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ABSTRACT: Image reconstruction by using near-field and far-field data for an imperfectly
conducting cylinder is investigated. A conducting cylinder of unknown shape and conductiv-
ity scatters the incident wave in free space and the scattered near and far fields are
measured. By using measured fields, the imaging problem is reformulated into an optimiza-
tion problem and solved by the genetic algorithm. Numerical results show that the conver-
gence speed and final reconstructed results by using near-field data are better than those
obtained by using far-field data. This work provides both comparative and quantitative
information. � 2001 John Wiley & Sons, Inc. Int J RF and Microwave CAE 11: 69�73, 2001.

Keywords: imperfectly conducting cylinder; image reconstruction; near-field data; far-field
data; genetic algorithm

I. INTRODUCTION

The electromagnetic inverse scattering problem
of conductors has been a subject of considerable
importance in remote sensing and noninvasive
measurement. In the past 20 years, many rigorous
methods have been developed to solve the exact
equation. However, inverse problems of this type
are difficult to solve because they are ill-posed
and nonlinear. As a result, many inverse prob-
lems are reformulated as optimization problems.
Generally speaking, two main kinds of ap-
proaches have been developed. The first is based
on the gradient search approach such as the

� �Newton-Kantorovitch method 1�3 and the Lev-
� �enberg�Marquart algorithm 4�5 . Since this first

approach applies the gradient search method to
find extreme values of the cost function, it is
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highly dependent on the initial guess and tends to
get trapped in local minima and maxima. In con-
trast, the second approach is based on the genetic

� �algorithm 6�8 . The genetic algorithm is a well-
known algorithm that uses stochastic random
choice to search through a coding of a parameter
space. Compared to gradient search optimization
techniques, the genetic algorithm is less prone to
convergence to a local minimum, which in turn
renders it an ideal candidate for global optimiza-
tion. It usually converges to the global extreme of
the problem, no matter what the initial estimate
� �is 9 .
In this article, a comparison of image recon-

struction by using near-field and far-field data for
an imperfectly conducting cylinder is presented.
The genetic algorithm is used to reconstruct the
shape and conductivity of a scatterer. In Section
II, the theoretical formulation is briefly pre-
sented. Numerical results by using near-field and
far-field data are given in Section III. Finally,
conclusions are drawn in Section IV.

� 2001 John Wiley & Sons, Inc.
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II. THEORETICAL FORMULATION

Let us consider an imperfectly conducting cylin-
der with cross section described in polar coordi-

Ž .nates in the xy plane by the equation �� F �
located in free space. An incident plane wave
whose electric field vector is parallel to the z axis
is illuminated upon the metallic cylinder. By using
the induced current concept, the scattered field
can be expressed as the integral of the two-di-
mensional Green’s function multiplied by the in-
duced surface current density, which is propor-
tional to the normal derivative of the electric field

� �on the conductor surface 3, 6 . In addition, for an
imperfectly conducting scatterer with finite con-
ductivity, the boundary condition can be approxi-
mated by assuming that the total tangential elec-
tric field on the scatterer surface is related to
surface current density through a surface imped-

� �ance 3, 10 . As a result, for the direct scattering
problem, the scattered field is calculated by as-
suming that the shape and the conductivity of the
object are unknown. We can use the boundary
condition to solve the surface current density and
then calculate the scattered field by using the
Green’s function. For numerical calculation of
the direct problem, the contour of the object is
first divided into sufficiently small segments so
that the induced surface current density can be
consider constant over each segment. Then the
moment method is used to solve the equations
with a pulse basis function for expanding and a
Dirac delta function for testing.

Let us consider the following inverse problem:
given the scattered field, determine the shape and
the conductivity of the object. Here the shape
Ž .F � is assumed to be starlike. In other words,
Ž .F � can be expanded as

N�2 N�2

Ž . Ž . Ž .F � � B cos n� � C sin n� ,Ý Ýn n
n�0 n�1

where B and C are real coefficient to be deter-n n
mined and N� 1 is the number of unknowns for
the shape function of the object. In the inversion
procedure, the genetic algorithm is used to mini-
mize the root mean square error of the measured
scattered field and the calculated scattered field
through three genetic operators: reproduction,
crossover, and mutation. When the root mean
square error changes by less than 1% in two
successive generations, the genetic algorithm is
terminated and a solution is then obtained. Note
that the regularization term can be added to

avoid ill-posed problems. Please refer the refer-
� �ences 3, 6 for details.

