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ON THE RELATION BETWEEN THE ABEL-TYPE AND 
BOREL-TYPE METHODS OF SUMMABILITY 

B. L. R. SHAWYER AND G. S. YANG1 

ABSTRACT. In recent papers, R. Jajte and B. L. R. Shawyer 
have proved that under certain conditions a series summable by a 
Borel-type or absolute Borel-type method of summability is also 
summable by the Abel or absolute Abel method of summability to 
the same sum. In the present paper, the Abel method is replaced 
by the more general Abel-type method, giving similar results for 
ordinary, strong and absolute summability. 

1. Introduction. It is known that the Abel method and the Borel 
exponential method of summability are not equivalent, but that 
under certain conditions, both methods sum the same series to the 
same sum [4]. This was recently extended in one direction, to the 
conditions under which a series summable by a Borel-type method 
is also summable by the Abel method [5]. The last result was ex- 
tended to absolute summability by one of the present authors [9]. 
The object of this paper is to replace the Abel method by the more 
general Abel-type method and give results for ordinary, strong and 
absolute summability. 

2. Definitions. Suppose throughout that r, a, (n = 0, 1, * are 
arbitrary complex numbers, that X> -1, that ao>0 and that ,B is 
real. Let N be any nonnegative integer greater than 1 -f/a. 

Define 
n 

Sn = ar; s-1 = . 
r=O 

2.1 Definitions of the Borel-type methods of summability. Define 
00 

S (X) = I (San X ?n1) )/r(an + 13); Sa, f(X) = ae xs(x). 
n=N 

This series is assumed convergent for all x _0. 
ORDINARY SUMMABILITY [1 . If Sa,fl(x) ->u as x-- oo, then 

Sn- >of(B, a, 0). 
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STRONG SUMMABILITY [3]. If 

*fet Sa , o(t)- o-Pdt = o(ex) (p 1) 

as x-->*, then s,-*o- [B, ax, f3],. 
ABSOLUTE SUMMABILITY [3]. If Sa,g(x)>*o as x- * and S,fl(x) 

is of bounded variation with respect to x in the range [0, oo), then 
Sn-o- I B, a, . 

2.2 Definitions of the Abel-type methods of summability. Define 

x (X + ?n\ (X + 1)(X + 2) . .. (X + n) 
En ) for n = 0,1 

n n! 

Eo =1, En = for = -1,-2, * 

ox,(y)=(Il?y)x- En y > O 
n=o +y y 

ORDINARY SUMMABILITY [2]. If the series defining ox(y) is conver- 
gent for all y>O and o-x(y) ->o as y-,oo then SnS-*o (AX). 

STRONG SUMMABILITY [6]. If the series defining ox(y) is convergent 
for all y > O, and 

| xI ox(t) -|IPdt = o(y) (p ? 1) as y--> cc, 

then Sn->o- [Axi1]P. 
ABSOLUTE SUMMABILITY [7]. If the series defining ox(y) is conver- 

gent for all y>O, Sn-*oG (Ax) and o-x(y) is of bounded variation with 
respect to y in the range [0, oo), then s -->o- IAx 

Note. The condition that 
co 

(C) E anxn is convergent for all x in (-1, 1) 
n=O 

will be a condition for each main theorem of this paper. It can easily 
be shown that the condition (C) implies that the series defining ox(y) 
is convergent for all y>O. 

3. Preliminary results. The following lemmas are required: 

LEMMA 1. If 

rb 
F(w) = g(w, u)f(u)du (w > k > 0,- oo < a < b < oo), 

a 
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and 

f I d,wg(wv, u) ? g(u) (a < u < b), 

then 

If dF (w) | < Jfg(u) f(u) J d. 

PROOF. Let h=wo<w<. <wi,, then for all mn 

-b rnm-I 

Z F(Q1,i) - F(wk) i <k+ g(vk?1, u) - g(zek, it) f(t) d|t 
k=O ak=0 

b 
< f g(u) j f(u) I du. 

Hence 

I dF(wI) I f(u) diu. 

LEMMA 2. Suppose that m is a positive integer and that 
m biin+ ci 

Y,n ribtzcSn (n-0,1, 
,- dgi +- es 

where bi, ci, di and ei are all reat with fl,= d i 5FO and IT (d,n +ei) 
-0. Then 

m 

-> rI (bidi)o) (Ax) (or I Ax i ) whenever Sn f u (zlx) (or I Ax 
i=l 

PROOF. That sn->o (Ax) (or | Ax ) implies Snl(n h+k) ->0 (Ax) 
(or| Ax), where kis real, is known ([2] or [8]). It follows that 

hbH + c b cd -be b 
Sn-Sn+ 2 n -- o J(Ax) (or Ax, 

dn + e d d2n + de d 

for all real b, c, d and e with d# 0. The conclusion then follows im- 
mediately by repeatedly usinig the above result. 

