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Abstract

Two single level-cut approaches of the first and second kind for

obtaining the unique compromise design in solving nonlinear optimum

engineering design problems with fuzzy resources have been developed and

presented in this paper. The conventional standard level-cuts method has

been discussed for inspiring the proposed novel formulation consequently.

The proposed strategies with the illustrative design examples indicate that

the unique design as well as corresponding optimum level-cut value can be

guaranteed obtained. Additionally, two wide-applicable linear or nonlinear

membership functions of objective functions are presented depending on the

practical situations of design tasks. The proposed level-cut approaches have

been shown easy formulation and successfully employed to large-scaled

structural design problems by sequential quadratic programming (SQP)

technique combined with the finite element analysis.

Key Words: Level-cut Approach, Fuzzy Nonlinear Optimization, Engi-

neering Design, Structural Optimization.

1. Introduction

The science and engineering in real-world problems

are often not deterministic or non-crisp as people recog-

nized. Fuzzy set theory [1] was a recent progress of de-

scribing certain non-crisp information with fuzziness aris-

ing in problems; since then, many fields ranging from sci-

ences to industrial, medical and financial applications had

applied it successfully. From the point of view of engi-

neering, most applications and developments with fuzzy

theory belong to the category of measurement, manufac-

turing and control behavior. However, literatures reported

engineering designs and their applications with fuzzy

logic are uncommon in dealing with the fuzziness existing

in the real-world problems. Recent literature surveys of

fuzzy mathematical programming had been carryout by

Zimmermann [2], Wierzchon [3], Leung [4] and

Luhandjula [5]. Most existing fuzzy optimization tech-

niques are developed in the area of fuzzy linear program-

ming (FLP). The fundamental concepts and approaches of

FLP can be reasonably applied to fuzzy nonlinear pro-

gramming (FNLP) problems, although the theoretical ap-

proach of FNLP is seldom available in literature. In the

real-world engineering design problems, the allowable de-

sign stresses or input parameters are often fuzzy/imprecise

with nonlinear characteristics that necessitated the devel-

opments of fuzzy optimum design method.

Wang et al. [6] first applied level-cuts (�-cuts) method

to structural designs where the nonlinear problems were

solved with various design levels �, and then a sequence
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of solutions are obtained by setting different level-cut

value of �. The unique design level, indicated as �*, may

be obtained by minimizing an additional composing cost

function with difficulties. Rao [7] applied the same

level-cuts method to design a four-bar mechanism for

function generating problem. He mentioned the difficulty

of defining �* in original fuzzy 6++ problems is a nature

reflection of the imprecision on the design problem; how-

ever, no formulation presented in the paper to achieve the

unique value of �*. Rao further proposed �-formulation

for achieving the unique design that is workable for fuzzy

multi-objective optimization problems [8,9]. Yeh and Hsu

[10] followed the framework of Wang et al. [6] under dif-

ferent design level of � obtaining the optimum design

level while the total cost is based on the failure possibility

instead of the membership value of satisfaction. Xu [11]

proposed bound search method of the 2nd phase optimiza-

tion for obtaining the particular �* associated with the op-

timum point X* by maximizing the established nonlinear

fuzzy goal membership function µG(X).

It can be summarized from the published literatures

[6�11] for FNLP including fuzzy constraints that level-

cuts method is accepted as the common solution ap-

proach for the problems with fuzzy resources. The pre-

ferred final design is obtained on the basis of predeter-

mining cutting level of � value. However, this predeter-

mining cutting level is difficult to obtain, at the end of the

solution process, the designer hardly achieves a definite

and unique optimum result. Although Yeh and Hsu [10]

presented unique optimum solution obtained from a cer-

tain cost function initiated by Wang et al., the determina-

tion of this suitable cost function is not straightforward.

Although Rao [7] proposed �-formulation for both the

objectives and constraints are fuzzy that gives a unique

solution; if only the constraints are fuzzy, further re-

search work is needed in determining the optimum de-

sign by considering higher design level and other factors.

Xu [11] proposed a second phase procedure called bound

search method with fuzzy goal membership function to

compute the unique solution. Both concepts in Rao [7]

and Xu [11] are valuable for inspiring us re-considering

about the �-cuts method for efficiently achieve a unique

optimum final solution.

In the start of this paper, we introduce general solu-

tion approaches initiated from FLP for nonlinear fuzzy

resources problems of FNLP using level-cuts method.

