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183-189. The

mating behavior in flies for a closed as well as an open environment are modeled

stochastically through a Markov chain representation.

The stochastic approach

provides not only the mean or macroscopic information about the phenomenon under

consideration but also an estimation of its fluctuating characteristic.

The applica-

bility of the present stochastic model is justified by analyzing the available experi-

mental data.
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Recently, and increasing interest in
modeling the mating behavior in flies
has been observed (Eckstrand and Seiger,
1975; Taylor, 1975; Kence and Bryant,
1978; Dowse ef al., 1984; Dowse ¢f al., 1986;
Hsu and Tseng, 1988). Most of the
mating behaviors, however, are described
in a deterministic manner (see, Taylor,
1975; Dowse ef al., 1986; Hsu and Tseng,
1988). That is, the behavior of a dynamic
system is represented by its mean or
macroscopic characteristic. Thus, given
the initial condition of the system, its
status at an arbitrary point on the time
scale is uniquely determined. In contrast
to a deterministic model, a dynamic

Flies, Markov chain, Mating behavior.

system is portrayed through probabilistic
statements in a stochastic model. The
solution to such a model yields probability
distributions describing the variations of
the random variables representing the
system. In general, the mean or the
first moment of the probability distri-
bution of the random variable of a
stochastic model reduces to the result
predicted by the corresponding deter-
ministic model. Therefore the former is
capable of providing more detailed in-
formations about a dynamic system than
the latter. In other words, a stochastic
model is a generalization of the cor-
responding deterministic model.

Unlike a lifeless entity, each individual
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fly possesses its characteristic. A deter-
ministic representation is unable to
reflect this fact since flies are viewed
as identical entities having the mean
characteristic -.of the population of the
system. On the other hand, the pro-
babilistic approach in a stochastic re-
presentation provides a possibility of
portraying the random nature inherent
in the phenomenon. Furthermore, it is
well known that the mean .and the
variance of a random variable is on the
same order of magnitude. Therefore if
the number of flies in a dynamic system
is not large enough, the mean of the
random variabte representing the number
of flies is not sufficient in describing its
behavior. The random nature of the
phenomenon is espeecially significant in
this -case. In the present study, we
extend our previous deterministic analysis
(Hsu and Tseng, 1988) to the correspond-
ing stochastic counterpart, in the form
of a Markov chain (Bharucha-Reid, 1960).
An attempt is made such that the degree
of the fluctuation in the number of mated
fly pairs can be estimated.

MARKOV CHAIN REPRE-
SENTATION

The transition stage mating me-
chanism proposed by Hsu and Tseng

1
17 pulm, m+1)
P(m, m+1)= 2| pu(m, m+1)
3 L pulm, m+1)

The rate of formation of the fly pairs in
the transition stage is assumed to be
proportional to the product of the
number of males and the number of

females; and the rate of formation of
1

17 1-hknr(m)At
P(m, m+1)= 2 0

3 0
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(1988) is adopted to describe the mating
behavior in flies. According to this
mechanism, a male fly and a female fly,
when encountered, need to pass through
a transition stage before they become a
mated pair. Symbolically, we have

M+ F— MF*— MF (1)

where M, F, MF*, and MF denote, re-
spectively, male flies, female f{lies, fly
pairs in the transition stage, and mated
fly pairs. It is defined that flies in states
1, 2, and 3, represent male flies, fly pairs
in the transition stage, and mated fly
pairs respectively. The number of males,
pairs in the transition stage, and mated
pairs, are denoted by #u;, #u, and #us,
respectively. The number of females, #ng,
can be evaluated by the following ex-
pression:

np=Fy—(My—n,)
ZFO*M0+?’11 ( 2)

where M, and F, are the males and
females initially present in the system.
respectively. Define p;;(m, m-+1) as the pro-
bability that a fly in state i at time mAf
will be in state j at time (m+1)Af where
Af is a unit time interval. The evolution
of the mating phenomenon 1is thus
described " by the {following transition
probability matrix P(m, m+1):

2 3

brz(m, m-+1) 1713(M, m-+1)
bazs(m, m+1)  pas(m, m+1) (3)
baa(m, m+1)  pss(m, m+1)

the number of mated pairs is proportional
to the number of fly pairs in the transi-
tion stage (Hsu and Tseng, 1988). These
assumptions lead to the following transi-
tion probability matrix:

2 3
kynp(m)At 0 1
1—F, At ko Al (4)
o - 1
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where %; and k; are constant. Clearly,
if there are #n;(m) flies in state { at time
mAt, these flies will be in one of the
states j at time (m-+1)Af with probability
pij(m, m+1)1 i’ j::]_, 2, 3 That iS, nl(m+1)
is multinomially distributed among the
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states 1, 2, and 3. Consequently, the
conditional mean and the variance of #;
at (m+1)At, given the value of #; at time
mAt, i, j=1, 2, 3, are respectively (Rohatgi,
1976),

