

Then (3) and (4) can be transformed into a matrix equa- 
tion S $ , = 5 . 6 f l + f i 4 . 6 2 ,  +fi2.S2, ( 12) 

Ei( F,( 0,) cos 6, + d ,  cos $, F,( e,) sin e, + d ,  sin $) 

Md Md 

= c (Ll),, .Bl, + c ( i 3 ) m n  *B2 ,  where 
n = l  n = l  

O i i i N  

N + 1 I i I 2 N  + 1 S ( & ) i - ( N + l ) ,  i Ei(F,( 0,) cos e, - d ,  cos $, F2( e,) sin e, - d ,  sin $) 
(SZ), = 

Md M d  

= c (L),, .Bin + c ( i,),, *B2 ,  
n= 1 

where 
n = l  

(ii),, = ~ A c a ; H , $ 2 ) ( k r , , i ( ~ m ,  j e r ) ) d e r ,  i = 1,2,3,4 s ^ =  [[s^1]7[s^2]] 

1 1 i 1 M , O i j < N / 2  (S ,  ) i j  7 

k = 1,2  

( s ^ k ) i ,  = ( s L ) i j - N / 2 ,  i and ACi is the ith segment of the scatterer contour from 
6 = 2 r ( i  - l)/Md to 8 = 27ri/Md. Note that the regu- 
larization procedure is hidden in the truncation of series 
expansion of J. Also (2) becomes 

I I M ,  N/2 + 1 I N 

Md 

E , ( x , y )  = - - F,(e’)cos e‘), + (yl  - F,(e’)sin e’) ’ )de’  
n = l  

j Md 
- B 2 , ~ c n 4 H , $ 2 ) ( k ~ ( x ,  - F,(B’)cos e’ ) ,  + ( y ,  - F,(B’)sin #) ’ )de ’ .  

n = l  

To solve (8), (9), and (10) for the inverse problem, we 
choose the following expansions: 

N / 2  N / 2  
Fi(ei) = Ai,cos(nei) + A:,sin(ne,), i = 1,2 

n=O n = l  

M 
J i ( e i )  = Bi,p,(ei), i = 1,2  

n = l  

where A,, and A:, are real numbers, and Bin are com- 
plex in general. Note that M must be different from Md, 

since it is crucial that the synthetic data generated through 
a forward solver are not alike to those obtained by the 
inverse solver. In general, Md is chosen to be 2M in our 

5 =  [[Sl],[5,]] 
( s k ) i j ,  1 I i i M , O  I j  i N/2 

(’“Ii’ = ( ( S k ) i j - N / 2 ,  1 I i I M, N/2 + 1 I j I N 

( f i k ) i j  = 1 I i I M ,  1 4 j 5 M ,  k = 1,2,3,4 

k = 1,2  

(C,)ij7 1 i i i M ’ , O i j i N / 2  

k = 1,2  
( C ;  )ij- 1 I i I M ‘  , N/2 + 1 5 j I N 

( f k ) i j  = (Tk)i,, 1 i i i M‘, 1 < j  I M ,  k = 1,2  

Authorized licensed use limited to: Tamkang University. Downloaded on March 15,2010 at 22:06:50 EDT from IEEE Xplore.  Restrictions apply. 



I 

CHIU AND KIANG: IMAGING OF MULTIPLE CONDUCTING CYLINDERS 937 

where M '  is the number of points for measuring the 
scattered field. (zl)mn, (S i )mn,  ( S 2 I m n ,  

(C l )mn,  (C;),,, (C2)mn, (C;Imn, (Tl)mn and (T2)mn are 
appropriate coefficients that can be obtained by tedious 
mathematical manipulations (see Appendix). 

To satisfy the boundary con_dition, w,e set S &  = 0 and 
a<, = 0. After eliminating SB, and SB, in (13), we get 

C s ; ) m n ,  ( 3 2 ) m n ,  ( S ; ) m n ,  ( u l ) m n ,  ( u 2 ) m n ,  (u3)mn9 ( U 4 ) m n ,  

.[ G3. (G2)j1 5 - "1 - 2, * (G2)-I 

.G4] - l  . [ G3 . ( 4 )  - 1 .5 - SI]) * sz 

Although (14) is valid only for a single incoming wave, one 
can generalize it to the case of incoming wav:s of multi- 
incident angles easily. Note that the matrix D in (14) is 
usually a nonsquare one. Furthermore, (14) derived from 
the integral equation of electromagnetic scattering is usu- 
ally ill posed. In order to find an adequate solution for 
(141, the regularization is needed. In the regularization 
procedure, instead of solving (14) directly, we can solve an 
optimization problem which minimizes the functional de- 
fined as 

with the constraint 

1 1  SZII is minimum (133) 

