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Abstract. In this paper, we show that there exists a 2-colorable {C 4 ,C fc}- 
design of order n for each k >  3 and for each admissible order n of a {C 4 , Cfc}- 
design.

1. Introduction

Let K n be the complete graph on the set of n vertices Vn =  {1, 2, • • • , n} with 
the set of (” ) edges, E n, which join all possible pairs of vertices in Vn. A G 
design of order n is an edge-disjoint decomposition of K n into copies of the graph 
G =  (V(G'), E (G )). The number n is called an admissible order of such a G-design. 
For example, if G =  Kk then the G design is a 2-(n, k, 1) balanced incomplete block 
design (BIBD) in the usual notation, and in particular if k =  3 then the G-design 
is a Steiner triple system of order n. Again if G =  Gfc, a cycle of k edges, then the 
G design is called a cycle design or cycle system. Since K 3 and C3 are the same 
graph, a Steiner triple system of order n is also a cycle system.

Here we consider a slightly more general situation where cycles of lengths 4 and 
k are both allowed. In the process of constructing a {G 4, Ck}-design with the 
properties we want, we use a more general structure again, namely a {G 4, R e ­
design.

The isomorphic copies of the graphs that occur in the partition are called blocks 
of the design. In an unfortunate clash of well-established terminology, a proper 
subset S of Vn is said to be a blocking set of the G-design provided that the vertex 
set of each of its blocks contains at least one element of S, but is not contained in
S. Thus if we color S and Vn \ S with two distinct colors, the vertex set of every 
block contains at least one vertex of each color. For convenience, we call a design 
with a blocking set a 2-colorable design. Quite a number of 2-colorable designs 
have been obtained so far; for example, see [2 ].

Since we use the following result several times, we state it here; for completeness, 
we include a proof.
Theorem 1.1. Let n =  1 (mod 8). Then there exists a 2-colorable A-cycle system 
of order n with a blocking set of size .

Proof. Let V (K n) =  2 n. We prove the theorem by induction on n.
For n =  9, let S =  {1,3,5, 7} be the blocking set, let (a, 6, c, d) denote the 4-cycle 

with edges ab, be, cd, da, and let
T  — {(0 +  2,1 +  z,5 +  i,3 -M ) | i £ Z g}.

Then (Zq,T ) is the system we need.
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Now assume the assertion is true for n =  8k + l ,  k >  1. Let S =  {1,3, 5, • • • , 8k — 
1} be the blocking set of the 2-colorable 4-cycle system (Z n,T \). Next let 
X  =  {0, Sk +  1, 8k +  2, • • • , 8k 4- 8 }, where (X, T2) is a 2-colorable 4-cycle sys­
tem with blocking set { 8k +  1,8k +  3 ,8k +  5, 8k +  7}. Finally let

T3 =  {{8k +  i , j , 8k +  i +  l , j  +  1) | i =  1,3,5,7; j  =  1,3,5, • • • , 8k -  1},

so that a 2-colorable 4-cycle system of order n +  8, (X , T), can be obtained by 
taking X  =  -Zsfc+9 and T =  T\ U T2 U T3 . Note here that {1, 3, 5, • • • , 8k +  7} is a 
blocking set of size 4A; +  4.

This concludes the proof. □

In this paper, we use the idea of packing to obtain our construction; see [4] for 
instance. A packing of K n with 4-cycles is an ordered triple (Vn, P, L), where P  is 
a collection of edge disjoint 4-cycles of the edge-set En and L C E n is the set of 
edges not belonging to any 4-cycle in P. The number n is called the order of the 
packing and the set of edges L is called the leave.

First, in Section 2, we show that there exists a 2 colorable maximum packing 
of K n with 4-cycles. Then in Section 3, for any odd integer k >  3 and for each 
admissible order n of a {C 4, -K/cj-design, we construct a 2-colorable {C4, R e ­
design of order n. Clearly, this implies the existence of a 2-colorable {C ^C fc}- 
design with odd k. Finally, for each k >  3 and for each admissible order n of a 
{ C\, Cfc}-design, we construct a 2-colorable {C4, C/t} design of order n.

2. 2—Colorable Maximum Packings with C 4

It is well-known (see for example [4]) that any maximum packing of K n with 
copies of C4 has leave a 1-factor for n even, and leave as shown in Table 1 for n 
odd. For convenience, such a packing will be denoted by MP4CS(n).

Order (mod 8) 1 3 5 7
Minimum Leave 0 C 3 Bow-tie

X
C5

Table 1

Often we need the idea of a balanced 2-coloring. This is one in which the number 
of vertices colored 1 and the number of vertices colored 2 differ by at most one.

Theorem 2.1. For each n >  1, there exists a 2-colorable MP4CS(n). If n =  2m 
or if n =  2m -f the blocking set has size m.