3
Elnj(m+1)|ni(m), i=1, 2, 3] = Z—}In;(m) pijim, m+1), j=1, 2, 3. (5)
and
Var[n;(m+1)|n:(m), i=1, 2, 3]
=31 n:0m) pislm, mAD1=pistm, m+1)1,  j=1,1, 2, 3. (6)
the following differential equations:
DATA ANALYSIS
17&:—]81%1%; (10)
The applicability of the present dt
stochastic model is examined through _dnz____k s (an
analyzing the available experimental ¢ = iE Ry
results. For illustration, the data reported dns
by Dowse et al. (1986) are adopted. The —dt—zkznz (12)

mating experiment was conducted with
one strain of female and one strain of
male Drosophila flies. Their experimental
data along with the values predicted by
the present stochastic model are pre-
sented in Figs. 1 through 3. Also shown
in these figures is an approximate 95%
confidence interval, calculated by E[.1+
1.96Var[.]*2. The estimation of the
values of the adjustable parameters #;
and k2, are based on equation (5). The
least sum of error squares criterion is
adopted. : :

DISCUSSION

Note that the time scale in a Markov
chain model is discrete. If the mating
behavior under consideration is expressed
in a deterministic manner, we have

m(m+1) =n(m) —ky n(m) nr(m)Af

(7)

no(m+1) =ny(m) +ky ny(m) ne(m)At
'—kz nz(ﬂi)At ( 8 )
ny(m+1)=ns(m)+k, ma(m)AE (9)

where np=F,—M,+n;. In the limit as
At—0 equations (7) through (9) reduce to

Thus the deterministic counterpart of
the present stochastic model is equivalent
to that proposed by Hsu and Tseng
(1988). This is also justified by the
variation of the mean of the number of
mated pairs illustrated in Figs. 1 through
3. The present stochastic model is
capable of providing more detailed in-
formation about the dynamic system.
For instance, -the variation of the
number of flies, which is necessary in
constructing the confidence bands shown
in Figs. 1 through 3. It should be
pointed out that nr is a random variable,
and therefore, its value at an arbitrary
time. mA¢ can not be determined except
at m=0. Hence in evaluating the values
of the elements in the transition pro-
bability matrix defined by equation (4),
nr is replaced by its mean or expected
value Eflnr}. This procedure has the
effect of reducing the magnitude of the
variances of the number of flies. The con-
fidence interval shown in Figs. 1 through
3 should thus be viewed as a lower bound,
i.e., the actual bands can be much wider
than those presented.
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Fig. 1. Experimental data of mating of D. simulans with M,=8 and F,=16 (Dowse et al., 1986)
along with the predicted results by the present model, £1==3.688 X 10-3/min, £.=6.6237 X 10-*/min.

——: mean number of mated pairs; ---:

A The present stochastic model can be
generalized without much difficuly if the
.mating of flies occurs 'in ‘an open en-
vironment. Let us consider the case if
flies are allowed to enter or leave a

1
(" 1—Lkinr(m)+ks]AL
0
] 0
! 0

1
2
P(m, m+1)= 3
4
where k;, by, and ks are constant. A fly
or fly pair in state 4 denotes it leaves
the volume. Let N;(m) be the rate of
flies in state { entering the volume at

approximated 95% confidence interval.

specified volume in space. Suppose' that
the rate of fly leaving this volume is
proportional to its number in the volume.
Then the transition probability matrix
takes the following form:

2 3 4
kynp(m)At 0 ks At T
1—-[k-+E AL ky At ky At (13)
0 1—Fks AF ks At
0 0 1
time mAf. The conditional mean and

the variance of n; at (m—+1)A¢, given the
values of n; and N; at time mAt, i,j=
1,2,3, are, respectively,




Number of Mated Pairs

Fig. 2. Experimental data of mating of wild-type D. melanogaster (a) Me=8, Fo=32;
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32, Fo=8 (Dowse et al., 1986) along with the predicted results by the
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(b) M=

present model: ki=

5.2429%10-2/min, k,=1.8793X10-!/min in case (a); k:=5.8271X10-?/min, k:=1.0095X10"!/

min in case (b). ——: mean number of mated pairs; ---:

interval.

approximated 95% confidence
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Fig. 3. (a) and (b) show the experimental data of mating of D. simulans and D. melanogaster vg
males when Me=F,=8 (Dowse et al., 1986) along with the predicted results by the present
model: k1=6.4407%X10-3/min, k»=8.6517X10-1/min in case (a); k=6.2025X10-*/min, k.=
9.5079x10-*/min in case (b). ——: mean number of mated pairs; ---: approximated
959 confidence interval.
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Elnj(m+1)|n:(m), N:(m), i=1, 2, 3]

3
:‘-21 wi(m) pij(m, m+1)+N;(m), j=1,2, 3.

and

Var{n;(m+1) [n:(m), Ni(m), i=1, 2, 3]
= S1nilm) pis(m, mADU—pistm, m+D], j=12, 3

where N;(m), i=1,2,3, is assumed to be
deterministic. If N;(m) is also randomly
distributed with #;(m) and N;(m) un-

E[nj(m+1)|n:(m), Ni(m), i=1, 2, 3]

= Sy nim) pusCm, mAD+EIN (), §=1, 2,3

and

Var[n;(m+1)|n:(m), N:i(m), i=1, 2, 3]
=§31 ni(m) pij(m, m+1)[1—pi;(m, m+1)1+Var[N;(m)]  j=L 2, 3.

where E[N:(m)] and Var[N;(m)] denote,
respectively, the mean of N;(m) and the
variance of N;(m).
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