Define 

F(an + + X)F(n + 1) 
Vn-- - n-si forn-=0,1,I 

r(an - )P(n + X + 1) 

XVe then have the following two lemmas: 
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LEMMA 3. Jf s-->o (B, a, f3) and condition (C) holds, then for all 
X> -1, pn-*ao (Ax). 

LEMMA 4. If s, |-o B, a, and condition (C) holds, then for all 
X > 1, v >aXo I Ax . 

PROOF OF LEMMA 3. Let 

00 

J(t) = f>uIe-_tUxSa, (u)du, where 0 < t < 0o. 

It follows by hypothesis that 

J(t) = aF(X ? 1)tx+1( ( 'G+YX+* 
() ( ) (1~~ + t + t) (' 

where t and y are related by (t/(1+?0)a=y/(1+y), and 

X t X ( ~y )n 

A' y) = (I + y)Xl n= E'V. 7 

Since S,,0(u) >o- as u-*oo, it follows from Lemma 1 in [4] that 

J(t)/Q(X + 1)tx+ 1-*f as t -> oo. 

Furthermore (1+y)/(1+t)->1/oa as y-*>oo, and t-*>oo if and only if 
y-*> so. Hence 

(y) cx> af as y -> oo. 

This completes the proof. 
PROOF OF LEMMA 4. Let J(t) and o* (y) be defined as in the proof of 

the above lemma. We see that 

o (y) = (1/a]P(X + 1))Aj(t)A2(t)A3(t), 

where 

A1(t) J(t)/tx+l, A2(t) ((1 + t)/t)'- 

and 

A 3(t) =[ t( 
A () [1-(t/ (1 + t)i 

]+ 

For h > 0, it is easy to show that A2(t) and A3(t) are of bounded varia- 
tion with respect to t in [h, oo), whereas that A1(t) is of bounded 
variation in [h, oc) follows by hypothesis and Lemma 1. Thus a*(y) 
is of bounded variation with respect to y in [g, oo), where g, greater 



I970] ABEL-TYPE AND BOREL-TYPE METHODS OF SUMMABILITY 327 

than zero, is dependent on h. Thus this lemma follows from the defi- 
nition and the previous lemma. 

4. Theorems. All the following theorems are under the condition 
(C). 

THEOREM 1. If sn->o( (B, a, f), then sn-*>( (Ax) for all X > -1. 

PROOF. Since sn(-o- (Ax) implies sn ->o (A,u) for all X>A > -1 [2], 
we may assume that X is an integer, and so by Lemma 3, 

(an+/3+X-1)(an+O3+X-2) ... (an+-3+ 1) A 

(n+X)(n+X-1) * (n+ 1) 

Therefore by Lemma 2, sn-->o (A\) for all X> -1. 

THEOREM 2. If s(-*o (B, a, /), then sn-)(J [Ax}p for all p> 1, A> -1. 

PROOF. We need that [6], if X> -1 and p 1, then sn --[Ax]p if 
and only if sn-->o (Ax) and 

cx d X 

J Y-ox(y) dy=o(x), as x -> oo. 
O dy 

Since 

d 
y -ox(y) = (X + 1)[ofx+ (y) - ox(y)J = o(y) 

dy 

as y- >oo, by Theorem 1. It follows immediately that 

r2 d P 
fl Y yx(Y) dy = o(x), 

J dy 

as x-*> 0o. This completes the proof of this theorem. 
Since Sn-*> [B, a, /3]q implies sn-+o (B, a, /) for all q> 1 [3], the 

following is a corollary of the previous theorem. 

THEOREM 3. If Sn >g [B, a, 3]q, then sn->*o [Ax], for all p > 1, 
X> -1, q?1. 

Finally, we give the corresponding result for absolute suminability. 

THEOREM 4. If sn-o I B, a, f3|, then sn-Jo AxI for all X> -1. 

PROOF. SiInce Sn->o IAx I implies Sn-*o- I Ax+a for all 5 >0 [7], we 
may assume that X is an integer, and then the rest of the proof is 
similar to that of Theorem 1, except that Lemm-a 3 is replaced by 
Lemma 4. 
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5. Remark. This section is presented for the sake of completeness. 
Let 

rx o a tan+6- 

A a, (x) J et n + /3) 

U(y) f(I t) Z 
n=0Ea. ( 1 + t . 

Both series are assumed to be convergent for all t ? 0. We note that 
the "B"' methods and the "A"' methods are obtained by formally 
replacing S,,O(x) by Aa,(x), ax(y) by Ux(y) and o- by o--SN_, re- 
spectively. 

The following results are known ( [3 ] and [8 ] respectively). 
5.1. sn--o (B', a, /) (or [B', a, 3]q, or I B', a, j3) if, and only if, 

S-, > (B, a, 3+ 1) (or [B, a, ? + t , or I B, a, /?+ 1 I ). 
5.2. sn-?o (A\) (or [Ax],, or jAxf) if, and only if, sn-?o (A-1) 

(or [A x_],, or IAx-I). 
With these, it is easy to show that in Theorems 1-4, either B or 

A , or both, may be replaced by B' or A', or both, respectively. 
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