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Abstract 
 

This paper presents an optimum design methodology for 
obtaining the highest robust performance using fuzzy multi-objective 
formulation strategy. The target performance and its variation, as 
functions of normally distributed variables with stochastic 
independence, are simultaneously minimized in this design process. A 
functional representation of the variability of the performance and the 
computational algorithm of the robust design process are presented in 
the paper. Two categories of design problems are examined: (1) the 
robust design with expected target of minimal variation. (2) The 
robust design with optimized target of minimal variation. The 
strength-based reliability behaves as the design objective that was 
merged in the formulation to extend the application of the proposed 
method. Three mechanical design examples further illustrate the 
presented integrated design methodology and successfully show its 
advantage. 
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1. Introduction 

Conventional optimization minimizes the 
nominal value of the performance (objective) 
function and overlooks the deviation of the 
performance functions due to manufacturing and 
operation errors. In addition, the design variables 
and parameters often contain a range of 
uncontrollable variations or errors, as 
acknowledged by engineers. Those unavoidable 
variations, natural or artificial, will convey to the 
performance functions with uncertainties. These 
uncertainties considerably reduced the performance 
of the final design shown in Fig. 1 where the design 
point of R is more "robust" than the design of P. 
Accordingly, a robust design should optimize the 
both of the expected value and the deviation of the 
performance function simultaneously. Even though 
the control technique of Parkinson [1] of reducing 
the both of design parameter variability and the 

performance is available, however,  this parameter 
 

 
Figure 1. Nominal Optimum point and robust optimum 

point 
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variation cannot be eliminated in all the 
optimization problems. 

The common employed strategy for obtaining 
the robust design is the Taguchi method in which 
two criteria are proposed: the average loss function 
and signal- to- noise ratios (S/N ratios). Each 
criterion contains three representations: lower-the- 
better, higher-the-better and nominal-the-better [2]. 
For example, the objective function of the S/N ratio 
for the case of nominal-the-better is written as: 
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where r is the sample size, m  and s is the mean 
value and the standard deviation of performance 
function, respectively. Taguchi optimized the S/N 
ratio and did not consider the actual mean and 
deviation of the performance that may result in a 
solution far away from the peak-optimum. Chang [3] 
proposed a two-stage optimization process for 
obtaining the minimum performance variability 
where the objective function of second stage is 
written as following: 
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The above equation represents the sum of the worst 
combination of the design performance variability. 
In Eq. (2), )(nF  is the performance function of the 
nth worst case, N is the number of the worst-cases, 
and F  is the nominal value of the first stage 
optimization. Eggert & Mayne [4] suggested a 
performance function that consists of a weighting 
sum of the expected mean )(Xfµ  and the 

standard deviation )(Xfσ  of the performance f: 
 

)()()( XXXF ff σγµω +=          (3) 
 
The minimization of the above equation is helpful 
for reducing the performance variability. However, 
the selection of the weighting factors, ω and γ, 
are somewhat arbitrary. Yu and Ishii [5] 
recommended another form of Obj based on the 
concept of statistical worst case: 
 

Min Obj = QIEPff ⋅+≈⋅+ βσβµ    (4) 
 
where EP represents the expected mean value of 

performance function f, quality index of QI is an 
estimate of performance deviation, and β is the 
quality coefficient. Parkinson, D. B. [6] developed a 
variability function in Lagrange form that is 
minimized as following: 
 

L= Fu - FL +λ( FN - F(X) )        (5) 
 
where Fu and FL are defined as )(max XF

X
 and 

)(min XF
X

, respectively. FN is the nominal value 

of the function F(X) and λ  is the Lagrange 
multiplier. 

One can observe that Equations (3) to (5) are 
trying to optimized nominal function and 
simultaneously minimize the variance of the 
performance function. These strategies have two 
defects: (1) since the expected mean and deviation 
of the performance function may not be 
proportional to each other. The minimization of 
simple addition of expected mean and deviation of 
performance function is not always suitable for 
constructing the utility objective function in the 
robust performance optimization. (2) The 
coefficient or weighting factor in the formulation is 
difficult to be determined in advance so that the 
designer will be in trouble for deciding the final 
design among several possible designs. Shih et al [7] 
adopted Eq. (2) to estimate the variance of the 
performance function and developed a reliability 
indicator representing the design performance 
robustness that can optimize the both of 
performance function and its variation 
simultaneously. However, this formula requires a 
fine-tuning parameter in the solution process by 
continuous trials and the errors exists in the 
approximation for the mean value of a performance 
function. On the other hand, the paper of Shih et al 
[8] is the preliminary study of the presenting paper. 