III. NUMERICAL RESULTS

Using a numerical simulation we compare the
image reconstruction by using near-field and far-
field data. Let us consider an imperfectly conduct-
ing cylinder in free space and a plane wave of
unit amplitude incident upon the object. The fre-
quency of the incident wave is chosen to be 3
GHz. In our calculation, three examples are con-
sidered. To reconstruct the shape and conductiv-
ity of the cylinder, the object is illuminated by
four incident waves with incident angles �� 0,
90, 180, and 270�, and eight measurement points
are taken on a circle of radius R� at equal spac-
ing. In our cases, R� is chosen much smaller than
or much larger than 2 D�2��, corresponding to
the near-field or far-field measurement, where D�

is the largest dimension of the scatterer. Here
R�� 0.06 m for near-field measurement and R�

� 7 m for far-field measurement. The number of
Ž .unknowns is set to 10 i.e., N� 2� 10 to save

computing time. The population size is chosen as
300. The binary string length of unknown coeffi-

Ž .cients, B or C , is set to 16 bits. The binaryn n
string length of conductivity is also set to be 16
bits. The search range for unknown coefficients of
the shape function is chosen to be from 0 to 0.1.
The search range for unknown conductivity is
chosen from 3 to 7� 107. The extreme value of
the coefficient of the shape function and conduc-
tivity can be determined by the prior knowledge
of the objects. The crossover probability and mu-
tation probability are set to be 0.8 and 0.04,
respectively.

In the first example, the shape function is
Ž . Žchosen to be F � � 0.04� 0.002 cos 2� �

. Ž0.02 sin 3� m with aluminum material i.e., ��
7 .3.54� 10 s�m . The reconstructed relative root

Ž .mean square rms errors for the shape and con-
Ž .ductivity ES and EC obtained by using the

near-field and far-field data are plotted in Figure
1. Here the shape function is also plotted for
reference. From Figure 1, it is clear the conver-
gence speed and final rms error obtained by using
the near-field data are better than those obtained
by using far-field data. The final rms errors for
conductivity obtained by using the near-field and
far-field data are 1.6� 10�2 and 3.1� 10�2 , re-
spectively. Note that the convergence is achieved
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Ž . Ž .Figure 1. Shape function errors ES and conductivity errors EC for example 1 in each
generation by using near-field and far-field data.

at the 130th generation when using the near-field
measurement. However, for the far-field mea-
surement, the convergence is not achieved until
the 180th generation. This is due to the fact that
the kernel of the integral for far-field measure-

Ž .ment is smoother less singular than that for
near-field measurement. As a result, the near-field
measurement is less ill-posed than the far-field
measurement. The typical CPU time for this ex-

ample is about 30 min on a Pentium III micropro-
cessor.

In the second example, we select the peanut-
Ž . Ž .shaped function F � � 0.026� 0.009 cos 2� m

Ž 7 .with silver material i.e., �� 6.17� 10 s�m .
The purpose of this example is to show that
different shape and conductivity has similar re-
sults. Reconstructed results are shown in Fig-
ure 2.

Ž . Ž .Figure 2. Shape function errors ES and conductivity errors EC for example 2 in each
generation by using near-field and far-field data.
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Ž . Ž .Figure 3. Shape function errors ES and conductivity errors EC for example 3 in each
generation by using near-field and far-field data.

In the third example, the shape function is
Ž . Žselected to be F � � 0.02� 0.004 sin 2��

.0.008 sin 3� m, where copper material is selected
Ž 7 .i.e., �� 5.8� 10 s�m . Note that the shape
function is not symmetrical about either the x
axis or the y axis. This example has further veri-
fied the reliability of our conclusions. Refer to
Figure 3 for details.

IV. CONCLUSIONS

We have compared the image reconstruction re-
sults for an imperfectly conducting cylinder ob-
tained by using near-field and far-field data. The
reconstructed results for near-field measurement
are found to be better than those obtained by the
far-field measurement. This result can be ex-
plained by the fact that the near-field measure-
ment is less ill-posed than the far-field measure-
ment. Finally, it is worth noting that in these
cases the present work provides not only compar-
ative information, but also quantitative informa-
tion.
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