2-colouring $\{C_3, C_4\}$ -designs

Elizabeth J. Billington

 \mathbf{I}

P

T

Bı

s(

H

ty

fo

Centre for Combinatorics Department of Mathematics The University of Queensland Brisbane, Qld. 4072, Australia

Chin-Mei Fu

Department of Mathematics
Tamkang University
Tamsui, Taipei Shien
Taiwan, R.O.C.

Hung-Lin Fu

Department of Applied Mathematics National Chiao-Tung University Hsin-Chu Taiwan, R.O.C.

A design (V, B) with point set V and collection of blocks B is said to have a blocking set S if there exists a non-empty proper subset S of V such that every block in B meets S, and no block in B lies entirely in S. Equivalently, we may colour the points in V with two colours, say red if a point lies in S and blue if it lies in $V \setminus S$, so that no block is monochromatic. If this is possible, the design is said to be 2-colourable. It is well-known that no Steiner triple system (of order greater than 3) can be 2-coloured. A very recent paper on 2-colouring cycle systems, which includes many useful references, is [2].

For the purpose of this note, we may consider an m-cycle system of order n to be an edge-disjoint decomposition of K_n into cycles of length m. If a cycle of length m has edges $\{a_i, a_{i+1}\}$ for $1 \le i \le m-1$ and $\{a_1, a_m\}$, then we write the cycle as (a_1, a_2, \ldots, a_m) or $(a_1, a_m, a_{m-1}, \ldots, a_2)$ or any cyclic shift of these. A $\{C_3, C_4\}$ -design of order n is then an edge-disjoint decomposition of K_n into copies of C_3 and C_4 . It is well-known (see [1]) that a $\{C_3, C_4\}$ -design of order n with p copies of C_3 and p copies of p copies of p and p copies of p copies of p and p copies of p copies of p and p copies of p copies

Bulletin of the ICA, Volume 20 (1997) 62-64

*ș*ns

 $t=0,1,\ldots,\lfloor\frac{n(n-1)}{24}\rfloor$. We shall say that such a $\{C_3,C_4\}$ -design is of type (p,q) if it contains p copies of C_3 and q copies of C_4 .

Our aim in this note is to prove the following.

Theorem 1 Let n be odd. Then there exists a $\{C_3, C_4\}$ -design of order n and type (p,q) which can be 2-coloured if and only if $3p + 4q = \binom{n}{2}$ and $p \leq (n-1)/2$.

Proof: Certainly the requirement that $3p + 4q = \binom{n}{2}$ is necessary for any $\{C_3, C_4\}$ -design of type (p, q). So we start by showing the necessity of $p \leq (n-1)/2$ in a 2-coloured $\{C_3, C_4\}$ -design of type (p, q).

Suppose we have a blocking set S of cardinality s in a $\{C_3, C_4\}$ -design of order n and type (p,q). Then certainly n must be odd, and counting the number of edges,

$$3p + 4q = \frac{n(n-1)}{2}.$$

Now counting the s(n-s) edges of K_n that join S with the other n-s vertices, each C_3 must have two edges in this set, while each C_4 has either two or four edges in this set. Thus we have

$$2p + 2q \le s(n - s).$$

These imply that

$$p \le 2s(n-s) - \frac{n(n-1)}{2}.$$

But certainly $s(n-s) \leq \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil$, and since n is odd, this becomes $s(n-s) \leq \frac{n^2-1}{4}$.

Hence we obtain $p \leq \frac{n-1}{2}$.

Next we construct appropriate designs and give their blocking sets. First consider cases smaller than n=9. If n=3, the trivial design of type (1,0) can be 2-coloured. When n=5, the set $\{1,2\}$ is a blocking set for the design of type (2,1) with cycles

$$\{(1,3,5), (1,2,4), (2,3,4,5)\}.$$

When n = 7, the only type (p, q) with $p \le 3$ is (3, 3). The set $\{1, 2, 3\}$ is a blocking set for the following design of type (3, 3):

$$\{(1,4,7), (2,5,7), (3,6,7), (1,2,4,5), (1,3,4,6), (2,3,5,6)\}.$$

locks B is said to er subset S of V lies entirely in S. dours, say red if a s monochromatic. It is well-known be 2-coloured. A dudes many useful

m-cycle system of cycles of length m. -1 and $\{a_1, a_m\}$, $-1, \ldots, a_2\}$ or any n an edge-disjoint ell-known (see [1]) and q copies of C_4 fact it is easy to 4t + (i-1)/2, for

Now let n=2m+1 with $n\geq 9$. We shall construct a $\{C_3,C_4\}$ -design of type (p,q)=(m-4k,m(m-1)/2+3k) for each $4k\leq m$. Let the vertex set be

$$\{\infty\} \cup \{(i,j) \mid 1 \le i \le m, \ j = 1,2\};$$

a possible blocking set will be $\{(i,1) \mid 1 \le i \le m\}$. We describe the cycles of the decomposition in the case k=0 first. These are:

$$B = \{(\infty, (i, 1), (i, 2)) \mid 1 \le i \le m\},\$$
$$\{((i, 1), (j, 2), (i, 2), (j, 1)) \mid 1 \le i < j \le m\}.$$

Now the case k>0 is constructed from this. For clarity we describe the case k=1 first. Remove from B the cycles

$$\{(\infty, (i, 1), (i, 2)) \mid i = 1, 2, 3, 4\} \cup \{((i, 1), (j, 2), (i, 2), (j, 1)) \mid 1 \le i < j \le 4\}$$

and replace them with a 4-cycle system of order 9, on the set

$$\{\infty\} \cup \{(i,j) \mid 1 \le i \le 4, \ j = 1,2\}.$$

The result is a $\{C_3, C_4\}$ -design of order n = 2m+1 and type (m-4, m(m-1)/2+3).

Now for arbitrary k with $4k \le m$, we take the cycles in B and remove 4k cycles of length 3, say, $\{(\infty,(i,1),(i,2)) \mid 1 \le i \le 4k\}$, and 6k cycles of length 4, namely $\{((i,1),(j,2),(i,2),(j,1)) \mid i < j\}$, for $i,j \in \{4s-3,4s-2,4s-1,4s\}$, for each $s=1,2,\ldots,k$. Then we replace these with the cycles from k 4-cycle systems of order 9 on the vertex sets

$$\{\infty\} \cup \{(i,j) \mid i = 4s - 3, 4s - 2, 4s - 1, 4s, \ j = 1, 2\}$$

for each s = 1, 2, ..., k, thus removing 4k cycles of length 3 and adding 3k to the number of cycles of length 4.

The result is a 2-coloured $\{C_3, C_4\}$ -design of type (p,q) = (m-4k, m(m-1)/2 + 3k) for each $4k \le m$.

This completes the proof of the theorem.

References

[1] K. Heinrich, P. Horák and A. Rosa, On Alspach's conjecture, Discrete Math. 77 (1989), 97–121.

[2] S. Milici and Z. Tuza, Cycle systems without 2-colorings, J. Combinatorial Designs 4 (1996), 135–142.

1 Intro

In papers and Simps statistical Audit Exp could be as Via some s the distribution Specifica.

Bulletin of

^{*}Research