The strength-based reliability of Rao’s work 
[9] is commonly used to represent the reliability of 
a structural and mechanical system. The robust 
design of considering the system reliability is 
important especially for the industry with high 
precision, production and high technique 
requirements. In this paper, we employ the system 
reliability as the design objective to examine the 
robust optimal design. The design problem is 
formulated as the minimization of goal performance 
function and its variability at the same time. When 
each objective function is optimized, that result in 
other objective function has a corresponding value. 
Consequently, each objective function is in a fuzzy 
region between two extreme values. Several 
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multi-criteria methods [10] were presented for 
dealing with such a problem, the fuzzy optimization 
technique is naturally suitable for solving current 
design problem due to the uncertain objective 
values. Fuzzy multi-objective optimization 
presented by Rao [11] and applied by Shih et al [7] 
has been adopted in this paper to deal with the 
uncertainty between the performance function and 
its variation. A functional representation for 
performance variability is presented that is 
equivalent to the function of the variance or 
standard deviation of the design performance. Three 
mechanical design examples were given to further 
illustrate the proposed robust optimization method 
and process. The use of fuzzy formulation strategy 
can result in a unique design with the highest design 
level in the sense of fuzzy degree of membership 
function. 

2. Computation of Expected Mean and 
Variance of Performance 

The approximated deviation of a response 
function F(X) can apply Taylor's expansion to get a 
closed-form as the following equation: 
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This simple system models are not available if the 
design involves either complexity or experiments, 
make the evaluations of response derivatives 
impractical. Taguchi [12] proposed 3-level method 
using uniform weighting for variables with normal 
distribution. He chose iµ  and ii σµ 2/3±  as 
three center points. This method works well for the 
estimation of expected mean, however, the 
estimation of variance becomes poor when dealing 
with the nonlinear effects. D'Errico & Zaino [13] 
presented an alternative method using 
Gauss-Hermite quadrature that provided better 
results particularly for nonlinear case. Fig. 2 
illustrates the selection of two or three-point 
approximation and the corresponding weighting for 
normal variables. The expected value EP of a 
performance function F(X) and its deviation σF 
are written as following: 
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where N=3n, n is the number of design variables, 

ni wwwW ×××= L21 , and iw  is the 
corresponding weighting of the ith variable ix  at 
the assigned level. Fig. 3 shows the weighting of 
the example of two variables with normal 
distribution. Eq. (9) shows an example of response 
surface function with the expected mean as -1.6366 
and the standard deviation of 0.1767. 
 

21
2
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2
2221 2.08.55.09.26.12),( xxxxxxxxF −+−+−=

(9) 
 
where the mean value and the standard deviation of 
each design variables are 9.2

21
== xx µµ  and 

2.0
21
== xx σσ , respectively. Table 1 gives the 

error percentages of the estimation results of 
mentioned methods and the 3-point approximation 
has the most  accurate variance even  though with 
 
 

 
 
Figure 2. Selection of Gaussian points and weightings of 

normal variable 
 
 

 
 
Figure 3. Values of iW  for two variables with normal 

distribution. 
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Table 1. Estimation errors of expected mean and variance 
 

Method Expected 
mean 

Standard 
deviation

Error of 
expected 
mean(%)

Error of 
variance(%) 

Number of 
experimenta

l points. 

Taylor's expansion -1.6370 0.16405 -------- 13.8068 -------- 
Taguchi 3-level method -1.6370 0.16727 0.0244 10.3992 9 
2-point approximation -1.6370 0.16424 0.0244 13.6018 4 
3-point approximation -1.6370 0.17541 0.0244 0.7907 9 

 
 

higher experimental points. Therefore, 3-point 
method is adopted for the computation of variance 
and standard deviation of design performance in 
this paper. 

