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alternative robust approach described in this paper. 
     We employ a slider-crank mechanism as the 
design example, which includes random design 
variables and nonlinear design constraints. Both 
methods of maximizing the goal-reliability and fuzzy 
formulation are investigated under the same design 
conditions. The fuzzy formulation is extended to deal 
with a robust multiple-goal structural problem under 
three loading conditions and with uncertainties. That 
example includes random design variables and fuzzy 
probabilistic constraints in stead of conventional 
constraints.  These assumptions assure that the 
designer can control the design safety. The 
mathematical formulations of the above strategies, 
solution procedure and the numerical results are 
presented, discussed and compared in the paper 
consequently. 
 

Ⅱ. RELIABILITY INDICATOR OF A 
DESIGN GOAL 

 
     Since many uncertainties are transformed into 
standard, uncorrelated and normal distribution, 
therefore in this paper we only consider the random 
variables or parameters with normal distribution.  For 
non-normal dependent random variables, they can be 
transformed into the standardized normal variables 
using Rosenblatt transformation [9]. The form of a reliability 
indicator, R

F
, corresponding to a design goal (objective or 

target) function F is written as follows: 
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where 1−Φ  is the inverse standard normal cumulative 
distribution function; C

F(X)
 is the reference point for the 

reliability of goal-performance, and σ
F(X)

 is the 
standard deviation of design performance. For the 
computation convenience, sometimes σ

F(X)
 can be 

replaced by the variance of F(X) written as Var[F(X)]. 
The value of F(X) is obtained by substituting the mean 
value of X for this goal function. The standard deviation 
σ

F(X)  
of the function F(X) is obtained by the 

following: 
2
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The estimated variance of the goal function, 2
)( XFS , is 

simply obtained by the IN 2=  full factorial design 
experiment [3], where the superscript "I" shows the 
number of variables with the variation.  )( XFS  is 
expressed as the following form: 
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In Eq. (4), F represents the average value of )()( XF n  
which is the value obtained from substituting the n =1 
to N combinations for F(X).  The expectation of goal 
function, [ ])(XFE , is simply derived from the partial 
derivative or Taylor series expansion method [13] with 
a quadratic term. 
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The formulation of )( XFC  is defined as the following 
equation: 

*
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where )(* XF  is the optimum mean value by the 
optimization procedure.  *

)( XFσ  is the minimum value 
of the standard deviation also obtained from 
optimization procedure.  αis a parameter that we can 
tune depending on the mean value so that )( XFR  will 
not be too large (unity) or too small (zero). We use the 
plus sign in Eq. (6) where the goal function is to be 
minimized, and the minus sign for maximizing the goal 
function. The situation for the minimization of a design 
target is depicted in Fig. 1. For the cases when a goal is 
to be maximized or minimized, there are two forms of 
the reliability indicator. Eq. (1) is the form of the 
reliability indicator that minimizes a goal-function's 
mean value. The form of a reliability indicator that 
maximizes a goal-function's mean value is written as 
follows: 
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Since the C
F
 value has a predetermined value (Eq. 6), 

from Eq. (1) and Eq. (7) that the maximization of the 
reliability indicator is equivalent to optimize (minimize 
or maximize) the goal-function and minimize its 
standard deviation simultaneously.  If C

F
 has an 

expected value, the resultant reliability indicator is an 
actual goal reliability of that design system. 
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Fig1. The reliability index and functional distribution at 

the optimum target by minimization. 
 

Ⅲ. ROBUST DESIGN OPTIMIZATION 
 
     A robust optimum design of a single 
goal-function can be done by two different proposed 
strategies. The first is to directly maximize the 
reliability indicator introduced in the previous section. 
The second strategy can be achieved by fuzzy 
optimization that optimizes the goal function and 
simultaneously minimizes its standard deviation (or 
variance). 
 
1. Method of Maximization of Reliability Indicator 
 

     For the first robust design of optimization 
problem, the mathematical form is written as follows: 

Maximize )(| XFR                         (8) 
subject to 

miCXg ii ,....,2,1,)( =≤                (9) 

MmjCXh jj ,...,1,)( +==            (10) 

where the form of )( XFR  is expressed in Eq. (1) or Eq. 

(7). Functions of )(Xgi  and )(Xh j represent the ith 
inequality and the jth equality constraints, respectively 
that are in terms of the design variable vector X. 
 
2. Method of Fuzzy Optimization 
 
     The second alternative robust method of 
maximizing reliability has the following mathematical form: 

Maximize λ                            (11) 
subject to 

0)( ≤− XFµλ                           (12) 

0)( ≤− XSFµλ                           (13) 

miXgi
....,2,10)( =≤− µλ              (14) 

where λ  is a scalar; )( XFµ and )( XSFµ  are the 
membership functions corresponding to the goal 
function and its variance, respectively. For detailed 
construction of these membership functions one can 
refer to the related references [7,8,10]. 
 