The inspiration of conventional level-cuts methods is

discussed for the development of the presenting two

level-cut approaches achieving the unique final design.

The presenting level-cut approach of the first kind has

been verified, with illustrative examples, to be the same

as the level-cut approach of the second kind. Because the

proposed approaches in this paper do not need extra fac-

tors [7] and functions of iterating bound search computa-

tion [11] to achieve the unique optimum design, there-

fore, the presenting approaches are convenient and fash-

ionable in applications. Commonly used planar convex

problems of three-bar and ten-bar truss with triangular

fuzzy allowable range were presented for illustrating the

proposed level-cuts methods. For further investigate the

applicability of the proposed strategy, we apply it to a

relatively complicated problem of 25-bar space truss de-

sign with two loading conditions. All design problems

are solved by sequential quadratic programming with fi-

nite element analysis. The optimum design level and

unique final design with linear or nonlinear fuzzy de-

scriptions in design tasks are compared with crisp de-

sign. The mathematical formulations and computational

algorithm are clearly given in the paper with the well il-

lustrative examples.

2. Nonlinear Optimization with Fuzzy Constraints

The basic concepts and procedures of conventional

linear programming with fuzzy constraints (FLP) [12]

can be applied to nonlinear programming problems with

fuzzy inequality constraints (FNLP). The general model

of a nonlinear programming problem with fuzzy re-

sources can be formulated as:

Find X =[x1, x2,…, xn]
T

Min f(X) (1)

s.t. gi(X) �
~
b i, i = 1, 2,…, m (2)

XL � X � XU

where the objective function and the ith in-equality con-

strained function are indicated as f(X) and gi(X), respec-

tively. XL and XU represent the lower bound and upper

bound of design variables, respectively. The fuzzy num-

ber
~
b i, �i, are in the fuzzy region of [bi, bi + pi] with

given fuzzy tolerance pi. Assume that the fuzzy toler-

ance pi for the ith fuzzy constraint is known, then,
~
b i

will be equivalent to (bi + �pi), �i, where � is in [0, 1]. In

this case, a fuzzy constraints problem is transformed to

be a crisp parametric programming problem. The fol-

lowing section, we summarized several level-cuts tech-
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niques for FLP problems that are applied to FNLP prob-

lems.

Verdegay’s Approach: �-cuts Method

For dealing with Eqs. (1) and (2), Verdegay [13] con-

sidered that if the membership function of the fuzzy con-

straints (shown in Figure 1) has the following form:

(3)

Simultaneously, the membership functions of µgi(X),

�i, are continuous and monotonic functions, and

trade-off between those fuzzy constraints are allowed;

then Eq. (1) and (2) is equivalent to the following formu-

lation:

Min f(X) (1)

s.t. X � X� (4)

where X�= {x ¡ µgi(X) � �, �i X � 0}, for each � � [0, 1].

This is the fundamental concepts of �-level cuts method

of fuzzy mathematical programming. The membership

function in Eq. (3) indicates that if gi(X) � (bi,bi + pi);

then the memberships functions are monotonically de-

creasing. That also can means, the more resource con-

sumed, the less satisfaction the decision maker thinks.

One can then substitute Eq. (3) into Eq. (4) and obtain

the following formulation:

Min f(X) (1)

s.t. gi(X) � bi + (1-�) pi, �i (5)

where XL � X � XU and � � [0, 1]. Thus, the problem

given in Eq. (5) is equivalent to a crisp parametric pro-

gramming formulation while � = 1�. For each �, one

will have an optimal solution; therefore, the solution

with � grade of membership function is fuzzy. This

model was applied by Wang et al. [6] and Rao [7] in

structural design problems.

Werner’s Approach: Max-� Method

Werner’s [14] proposed the objective function of Eq.

(1) should be fuzzy due to the fuzziness existing in fuzzy

inequality constraints. For solving Eqs. (1) to (2), one needs

to define fmax and fmin as follows:

fmax = Min f(X), s.t. gi(X) � bi �i , and XL � X � XU (6)

fmin= Min f(X), s.t gi(X) � bi+ pi �i , and XL � X � XU(7)

The membership function mf(X), as shown on Figure 2,

of the objective function is stated as:

(8)

One can consequently apply the max-min operator to

obtain the optimal decision. Then, Eqs. (1) and (2) can

be solved by the strategy of max-�, where

� = min[µf(X), µg1(X) µg2(X),…,µgm(X)]. That is:

Max � (9)

s.t. � � µf(X) (10)

� � µgi(X), �i (11)

where � � [0, 1] and XL � X � XU. This model is similar

to the model proposed by Zimmermann [15] and ap-

plied in structural design by Rao [8,9].