where 1 1 .  II denotes the norm, the dagger denotes trans- 
pose and complex conjugate, and,Re means taking the 
real part. Since the elemeFts o,f SF areA rea! quantities, we 
take the real parts of Dt .D and Dt .f. Then (15) is 
solved by means of a pseudo-inverse algorithm [131, which 
is based on the Gram-Schmidt orthogonalization. The 
pseudoinverse transformation circumvents numerical in- 
stability inherent to inverse scattering and gen_erates a 
unique solution for (15). The minimization of ( 1  SFII can be 
somewhat interpreted as the smoothness requirement for 
the boundary of the scatterers. Therefore, the condition 
of (15) is the minimization of the least-square error be- 
tween the measured field and the calculated field with the 
constrain: of a smooth boundary. In reality, the matrix 
Re(Dt - 0) is not absolutely singular. However, in order 
to find the pseudoinverse solution of (15), one has to set 
some of its column vectors as linearly dependent. In our 
calculation, the number of dependent columns is so cho- 
sen as to minimize the difference between the measured 
field and the calculated field in the least-squares sense in 
each iteration. 

During the implementation of $e iterative procedufIe, 
we first choose the_initial gu2ss (F)' ,and solve for (SF)" 
in (15) to obtain (F)"' = ( F ) k  + (SF)",  k = 0,1,2,3 . 
Iteration continues until convergence is achieved. To 
monitor convergence, after each iteration the calculated 
profile v t ( B i )  is substituted into (3), (41, and (2) to 
produce the calculated scattered field E Y ' ( 3  and the 
discrepancy 

is determined, where M/ is the total number of measure- 
ment points and E Y p  the measured scattered field. Itera- 
tion will be stopped when either DF changes by less than 
4% in two successive iterations or DF is smaller than 
5 x 1 0 - ~  in two successive iterations. 

IV. NUMERICAL RESULTS 
By numerical simulation we illustrate the performance 

of the proposed inversion algorithm and its sensitivity to 
random error in the scattered field. Let us consider two 
separate perfectly conducting cylinders in free space and a 
plane wave of unit amplitude is incident upon the objects, 
as shown in Fig. 1. The frequency of the incident electro- 
magnetic wave is chosen to be 3 GHz, i.e., the wavelength 
A is 0.1 m. In the examples the size of the scatterer is 
about one-third the wavelength, so the frequency is in the 
resonance range. 

In our simulation three different examples are consid- 
ered. To reconstruct the shapes of the cylinders, the 
objects are illuminated by four incident waves with inci- 
dent angles 4 = 0", 90", 180", and 270", and the measure- 
ment is taken on a circle of radius R' at equal spacing. In 
our cases, R' is chosen much larger than 2DI2/A corre- 
sponding to the far-field measurement, where D' is the 
largest dimension of the scatterer. Note that for each 
incident angle, eight measurement points at equal spacing 
are used, and there are totally 32 measurement points in 
each simulation. Of course, the measured scattered field 
is computed numerically by the moment method. The 
number of unknowns is set to 14 (i.e., 2N + 2 = 14) and 
M is set to 30. 

In the first example, both d ,  and d 2  are set to 0.05 m 
and I,!I is 0". The two shape functions are chosen to be 
F,(B,) = 0.03 m and F,(B,) = 0.03 m, respectively. The 
measurement radius R' is chosen to be 7 m. In order to 
investigate the multiple scattering effect, the first-order 
scattered field and total scattered field for the incident 
angle 4 = 90" are plotted in Fig. 2. Here the first-order 
scattered field is the sum of the scattered field due to each 
scatterer in the absence of the other one. The total 
scattered field corresponds to the whole scattering from 
the two coexistent scatterers including multiple scattering 
effect. Note that the difference between the first-order 
and total scattered fields in the root mean square (rms) 
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Ei 

0.3 3 

sense is about 65%, i.e., 

I 1 MI 

, 1/2 

3 

where M ,  is set to 180. It is obvious that multiple scatter- 
ing effect is serious owing to the short distance between 
these two conductors. The reconstructed shape functions 
are plotted in Fig. 3. It is seen that the reconstruction is 
fine enough except on the facing portions of the two 
objects. This is due to the fact that those portions are not 
directly illuminated by the incident wave and serious 
multiple scattering effect occurs there. However, the rela- 
tive reconstruction error is still very small and it is, for 
each scatterer, about 1 X in the rms sense. Here the 
relative reconstruction error for the ith scatterer is de- 

# a 

0.1 
2 

0 100 200 300 
observation angle (degree) 

(a) 

120 
h 

Q, 

2 
85 2 20 

0, 

2 
a -80 
c 

-180 
0 100 200 300 

observation angle (degree) 
(b) 

4 = 90". (a) Amplitude. (b) Phase. 
Fig. 2. First-order and total scattered fields for the incident angle 

= 0.65 

fined as Fig. 1. Geometry of the problem in the ( x ,  y )  plane. 

where M, is set to 60. The good reconstruction result can 
be explained by the fact that our inversion algorithm has 
exactly taken multiple scattering effect into account. 
Viewing from this aspect, we may deduce that the Bo- 
jarski identity or the diffraction tomography, which con- 
siders only the first-order scattering, cannot obtain the 
same high image quality as ours in the presence of serious 
multiple scattering. In addition, we also see that the 
adjustment of the two shape functions is almost the same 
in the iteration process due to the symmetrical property. 