3. Robust Multiobjective Optimum Design with 

Fuzzy Probabilistic Constraints 
 
     Sometimes a designer has to deal with not only 
more than two design goals but also a constraint as a 
whole has a certain expectation of occurrence value. 
This expectation of occurrence can be a deterministic 
value or a fuzzy number.  The general mathematical 
formulation for such a robust stochastic problem can be 
written as 
minimize
[ ]TkkFFF XfXfXfXfXfXf )(),(),........(),(),(),( 2211 σσσ , 

where )(XfiF  is the ith goal-function of expectation 
and )(Xfiσ is the ith goal-function of variance. The 
optimization problem can be subject to the following 
two types of constraints: 
(1) P( gi(X) ≦ 0) ≧ Pi,exp where Pi,exp has a 

deterministic value. 
(2) P( gi(X) ≦0) ≧Pi,fuzzy where Pi,fuzzy is a fuzzy 

number. 
     The first step is to solve each single goal 
optimization under the strict environment and calculate 
the corresponding value of the other goal functions. 
Then one repeats this procedure again, this time only 
the allowable fuzzy tolerance of design constraints is 
relaxed. Choosing the maximum and minimum values 
of the goal functions among these results, one can 
construct the appropriate membership functions of the 
goal functions. Applying the method of fuzzy 
optimization, one can get the solution of this robust 
multiple goals design. The paper by Shih and 
Wangsawidjaja [11] has a better illustration for this type 
optimization problem. A mechanical structure borrowed 
and modified from the reference of Chang [2] illustrates 
the above robust design methods. The mathematical 
formulation of design optimization and a step-by-step 
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solution process are described in the next section. 
 
Ⅳ. ILLUSTRATIVE DESIGN EXAMPLES 

 
     The kinematic structural diagram of a 
slider-crank is shown in Fig. 2. The travel distance of 
the piston, F(X), must be maximized where the given 
angle θis 15o. The design variables are the length of 
the two cranks depicted as x

1
 and x

2
. To start solving 

this robust design problem, we must first find out the 
reference value of )( XFC . The explanation of how to 
decide this value is given in above section. To obtain 
optimum )(* XF in Eq. (6), we make an optimization 
formulation as follows: 
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where 1.0)( =iXVar  (i=1,2) and subject to the 
following constraints: 
[ ] 0.1)1.0/(05.015sin)1.0( 2
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Completing the above optimization problem we obtain 
[ ])()(* XFEXF = =2.2398 and =X 10., 2.7187. 

The corresponding )( XFσ  is 0.3184. Next, we apply 
factorial design to compute the numerical experiment 
that the variation form as Eq. (3) is the goal function 
that has to be minimized. The design constraints still are 
(17) and (18). The final *

)( XFσ  is 0.0040778 and =X  

1.0, 10.. The corresponding [ ])(XFE  is 0.056957. 
With the substitution ofα =158 for Eq. (6) the value of 

)( XFC  is 1.5955. 

 
1. Reliability-Based Optimization 
 
     We calculate Eq. (2) and substitute Eq. (15) for 
Eq. (1) that has to be maximized with )( XFC  = 1.5955. 
It is obvious to see that the maximization of goal 
reliability of R

F
 is equivalent to the maximization 

of [ ])(XFE  and the minimization 
of )( XFσ simultaneously. The design constraints are Eq. 
(17) and (18) plus the followings: 

[ ] .0.1)(/)( ≤−XFEC XF                  (19) 

.0.1/0040778.0 *
)( ≤−XFσ                 (20) 

The optimum solutions are of FR =0.996, [ ])(XFE = 
2.0364 and )( XFσ = 0.16639 in which x1=10. and 
x2=2.8324. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig2. A slider-crank mechanism. 
 
 
2. Fuzzy Optimization 
 
     By applying the second approach to solve this 
problem, we adopt the linear membership functions 
with fuzzy mathematical formulation of Eq. (11) to 
Eq.(14). The optimum solutions are of FR =0.993, 
[ ])(XFE  = 1.9022 and )( XFσ = 0.12524 in which 

x1=10. and x2=2.94. For a better observation, we 
summarize the optimum results of the slider-crank 
design in Table 1. 
     From those two kinds of approaches we found 
out that the value of R

F
 in the fuzzy approach is a little 

lower. This may be due to the numerical errors of large 
computation in fuzzy optimization. It may be also due 
to a compromise between the minimum mean and 
minimum variance value of the goal function that needs 
to be reached. However, fuzzy approach provides 
another way to solve the multi-goals optimization 
problem and/or a problem containing fuzzy information. 
The little numerical difference will disappear if one 
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solves the problem with a precision technique. 
     In order to examine the situation of a reliability 
indicator corresponding to the variation, we made a 
small investigation. Table 2 shows a series of results 
obtained by maximizing RF(X)  with a fixed target of 
[ ])(XFE . We found out that the variance of a goal 

function is proportional to its expected mean value. 
Therefore, when the mean value changes drastically, the 
variation also has a drastic change. The maximum 
goal-reliability does not exist at the smallest goal 
variation. It happens at a certain optimum situation. 
Therefore, the optimum goal reliability obtained by a 
predetermined fixed target performance is not better 
than that by optimizing this target performance 
simultaneously. In our case, one can see the highest 
goal reliability (0.9959) appears in italic font obtained 
in this paper. In actual design, it also is difficult to set a 
predetermined fixed target because the design space has 
many feasible solutions. 
 