Xu’s Approach: Bound Search Method

Suppose there are a fuzzy goal function f and a fuzzy

constraint C in a decision space X, which are characterized
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Figure 1. Membership functions of µgi(X), with level-cut of
�i.

Figure 2. Membership functions of 	f(X) with level-cut of
�f.
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by their membership functions µf(X) and µC(X), respec-

tively. The combined effect of those two can be repre-

sented by the intersection of the membership functions, as

shown in Figure 3 and the following formulation.

(12)

Then bellman and Zadeh [16] proposed that a maximum

decision could be defined as:

	D(XM) = max 	D (X) (13)

If 	D(X) has a unique maximum at XM, th en the maxi-

mizing decision is a uniquely defined crisp decision.

From Eq. (13) and following the procedure given in

[16], one can obtain the particular optimum level �*

corresponding to the optimum point XM such that:

	f(X
M) = max 	f (X) (14)

X�C�*

where C�* is the fuzzy constraint set C of �*-level cut .

Xu [11] used a goal membership function of f(X) as fol-

lowing:

fmin	f(X) = (15)
f(X)

where fmin has been defined in Eq. (7). It is apparent that

the upper and lower bound of this goal membership

function is between 1 and fmin /fmax. One can apply Eq.

(15) for Eq. (10); and as a result, the optimum �* can be

achieved through an iteration computation. This

method has been called the 2nd phase of �-cuts method

in Xu’s paper [11].

3. Level-Cut Approach of the First Kind for FNLP

Problems

In Verdegay’s original �-cuts method, each � value

can yield to an optimum solution X�. Each constraint

function in Eq. (5) using the same level of � that makes

this method as the single level-cut approach. Let us de-

fine fmax � fmin = pf , and fmin = bf , then one can substitute

Eq. (8) into Eq. (10) and substitute Eq. (3) into Eq. (11),

the formulations of Eqs. (9�11) yield to:

Find [X, �]T

Max � (9)

s.t. f(X) � bf + (1 � �) pf (16)

gi(X) � bi + (1 � �) pi , �i (17)

where � � [0, 1] and XL � X � XU. Obviously, Eq. (17) is

the same as Eq. (5). Thus, Eqs. (9) and (16�17) con-

struct a crisp NLP formulation and a unique optimum

solution can be obtained. We called this formulation as

the single level-cut approach of the first kind.

4. Level-Cut Approach of the Second Kind for

FNLP Problems

It is observed in Xu’s approach that in Eq. (14) (Fig-

ure 3) where maximizing µf(X) is similar to maximizing

� (Eq. 9) in Werner’s approach; therefore, one predicts

the final result of those two approaches have the similar

tendency, even though the form of their membership

function is not the same, in which Werner’s approach

uses the linear function (Eq. 8) and Xu’s approach uses

the nonlinear function (Eq. 15).

For obtaining the unique solution of the original

á-level cuts approach in NLP problem with fuzzy re-

sources as discussed in above paragraphs, we propose

another alternative single level-cut approach called the

single level-cut approach of the second kind. This ap-

proach contains both linear membership function (Eq.

18) shown in Figure 2 and nonlinear membership func-

tion (Eq. 15) of objective function shown in Figure 4.
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Figure 3. The relationship of 	f, 	C and 	D in fuzzy decision
making

Figure 4. Nonlinear membership function, µf(X), of objective
function f(X).

( ) ( ) ( ) ( )

min{ ( ), ( )}

D f C f C

f C

X X X X

X X

�	 � 	 � 	 � 	

� 	 	



fmax � f(X) f(X) � fmin
µf(X) = = 1 � (18)

fmax � fmin fmax � fmin

The mathematical formulation of the fuzzy problem

given in Eqs. (1�2) with unique �-cut level can be writ-

ten in the following:

Find [X, �]T

Min f(X) (1)

s.t. f(X)-[fmax-�(fmax-fmin)]=0 (for linear �f(X)) (19)

f(X) – (fmin/�) = 0 (for nonlinear �f(X)) (20)

gi(X) � bi + (1 - �) pi , �i (21)

� � [0, 1] (for linear �f(X)) (22)

� � [fmin/fmax, 1] (for nonlinear µf(X)) (23)

where XL � X � XU and 	f(X) can be nonlinear (Eq. 15) or

linear (Eq. 18) membership functions.