3. Robust Design with Expected Target of 
Minimal Variation 

An optimization design problem may have 
specified beforehand a required design performance 
(or expected target). There are infinite different sets 
of final design as the optimal design with this 
expected target. However, only one set design has 
the minimal variation of the performance 
corresponding to the robust design. In this paper, 
we consider σ3± of a parameter as the limit range 
to find out the smallest value FL and the largest 
value FU of the performance function by the 2-level 
full factorial experiments. A variability 
representation between the largest and the smallest 
value of the performance function is taken as the 
objective function. At the end of the optimization, 
3-point approximation is applied to compute the 
standard deviation of the final design performance. 
In this study, we applied the robust feasible 
direction method [14] for the numerical 
optimization. The algorithm is described in the 
following: 
1. Initialize the design variables and the statistical 

information of parameters and variables. Define 
the predetermined expected mean value of EP as 
design performance function. 

2. Compute the largest value of performance 
function indicated as FU = Max [Fi], i=1,2n, and 
the smallest value of performance function 
indicated as FL = Min [Fi], i=1,2,…,2n, at the 
limit value of +3σ. 

3. Perform the optimization as following: 
Find  the  independent  design  variables of 
X =[x1, x2,…, xn]T by minimizing the largest 
variability in the following form: 

 
Minimize LU FF −                (10) 

 

Subject to F(X)- EP = 0          (11) 
 

gi (X)<0,  i=1,2,…,m              (12) 
 

where Eq. (11) indicates the equality constraint 
for that the optimum value of performance 
function is a pre-specified expected mean value. 
Eq. (12) represents other design constraints 
where m indicates the number of constreaints. 

4. Check the convergence of the above optimization 
problem. If the problem is not converged yet, go 
back to step 2. 

5. Compute the standard deviation of the 
performance of final design using 3-point 
approximation method. 

Example 1: Slider-crank mechanism synthesis 

A simple slider-crank mechanism consists of 
two connecting rods and a slider as shown in Fig. 4. 
The position of the slider is considered as the 
performance index. The operation starts with both 
rods lying horizontally and it stops when the crank 
rotates θ degrees. The optimization problem is to 
find the length of two rods x1 and x2 , such that the 
deviation of the moving distance D of slider from 
the target is minimized, where the target of distance 
D is 1 cm when θ  is 15o. The performance 
function from the kinematics analysis is written as: 
 

5.022
1

2
212121 )15sin(15cos),( °−−°−+== xxxxxDxxF

(13) 
 

 
Figure 4. A slider-crank mechanism and its variables 
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The optimization formulation of this problem is 
written as following: 
 

Min ),(),( 2121 xxFxxF LU −        (14) 
 

Subject to :1g  015sin o22
1

2
2 ≤+− xx   (15) 

 
:  1h  00.1)( =−XF        (16) 

 
where cmxi 100 ≤≤  (i=1,2) and the standard 
deviation of each xi is σx1=σx2= 0.03 cm. Table 2 
shows the optimum result in which the deviation of 
final design computed by 3-point approximation 
method that is much smaller than that of initial 
design with 32.9% deduction. The final design 
using the proposed algorithm is identical to the 
Monte Carlo simulations and Chang’s work [15]. 
 

Table 2. Designs of slider-crank mechanism 
 

Item 
1x  2x  Deviation of 

performance Fσ
Initial design 8.3673 3.6374 0.011104 
Final design 10.00 5.4111 0.007446 

Chang, 1989 [15] 10.0 5.41 0.00745 
 

4. Robust Performance Optimization for 
Mechanical Design 

When simultaneously minimizing the design 
objective and its variation, the problem becomes a 
multi-objective optimization problem. As described 
in the paper, the fuzzy characteristics existing in 
uncertain objective functions so that a fuzzy 
optimization problem can be constructed. The 
solution of this fuzzy formulation strategy can 
results in a unique design with the highest design 
level among the fuzzy environment. The design 
process including several optimization stages are 
stated in the following: 
Step 1: Find the independent variables of X by 

minimizing F(X) subject to gi (X)<0, 
i=1,2,…,m. This nominal design obtained 
in this formulation is the ideal value of 
performance function indicated as Fideal. 

Step 2: Find X by minimizing the largest variability 
of LU FF −  subject to gi (X)<0, 
i=1,2,…,m. The output of the performance 
function is defined as Fa. The variability of 
the performance function associated this 
output is defined as Videal. 