Proof. If n =  1 (mod 8), then the proof follows by Theorem 1.1.
If n is even, let n =  2m, let V (K n) =  {a^,^ | i 6  Z m} and let F  — {afii |

* £ Zm} be the leave. If we color a* and bi with 1 and 2 respectively for each
i £ Z m and let (ai,aj,bi,bj) be a 4-cycle for each unordered pair { i ,j } ,  i ^  j  and
i, j  G Z m, we obtain a 2-colorable MP4CS(n). This leaves three cases.
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(i) n =  3 (mod 8). Let V (K n) =  Zsk+i U By Theorem 1.1, we have a 
2-colorable 4CS(8/c +  1 ), (Zgk+i,T),  with 2-coloring 0 such that

[ 1 if i is even,
(f){i) =  <

I 2 otherwise.

The 4-cycles in T, together with {(ooi, 2j +  l, 002, 2j +  2) | j  =  0,1, • • • , 4k —1}, 
form a MP4CS(n) with leave C3 =  (0 , 001, 002). The colors for 001 and 002 

may be chosen arbitrarily, but we may as well color 00* with i, i =  1 , 2 , in 
order to obtain a balanced 2 colouring for a 2-colorable MP4CS(n).

(ii) n =  5 (mod 8). Let V (K n) =  Z 8k+i U { a ,b ,c ,d }, and let the 2-colorable 
4CS(8fc +  1) be defined as in case (i). By a similar technique, we find that 
the 4-cycles in T, together with {(a, 2j +  1, 6, 2j  +  2), (c, 2j  +  1, d, 2j +  2)\j =
0,1, • • • ,4k — 1} and (a,b,c,d), give an MP4CS(n) with leave (0, a, c) U (0 ,b, d). 
Now coloring a,c with 2 and b,d with 1 gives a 2-colorable MP4CS(n), as 
required.

(iii) n =  7 (mod 8). Let V (K n) =  Z 8k+i U {a, 6, c, d, e, / } .  Again using a similar 
argument, we find that the 4 cycles in T, together with

{(a ,2j  +  1 ,6,2j +  2), (c, 2j  +  1, d, 2j +  2), (e, 2j +  1, / ,  2j +  2) | j  =  0,1, • • ■ ,4k -  1}

and {(0, a, d, c) U (a, c, / ,  e) U (0, 6, a, / )  U (6, e, 0, d)}, decompose \ C5 where 
the leave C5 =  (6, c, e, d, / ) .  Now the 2-colorable MP4CS(n) is obtained by 
coloring a, c, e with 1 and 6, d, f  with 2 .

□

3. 2—Colorable { C 4 ,  If 2/1+ 1 Designs

First, we need a lemma. Note that we use balanced colorings here.

Lemma 3.1. If n — m =  1 (mod 8) and m is even, then there exists a 2-colorable 
{ C 4 , K m+i}-design of order n.

Proof. Let (2 n_m,T ) be a 2-colorable 4CS(n — m) with 2-coloring 0 such that

[ 1 if i is even,
4>(i) =  <

12  otherwise.

Since m is even, let m =  2s and let {c\,di,C2 ,d 2, • • • , cs, ds} be a set of m points. 
Now the cycles of T, together with the cycles in

{(Ci,2j +  l ,d i ,2 j  +  2) | j  =  0, l , - - -  , (n -  m -  3 )/2 ,i  =  1,2, —  ,s }

and the complete graph based on {0, ci, d\, ■ ■ ■ , cs, ds}, decompose K n into 4-cycles 
and a K m+1 . If we color each Ci with color 1 and each di with color 2 , then we 
have a 2-colorable { C 4 , i fm+i}-design. □

Lemma 3.2. Let n be an admissible order of a {C 4, K 2h+i}-design. Then n =  1 
or 5 (mod 8) if h =  2 (mod 4), n =  1 (mod 8) if h =  0 (mod 4), and n is odd 
if h is odd.
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Proof. Since C4 is a 2-regular graph and K 2h+i is 2/i-regular, each vertex of K n 
must have even degree and thus n is odd. If h is even, then the number of edges in 
K 2h+i is also even, implying that K n must have an even number of edges and hence 
that n =  1 or 5 (mod 8). Next, if 4 | /i, then the number of edges in K 2h+ 1 is also 
a multiple of 4, and so is the number of edges in K n. Thus n =  1 (mod 8). □

Lemma 3.3. There exists a 2-colorable {C 4 , K 4Z+1 }-design of order n =  8A; +  5 
for all k and all odd I such that n >  41 +  1.
Proof. Since Z is odd, n—41 =  1 (mod 8). By Lemma 3.1, a 2-colorable {C 4 , K^i+ i } 
design of order n exists. □

We note here that a 4CS(n) can be considered as a {C 4 , K 2h+i} - design of order 
n with no blocks of size 2h +  1 .

Next, we consider the 2-colorable {C 4 , designs.
Lemma 3.4. There exists a 2-colorable {C 4, K 41+3} -design of order n — 8k +  3 
for all k, provided that n is an admissible order of a {C 4 , K 41+3) -design.