Algorithm. The solution procedure of single level-

cut approach of the second kind involving the optimiza-

tion of sub-problems to find fmax and fmin that can be de-

scribed as the following steps:

Step 1. Construct a nonlinear fuzzy constraints prob-

lem, as shown on Eqs. (1) and (5).

Step 2. Find fmax by minimizing f(X), s.t. gi(X) � bi �i,

and XL � X � XU.

Step 3. Find fmin by minimizing f(X), s.t. gi(X) � bi +

pi,�i and XL � X � XU.

Step 4. Select linear µf(X) (Eq. 18) or nonlinear µf(X)

(Eq. 15).

Step 5. Let � is an additional design variable, where

0 < � < 1 for linear µf(X) and (fmin/fmax) < � < 1 for nonlin-

ear µf(X).

Step 6. Construct the crisp nonlinear mathematical

formulation of Eqs. (1) and (19�23), then one can solve it

by the reliable nonlinear programming software.

5. Illustrative Engineering Design Examples

Two planar structural design examples illustrated the

presenting approaches of the first and second kind in de-

tail. A rather complicated and large-scale space struc-

tural design sustaining two load conditions is utilized for

illustrating the single level-cut approach of fuzzy prob-

lem which also is compared with crisp design problem.

Example 1. Three-bar Planar Truss Design

The three-bar truss shown in Figure 5 where L= 1 m

and p = 1000 N that is a common structural problem used

by researchers in literatures to demonstrate the develop-

ment of the optimum design algorithm. The same struc-

ture is also used here to illustrate the application of

�-cuts methods in a nonlinear programming problem

subjected to fuzzy resources. The cross-sectional areas

of member 1 and 2, denoted as x1 and x2, are selected as

design variables. The weight of the truss is minimized

while the horizontal (u(X)) and vertical displacements

(�(X)) of the loaded joint, the tensile (�1ten(X)) and

(�2ten(X)) and compressive stresses (�3com(X)) in mem-

bers are computed by finite element analysis that are

taken as the design constraints. The Young’s modulus E

and material density� are 2.05 × 1011 Pa and 7.86 × 103

kg/m3, respectively.

The linear fuzzy allowable ranges in fuzzy con-

straints are described in the following formulation that is

adopted from the reference [18]. The allowable horizon-

tal displacement of loading joint is 7.5 × 10�6 m with a

fuzzy region of 5.0 × 10�6 m. The allowable vertical dis-

placement of loading joint is 5.0 × 10�6 m with a fuzzy re-

gion of 2.5 × 10�6 m. The allowable tensile stress for both

rod 1 and rod 2 is 1.25 × 106 Pa with a fuzzy region of 5.0

× 105 Pa. The allowable compressive stress in rod 3 is

one-tenth of Euler buckling stress (�Eular) with a fuzzy re-

gion of 0.9 × �Eular Consequently, the fuzzy mathemati-

cal formulation of single level-cut approach described in

this paper is stated as:

Find X = [A1, A2, �]T = [x1, x2, x3]
T

Min f(X) = 2� 2 �x1 + �x2 (24)

s.t. g1(X): u(X) � 7.5 × 10�6 + 5 × 10�6 (1 - �) (m)(25)

g2(X): �(X) � 5 × 10�6 + 2.5 × 10�6 (1 - �) (m) (26)

g3(X): �1tem(X) � 1.25 × 106 + 5 × 105 (1 - �) (Pa) (27)

g4(X): �2tem(X) � 1.25 × 106 + 5 × 106 (1 - �) (Pa) (28)

g5(X): �3com/�Euler (X) � 0.1 + 0.9 (1 - �) (Pa) (29)
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Figure 5. Three-bar truss with loading.



f(X) � [23.5 � �(23.5 � 16.77)] = 0 (for linear µf(X))(30)

f(X) � (16.77/�)] = 0 (for nonlinear µf(X)) (31)

where

�Euler(X) = �Ex1/8 (32)

and 10�4 � xi � 10�2, i = 1, 2 (m2). This problem was first

solved by conventional �-cuts method with fuzzy con-

straint representation (Eq. 5). It is noticed that the result

of � = 1 indicates the equivalent result of crisp optimum

design. The value of fmin and fmax mentioned in the paper

are obtained as 16.77 and 23.5 kg, respectively. Table 1

shows the optimum design of x1 and x2 corresponding to

different cutting level of � using conventional �-cuts

approach solved by SQP in this paper and recorded in

Ref. [18]. Accordingly, the optimum result using level-

cut approach of the second kind is listed in Table 2.