Step 3: Find X by maximizing the variability of 

LU FF −  subject to gi (X)<0, i=1,2,…,m. 
The output performance function of this 
sub-problem is defined as Fb. The 
variability of the performance function 
associated this output is defined as Vmax. 

Step 4: Select the larger one between Fa and Fb as 
Fmax. i.e. Fmax= Max [Fa , Fb]. 

Step 5: Then a fuzzy formulation can be stated as 
following: 

 
Find X by Maximize λ        (17) 

 
Subject to 0≤− Fµλ         (18) 

 
0≤− Vµλ         (19) 
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where the parameter λ  is a scalar as well 
as an extra design variable with a meaning 
of the highest design level. 

Step 6: Check the convergence of the above 
optimization problem. If the problem is 
not converge, go back to step 2. 

Step 7: Compute the standard deviation Fσ  of the 
performance function using the three-point 
approximation method described in section 
3. 

Example 2: A helical spring design 

A mechanical helical spring design has the 
number of coil n, the wire diameter d of spring and 
the outside diameter can not exceed 26 mm. The 
design variable n and d are independently normal 
distribution with the standard deviation as σn = 
0.015 andσd = 0.1 mm, respectively. An external 
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load F applies on the spring that deforms an 
original height of hf to the height of h0. Another 
fluctuating load F0 is applied on it to yield a 
fluctuating displacement δ0. The problem is to 
optimally design this spring that has a fixed δ0 to 
sustain the maximum amplitude of fluctuating load 
F0 (Fig. 5). The parameter G represents the shear 
modulus of spring material that is equal to 8.4 (103) 
Mpa. The other values of related parameters are: hf 
= 68 mm, h0= 60 mm, D = 20 mm, δ0= 5 mm. The 
mathematical formulation of this optimization 
problem can be written as the following: 
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where mτ  represents the mean stress, aτ  
represents the alternating stress, eτ  and wτ  are 
42 Mpa and 84 Mpa, represents the endurance limit 
and  working stress of spring,  respectively. The 

 
 

 
 

Figure 5. A helical spring with loading 
 

notation fS  represents the safety factor with value 
1.1. Consequently, one can substitute all design 
parameters into the above formulation and the 
formulation can be simplified as follows: 
 

Maximize
n
dF

405.1
=              (26) 

 
subject to 
 

003075.0
480

80356.1 ≤−⎟
⎠
⎞

⎜
⎝
⎛ +

−
− nd

d
dd   (27) 

 
055 ≤−nd                  (28) 

 
06 ≤−d                    (29) 

 
This problem was solved step-by-step using the 
previous describing algorithm. The result of 
nominal design and robust design is shown in Table 
3 where the design range are 01 ≤− d  and 

030 ≤−n . The last two columns show the robust 
performance design and the modified robust design. 

One can see that although the nominal design 
can sustain a high loading (performance function) 
with 80.982 kg, unfortunately, the deviation of the 
loading (6.1068 kg) is also large. Through the 
robust design process presenting in this paper, the 
deviation of the loading is reduced considerably 
with 43.38%. However, the sustaining loading 
reduces 57.1% that is relatively too low to be usable 
if it is considered by the designer. In this particular 
case, if the designer considered that a useful 
sustaining load could not be less than 55 kg. Thus, 
an additional constraint has to add on the 
formulation of Eq. (26) to (29) as following: 
 

05505.1 4

≤−
n
d

              (30) 

 
The last column of Table 3 shows the modified 
robust design using the presenting algorithm where 

 
Table 3. Design of a helical spring 

 
Item Nominal design Robust design Modified robust 

design 
Number of coils n = 1x     10.348     7.987      9.388 

Diameter of spring wire d = 2x  (mm)     5.315     4.032      4.937 

Loading F (kg)    80.982    34.733     56.31 
Deviation of performance Fσ  (kg)     6.1068     3.4575      5.388 
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not only the deviation of the sustaining load 
reduced 11.77% compared to the nominal design, 
but also the sustaining load is usable. This modified 
design is able to means a relatively robust 
performance design. 