For investigating the effect of noise, we add to each 
complex scattered field E,(3  a quantity b + cj where b 
and c are independent random numbers having a uniform 
distribution over 0 to the noise level times the rms value 
of scattered field. The noise levels applied include 
lop2,  5 X lo-', 2 X lo-' and 4 x lo-'. The rela- 
tive reconstruction errors are shown in Fig. 4. It shows 
that the effect of noise is tolerable for noise levels below 
lo-'. 

Now, we choose a distance of d ,  = d ,  = 0.5 m, instead 
of d ,  = d ,  = 0.05 m as in the previous example, to inves- 
tigate the effect of the separation distance between scat- 
terers on the reconstruction result. Satisfactory results are 
plotted in Fig. 5. Note that the reconstruction result of 
the last iteration cannot be distinguished from the exact 
one by the naked eye. Comparing Fig. 3 with Fig. 5, we 
find out that the reconstruction is better in the case of 
large separation. Physically this can be explained by the 
fact that multiple scattering effect decreases as the sepa- 
ration distance between two conductors increases. In other 
words, the reconstruction results become better owing to 
the lesser multiple scattering effect. 

In the second example, the shape functions are chosen 
as F,(O,) = (0.026 - 0.009cos(28,))m and F,(8,) = 
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1 -0.05 

-0.10 ' ~ ~ ~ ~ ~ ~ ~ " I ~ ~ " " ~ ~ ' I " " " ' ' l " " " ' ' ' l  
-0:lO.- -0.05 0.00 0.05 0.10 

Fig. 3. Shape functions for example 1 with d ,  = d ,  = 0.05 m. The solid 
curve represents the exact shape, while the dashed curves are calculated 
shapes in iteration process. 

: 4  k 0.10 

exact 
initial 
1st 
5th 

_ _ _ _  
........ 

0.05 

i -0.05 

-0.55 -0.5 0 0.5 0.55 

Fig. 5. Shape functions for example 1 with d ,  = d ,  = 0.5 m. The solid 
curve represents the exact shape, while the dashed curves are calculated 
shapes in iteration process. 

-0.10 ~ ~ " ~ " ~ ~ 1 " ' ~ " " ' l " " " " ' ~ " " " " ' ~  
-0llO -0.05 0.00 0.05 0.10 

Fig. 6. Shape functions for example 2. The solid curve represents the 
exact shape, while the dashed curves are calculated shapes in iteration 

process. 

(0.03 - 0.0035 cos (26 , )  - 0.0035 sin (28,))  m. The pa- 
rameters R', @, d, and d, are chosen as 7 m, 45", 0.04 m 
and 0.08 m respectively. The purpose of this example is to 
show that our method is able to reconstruct the scatterers 
which are not symmetrically located about either the 
x-axis or the y-axis. Satisfactory results are shown in Fig. 
6. The relative error for each scatterer is less than 1%. 

In the third example, the shape functions are selected 
to be Fl( 6 , )  = (0.03 + 0.0025 cos 6 ,  - 0.005 cos (2 6 , )  + 
0.005 cos(38,)) m and F,(6,)  = (0.03 + 0.005 sin (36,)) m. 
The parameters R', @, d ,  and d, are chosen as 7 m, 135", 
0.08 m and 0.07 m, respectively. Note that the scatterers 
are now located in the second and fourth quadrants. This 
example has further verified the reliability of our algo- 
rithm. Refer to Fig. 7 for details. The relative error is 
about 1% for each scatterer. 

From the above three example, we can conclude that 
our imaging or inverse scattering algorithm is accurate 
and can be implemented numerically. 

V. CONCLUSION 

We have proposed an algorithm for reconstructing the 
shapes of two perfectly conducting objects by the knowl- 
edge of scattered field. The approximate centers of the 
scatterers can be obtained by the Bojarski identity, and 
the Newton-Kantorovitch algorithm and moment method 
have been used to transform the nonlinear integral equa- 
tions into matrix forms. Then these matrix equations are 
solved by the pseudoinverse transformation to obtain a 
stable approximate solution. By means of the above nu- 
merical techniques, good reconstruction is obtained from 
the simulated scattered field either with or without addi- 
tive random noise. Numerical results have also demon- 
strated that the reconstruction result is still quite good 
even when the multiple scattering between scatterers is 
serious. 
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Fig. 7. Shape functions for example 3. The solid curve represents the 
exact shape, while the dashed curves are calculated shapes in iteration 

process. 
APPENDIX 

Given in the following are some of the matrix elements 
in (10, (12), and (13) 

Here the symbol PV denotes the Cauchy principal 
value. Indeed, the corresponding integrals have singulari- 
ties of the form l / ( O  - 6 ’ )  when 8 + e’,  and thus these 
types of integrals are evaluated as Cauchy princip51 v2l- 
ues. Note that the elements of the matrices Si, S;, Si, Si, 
C; and C; can also be derived similarly. 
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