Example 2. Ten-bar Planar Truss Design

A ten-bar truss problem is shown in Figure 6 [19].

The objective function is the total weight of the struc-

ture. The design variables are the cross-sectional areas

of the 10 members with 0.1 in2 as the minimum value.

The constraints are the member stresses and the verti-

cally nodal displacements where the nodes 2 and 4 sus-

tains vertical load p of 100 kips. The allowable stress of

each member is limited to � 25 ksi. The design parame-

ters are: Young’s modulus E = 104 ksi and material den-

sity � = 0.1 lb/in3. The linear fuzzy allowable range is �
5 ksi in constraints. Consequently, the fuzzy mathemat-

ical formulation of single level-cut approach described

in this paper can be stated as: Find X = [A1 A2,…,A10,

�]T= [x1, x2,…, x11]
T
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Table 1. Optimum results of conventional level-cut approach for 3-bar truss design

This paper Ref. [18]

� value x1 � 10
�4

m
2

x2 � 10
�4

m
2 f(X*) x1 � 10

�4
m

2
x2 � 10

�4
m

2 f(X*)

0 6.33 3.44 16.77 5.52 6.76 17.6

0.1 6.51 3.54 17.26 5.75 6.57 17.9

0.2 6.71 3.64 17.78 6.00 6.37 18.3

0.3 6.92 3.75 18.34 6.27 6.15 18.8

0.4 7.15 3.86 18.93 6.57 5.91 19.3

0.5 7.39 3.99 19.56 6.90 5.65 19.8

0.6 7.64 4.12 20.23 7.26 5.36 20.4

0.7 7.91 4.27 20.96 7.67 5.05 21.0

0.8 8.21 4.42 21.73 8.12 4.70 21.7

0.9 8.62 4.32 22.57 8.62 4.32 22.6

1.0 9.20 3.89 23.50 9.20 3.89 23.5

Table 2. Optimum results of single level-cut approach of the second kind for 3-bar design

f(X
*
) kg (x1

*
, x2

*
) � 10

�4
m

2 �* �f �g1 �g2 �g3 �g4 �g5

Linear 	f(X) 19.843 (7.494,4.049) 0.543 0.543 0.659 0.913 0.543 1.0 1.0

Nonlinear 	f(X) 21.554 (8.145,4.384) 0.778 0.778 0.806 1.0 0.778 1.0 1.0

Figure 6. Ten-bar truss with loading.

Table 3. Optimum results of conventional level-cut approach for 10-bar truss design

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f(X) 1351.554 1374.698 1398.655 1423.466 1449.181 1475.844 1503.520 1532.257 1562.120 1593.178



(33)

s.t. f(X) – [1593.18 – �(1593.18 – 1329.18)] = 0

(for linear µf(X)) (34)

f(X) – (1329.18/�) = 0 (for linear µf(X)) (35)

|�i(X)| � 25000 + 5000 (1 – �) (psi), i = 1, 2,…, 10 (36)

where � � [0, 1] (for linear µf(X)) and � � [1329.18/

1593.18, 1] (for nonlinear µf(X)). The variable of � in-

dicates the cutting level taken as an additional design

variable between zero and one. Table 3 shows the opti-

mum design corresponding to different cutting level of

� using conventional �-cuts approach. The values of

1329.18 and 1593.18 represent fmax and fmin obtained by

� equals to one and zero, respectively. Table 4 shows

the final results of applying single level-cut approach of

the second kind, the results obtained by SQP of crisp

problem, and the original results [19] of the crisp prob-

lem. The last two columns represent the unique design

obtained through linear and nonlinear objective mem-

bership function.