3. Robust Multiobjective Optimum Design with 

Fuzzy Probabilistic Constraints 
 
     The design of a three-bar truss is frequently used 
in describing an optimization method. This asymmetric 
three-bar truss for multiple performances shown in Fig. 
3 is borrowed from Arora's book [1], but here the goals 
are simultaneously to optimize the structural weight, 

maximum deflection, and the goal-reliability for both 
weight and deflection. The three cross-sectional areas 
A

1
, A

2
 and A

3
 are design variables given as x

1
, x

2
 and x

3
, 

respectively. Each variable is normally random with xi 
+ 0.1 xi. The stress constraint as a whole has a fuzzy 
expectation value between 0.98 and 0.999. It means that 
the satisfying degree of the associated constraint is zero 
when the computed expectation is less than 0.98 and a 
complete satisfaction is achieved when that is over 
0.999. 
     The mathematical formulation of this problem is 
simultaneously to minimize structural weight W, its 
variance Wσ, and average deflection D of three loading 
and its variation Dσ. 
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Table 1  The optimum results for slider-crank design. 

 
 1x  2x  [ ])(XFE  )( XFσ  FR  
Maximize E[F(X)] 10. 2.7187 2.2398 0.31843 0.97846 
Minimize Var[F(X)] 1.0 10. 0.0569 0.00408 0. 
Reliability-Based design 10. 2.8324 2.0364 0.16639 0.99598 
Fuzzy Optimization 10. 2.9402 1.9022 0.12524 0.99284 

 
Table 2  Results of maximizing the reliability index with different fixed target values. 

 
Fixed E[F(X)] 1.8 1.9 2.0364 2.1 2.2 
Φ-1[ ] 2.1149 2.5119 2.6500 2.6211 2.3201 

)( XFR  0.9826 0.9939 0.9959 0.9956 0.9898 

)( XFσ  0.1012 0.1228 0.1669 0.1883 0.2604 
x1 10 10 10 10 10 
x2 3.02 2.92 2.83 2.79 2.74 

 
The design constraints are: 

3,2,1,99.0~98.0)0)(( =≥≤− iXP iai σσ   (25) 

3,2,1/ 22 =≤− iEIF ii lπ               (26) 

HzX 2500)( ≥ω                         (27) 
The lower and upper bound of each design variable is 
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0.65 and 645. cm2 (0.1 and 100. in
2
),  respectively. 

Because three loading conditions have to be considered 
together, there are nineteen design constraints. 
 
     We formulated the membership functions first to 
solve this problem by fuzzy formulation.  
Consequently, the total constraints for 
maximizing λ -formulation have twenty-three 
constraints for three loadings. The solutions are 
x

1
=157.38 cm2 (24.394 in

2
), x2=80.7 cm2 (12.509 in

2
), 

x3=146.47 cm2 (22.703 in
2
), with 

WC =84.445, Wα =150., DC =1.4241E-03 and Dα = 
5.0E6. The resultant reliability of structural weight and 
the average deflection equals 0.9854255 and 0.960585, 
respectively. This result shows that both design goals 
have the minimum variability without reducing the 
design variables tolerance. The final design has the 
maximum robust strength for both goals and their 
reliability. 
 
Θ(degree) 45 90 135 
Load, P(N) 177920 133440 88960 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 An asymmetric three-bar structure with three 

loading conditions. 
 

Ⅴ. CLOSING REMARKS 
 
     A simple computing method to achieve the robust 
and reliable structural design is proposed by 
establishing a reliability indicator as the reference.  
This reliability indicator can be applied to either 
minimization or maximization of a design goal.  To 
obtain the goal variation, the factorial design of 
experiment serves as a successful vehicle. Two robust 

design strategies of obtaining the maximum 
goal-reliability of the reference and the optimum 
expectation of the design goal are presented. For a 
single goal optimization problem, maximization of the 
reliability indicator is recommended because of 
programming simplicity. However this strategy faces a 
problem that has to simultaneously optimize multiple 
goals and when the fuzzy information is in the 
constraints. The presented fuzzy formulation gives a 
solution to this problem.  A mechanical structure of 
slider-crank is solved to illustrate and verify the 
proposed methods.  Several final designs of fixing 
design target performance are compared with the result 
of optimizing the target performance. It is shown that 
the highest goal-reliability occurs at where the target 
performance and the performance variation are 
simultaneously optimized. A multiobjective optimum 
design of an asymmetric three-bar structure with 
multiple performances requirements and fuzzy 
probabilistic constraints is presented to illustrate the 
proposed methodology of fuzzy formulation. 
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