5. Robust Design with maximizing the 
System Reliability of a Mechanical System 

As described before that the system reliability 
is important for robust design, the formulation of 
reliability can be treated as a design target 
performance. This is better using the following 
example for further illustration. 

Example 3: A mechanical shoe brake design 

A single-shoe brake, shown in Fig. 6, has been 
designed to have a braking capacity of TC ± ∆TC = 
(350± 35) lb-in. This problem is adopted and 
modified from Rao’s work (1992) that a robust 
optimum design problem is created to find the mean 
value of b and r by maximizing the reliability of 
torque ( bT ) acting on the brake drum without 
exceeding a mean pressure of 120 lb/in2 on the 
brake pad. The applied force F, the coefficient of 
friction f between the brake drum and the brake 
shoe, the dimensions a, b, c, and r are known to 
follow the normal distribution as F  = N(50, 5) lb, 

 

 
 

Figure 6. A single-shoe brake 
 

f = N(0.3, 0.03), a = N(10, 1) in, b = 
N( bb 0.01  , ) in, c = N(20, 2) in, and r = 
N( rr 0.01  , ) in. The brake-shoe has a contact area 
of AA ∆± = 4 + 0.4 2in . The optimization 
problem can be stated as follows: 
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where bT  can be written as the following 
formulation: 
 

)3.0(
)20(15

rb
brTb −
+

=              (35) 

 
The parameter 

bTσ  represents the standard 
deviation of Tb that can be found in the reference of 
Rao (1992). The standard deviation of TC is 
represented as σTc =35/3=11.67 lb/in2. Table 4 
shows the design results of this problem. The last 
column in the table is the robust performance 
design that is the same as the result of minimizing 
the variability of the objective function shown in 
the  first  column.  This  phenomenon  can be 

 
Table 4. Design of a mechanical shoe brake 

 
Item Min LU zz 11 − Max LU zz 11 −  Robust design

Average length 1

__

xb =  (in) 
   22.0004     25.0   22.0004 

Average radius 2

__

xr =  (in) 
   15.0      5.0   15.0 

Performance function 1z      2.0751      3.9998    2.0751 

Reliability of 1z  (%)    98.1      0   98.1 

Deviation of performance Fσ  (kg)     0.05166      0.1258    0.05166 
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investigated and explained as follows. Let’s look at 
the robust design that requires to maximizing z1 and 
minimizing 2

1z
σ , simultaneously. The 

maximization of z1 via Eq. (31) yields to the 
maximization of bT  and the minimization of 2

bTσ  

where the parameters CT  and 2
TCσ  are known 

constants. When one simply analyze 2
1z

σ  by Eq. 

(6), one can found out that the minimization of 2
1z

σ  

has a tendency of maximizing bT  and minimizing 
2
bTσ . From the other hand, one can analyze the 

minimization of LU zz 11 −  that is equivalent to 

the minimization of 2
1z

σ . This investigation shows 

that  the  result  of minimizing LU zz 11 −  is 
equivalent to the robust design. Thus, it is no doubt 
to know that the result of the robust design is 
nothing different from the result of minimizing the 
variability of design goal in this particular case. 
However, this is not always true for all kinds of 
design problems. Moreover, the design process 
presenting in this paper definitely can be valuable 
to confirm a question: is a certain design result a 
truly robust performance design? 

7. Conclusions 
A robust performance design method and 

process, which applied the strategy of fuzzy 
optimization to optimize the performance function 
and minimize its variation simultaneously, is 
presented in this paper. The minimization of the 
largest variation between two extreme performance 
values is taken as the objective function for the 
variability optimization. A computational algorithm 
for this design process is presented that results in 
the final design with the maximum design level via 
the fuzzy design concept. Three mechanical design 
examples further illustrate the proposed method for 
the problems with fixed expected design target, the 
maximum structural system reliability, and 
optimum design performance with the minimum 
variance. From this study, one generally conclude 
that the effect of the robust design sometimes is not 
very obvious, as compared to the problem of 
minimizing the largest variation of performance 
function. Particularly, when the strength-base 
reliability is the design performance, the result of 
the robust design is equivalent to the result of 
minimizing the largest performance variability. 
However, the presenting robust design process 
resulting in the final design can be used as the 

confirmation of a truly robust performance design. 
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