Example 3. Twenty-five-bar Space Truss Design

A 25-bar space truss shown in Figure 7 is required to

support two load conditions given in Table 5 and is to be

designed with constraints on member stresses as well as

Euler buckling [17]. The allowable stress for all mem-

bers is 40 ksi in both tension and compression. The

Young’s modulus and the material density are taken as

E= 107 psi and � = 0.1 lb/in3, respectively. The members

are assumed to be tubular with nominal diameter/thick-

ness ratio of 100, so that the buckling stress in member i

becomes:
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Table 4. Optimum results of Ref. [19], using SQP of crisp problem and single level-cut approach of the second kind for
10�bar truss design

Design variables Ref. [19] SQP Level-cut approach (linear 	f) Level-cut approach (nonlinear 	f)

x1 7.9379 7.9379 7.2408 7.7167

x2 0.1 0.1 0.1 0.1

x3 8.0621 8.0621 7.3651 7.8410

x4 3.9379 3.9379 3.5893 3.8273

x5 0.1 0.1 0.1 0.1

x6 0.1 0.1 0.1 0.1

x7 5.7447 5.7447 5.2518 5.5884

x8 5.5690 5.5690 5.0761 5.4126

x9 5.5690 5.5690 5.0761 5.4126

x10 0.1 0.1 0.1 0.1

� value 0.523 0.858

Optimum f(X) (lb) 1593.18 1593.18 1455.17 1549.40

Figure 7. Twenty-five-bar space truss.

Table 5. Load acting on the 25�bar truss [17]

Load condition 1 (lbs) Load condition 2 (lbs)

Joint 1 Joint 2 Joint 3 Joint 6 Joint 1 Joint 2 Joint 3 Joint 6

Fx 0 0 0 0 1000 0 500 500

Fy 20000 -20000 0 0 10000 10000 0 0

Fz -5000 -5000 0 0 -5000 -5000 0 0

6 10

1 7

Min f( ) 360 ( 2 )
i i

i i

X x x�
� �

� �� �



(37)

where Ai and li denote the cross-sectional area and

length, respectively, of member i. The member area in

this design are symmetrical arrangement so that they

are linked as: [A1, A2 = A3 = A4 = A5, A6 = A7 = A8 = A9,

A10 = A11, A12 = A13, A14 = A15 = A16 = A17, A18 = A19 =

A20 = A21, A22 = A23 = A24 = A25]
T = [x1, x2,…, x8]

T .

Each design variable corresponds to a member length of

li . Thus there are eight independent area design vari-

ables with 100 design constraints. The original design

formulations of minimizing structural weight can be

written as: Find X = [x1, x2,…, x8]
T

Min f(X) = � (x1l1 + 4x2l2 + 4x3l3 + 2x4l4 + 2x5l5

+ 4x6l6 + 4x7l7 + 4 x8l8) (38)

s.t. |�ij(X)| � 40000 � 0 + (psi),

i = 1, 2,…, 25, j = 1,2 (39)

�ij(X) � �bi(X) � 0 (psi), i = 1, 2,…, 25, j = 1,2 (40)

where �ij is the stress induced in member i under load

condition j; li (i = 1, 2,…, 8) in the function of f(X) rep-

resents the length of each member corresponding to

each variable xi. The bound of each design variable is

written as 0.1 in2 � xi � 5.0 in2. The optimum results in

Rao’s book [17] and SQP in present work are listed in

the first and second column of Table 6. The objective

value of 232.313 lb is expressed as fmax in this paper.

Then the problem was considered 20% fuzzy zone of al-

lowable limit in constraints and the final objective value

is 212.295 lb that is expressed as fmin. Consequently, one

can apply single level-cut approach of the second kind

described in this paper and fuzzy mathematical formu-

lation can be stated as: Find X= [x1, x2,…, x9]
T in order

to minimize f(X) that is the same as it in crisp formula-

tion (38). The constrained functions are written as:

f(X) – [232.313 – �(232.313 – 212.295)] =

(for linear µf(X)) (41)

f(X) – (212.295/�) = 0 (for nonlinear µf(X)) (42)

|�ij(X)| � 40000 + 8000 (1 – �) (psi),

i = 1, 2,…, 25, j = 1, 2 (43)

�ij(X) � �bi(X) + 0.2 � �bi(X) (1 – �) (psi),

i = 1, 2,…, 25, j = 1, 2 (44)

where design variable x9 represents level-cut value of á.

Its design bounds described as x9 � [0, 1] (for linear

µf(X)) and x9 � [212.295/232.313, 1] (for nonlinear

µf(X)). Thus, a fuzzy problem has been transformed to a

crisp problem containing nine independent design vari-

ables with 101 design constraints in this crisp problem.

The solution of this problem by the proposed approach

of the second kind is shown on Table 6.

6. Discussions

From the previous article, one sees that the present-

ing single level-cut approach of the first kind formulated

in Eqs. 9, 16 and 17 is inspiring from Rao’s and Zimmer-

mann’s idea (Eqs. 9�11) [8, 9, 15]. Including linear µf(X)
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Table 6. Optimum results of Ref. [17], using SQP of crisp problem and single level-cut approach of the second kind for

25�bar truss design

Variables Ref. [17] SQP Level-cut approach (linear 	f) Level-cut approach (nonlinear 	f)

x1 0.1 0.1 0.1 0.1

x2 0.80228 0.80081 0.76513 0.79462

x3 0.74789 0.74382 0.71007 0.73797

x4 0.1 0.1 0.1 0.1

x5 0.12452 0.12425 0.11855 0.12326

x6 0.57117 0.56897 0.54361 0.56458

x7 0.97851 0.97362 0.92954 0.96597

x8 0.80247 0.80269 0.76655 0.79643

� value 0.51708 0.92095

Optimum weight (lb) 233.073 232.313 221.962 230.518

Table 7. Optimum results of the first kind approach for 3-bar truss design

f(X*) kg (x1
*
x2

*
) � 10

�4
m

2 �* �f �g1 �g2 �g3 �g4 �g5

Linear 	f(X) 19.844 (7.493, 4.051) 0.543 0.543 0.659 0.913 0.543 1.0 1.0

Nonlinear 	f(X) 21.628 (8.631, 3.105) 0.775 0.775 0.901 0.881 0.775 1.0 1.0

2

100.01
( ) , 1, 2, ..., 25

8

i

b i

i

EA
X i

l

�
� � � �



or nonlinear µf(X), the complete mathematical formula-

tion using the approach of the first kind for three-bar

truss design is written as following:

Find X = [x1, x2, x3]
T = [A1, A2, �]T

Max �
s.t. f(X) � 16.77 + (1 - �) (23.5 – 16.77)

(for linear µf(X)) (45)

f(X) � ������ �) (for nonlinear µf(X)) (46)

and other constraints of Eqs. (25�29), where � � [0, 1]

and 10�4 � xi � 10�2, i = 1, 2 (m2). Table 7 shows the opti-

mum results using the first kind approach. As one com-

pares Table 2 and Table 7, both results are very close

with minor difference. When one analyzes both formu-

lations, they have the same tendency of allowing achieve

a unique design associated with a unique design level of

�. Until now, we can conclude that the presenting single

level-cut approach of the second kind (Eqs. 1, 19�23)

for fuzzy resources problems is the same as the ap-

proach of the first kind (Eqs. 9, 16, 17), so that both are

recommended as alternative level-cut approaches for

obtaining unique design. One can further investigate

that the actual �-value of constraints from g1(X) to g5(X)

in Table 2 and Table 7 are also very close. The optimum

level-cut value of �* shown in Table 2 and Table 7 is the

� value of objective function �f, and also is the mini-

mum one among �gi (i = 1, 2,…, 5) of all constraints.

When one looks at ten-bar-truss design with the ap-

proach of the first kind, the optimum result listed in Ta-

ble 8 that is very close to the result listed in Table 4. One

can easily examine the actual �-value of constraints

from g1(X) to g10(X) in 10-bar truss problem are also

very closed each other between the first and second

kind of presenting single-cut approach.

7. Conclusions

Two alternative level-cut (alpha-cut) approaches, the

first and second kind, for solving nonlinear design prob-

lems with fuzzy resources problems have been presented

in this paper. The approach of the second kind, as formu-

lated as equations (1) and (19�23), is the most recom-

mended for its easy formulation with increasing only one

equality constrained equation (19 or 20) and one addi-

tional design variable �. The approach of the first kind is

secondly recommended approach, as formulated in Eqs.

9, 16, and 17, which requires to increase additional in-

equality constrained function (Eq. 16) and one additional

design variable � also. Additionally, the first kind ap-

proach requires a scalar objective function (Eq. 9) in-

stead of the original objective function (Eq. 1). However,

both kinds of approaches can yield to the same optimum

result. Linear or nonlinear formulation of µf(X) can be se-

lected by designer depending on the shape of fuzzy re-

gion. The proposed two single level-cuts methods can

guarantee to obtain the unique compromise final design.
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