Proof. First, if I is even, then n — (41 +  2) =  1 (mod 8). The proof follows by 
Lemma 3.1.

Next, if I is odd, then 4Z+3 =  7 (mod 8). Let j  =  4Z+3. Then (8fc2f3) — ®(8 2̂~7) — 
|[(8/e +  3)(8fc +  2) — i(8j  +  7)(8j +  6 )] which is not a multiple of 4 for i =  0,1 and 2. 
So if there exists a {C 4 , i^+sj-design  of order n, then the design must contain at 
least three blocks of size 41 +  3. This implies that n >  3(41 +  3) — 2. Let Z =  21' +  1. 
By direct counting, [n —2(41 +  2)] — (4Z +  2) =  n — 3(41 +  2) — (8k +  3) — 3(8Z' +  6 ) =  1 
(mod 8). Since 4Z +  2 is even, there exists a 2-colorable {C 4 , i^4/+3}-design of order 
n — 2(41 +  2) by Lemma 3.1.

Now let the design of order n — 81 — 4 that we have just described be (X i, Xi), 
where X 1 =  {0 ,c i ,c2,--- , cn_ 8«-5 }- In addition, let X 2 — {0 ,a i,a 2,--- ,a 4j+2}, 
X 3 =  { 0 , 6 1, 625’ •• 7 4̂/4-2}, where X i, X 2 and X 3 have exactly one element in 
common, namely 0; see Figure 3.1. Since the design (X,T\) is 2-colorable, let the 
vertices of X\ be colored with 1 and 2 respectively, and let the colors of the vertices 
of X 2 U X 3 \ {0} be defined as follows:

1 , if i is odd;
</>{ai) =  (f)(bi) =

2 , otherwise.
Therefore a 2-colorable {C 4 , i^4z+3}-design of order n can be obtained by letting 
T =  Ti U T2 where T2 =  {(a<, q ,  ai+1, cj+ i), (bi, cj, bi+i, cj+ i) | i =  1,3,5, • • • , 4Z + 
1; j  =  1, 3, 5, • • • , n -  8Z -  6 } U {(a i; bh,ai+1 ,bh+1) | i, h =  1,3, 5, • • • ,4Z +  1}. The 
4-cycles in T2 are depicted in Figure 3.1. □

Lemma 3.5. There exists a 2-colorable {C 4, Ku+s}-design of order n — 8k +  5 
for all k, provided that n is an admissible order of a { C 4 , K 41+3} -design.

P roof. Since (8fc2f5) — *(4̂ 3) ls n°t a multiple of 4 for i =  0,1, a {C 4, A'4/+3} -  
design must contain at least two blocks of size 4Z +  3. Therefore n >  2(41 +  3) — 1. 
Direct counting shows that [n — (4Z +  2)] — (4Z +  2 ) =  1 (mod 8). By Lemma 3.1, 
there exists a 2-colorable {C 4, K 4/+3}-design of order n — (41+2). By a construction 
similar to that shown in Figure 3.1, but adding only one block of size 4Z +  3 this 
time, we obtain a 2-colorable {C 4, A"4/+3}-design of order n. □
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41 +2

Figure 3.1: The construction of Lemma 3.4.

Lemma 3.6. There exists a 2-colorable {C 4 , K 41+3} -design of order n — 8k +  7 
for all k, provided that n is an admissible order of a {C 4̂,-^4/4-3} -design.

Proof. If I is odd, then n — (4/ +  2) =  1 (mod 8 ) and the proof follows by Lemma
3.1. On the other hand, if I is even, then (8k2 ?) ~ n°t a multiple of 4 for 
i =  0,1 and 2. Therefore n >  3(41 +  3) — 2. Since [n — 2(41 +  2)] — (41 +  2) =  1 
(mod 8), a 2-colorable {C 4, iQz-1-3}—design of order n — 2(4/ +  2) exists, by Lemma
3.1. Again by a construction similar to that shown in Figure 3.1, we can construct 
a 2-colorable {C 4 , i^4;+3}-design of order n directly. □

Combining Lemmas 3.2-3.6 , we have the following result.

Theorem 3.7. For each n and h, if n is an admissible order of a { C 4 , K 2h + i}-  
design, then there exists a 2 -colorable {C 4 , K 2h+i}-design of order n.

Corollary 3.8. If there exists a 2 -colorable {C 4 , K 2h+i}-design of order n, then 
there exists a 2 -colorable {C 4 ,C 2h+i}-design of order n.

Proof. It is well -known that a complete graph of order 2h + l can be decomposed 
into h hamiltonian cycles. Therefore, by replacing each K 2h+i with h copies of 
C2h+ii we have the desired 2-colorable {C 4 , C^+i}-design. □

Corollary 3.9. If there exists a 2-colorable {C 4 , K 4 +̂1 } -design with balanced col­
oring, then there also exists a 2 -colorable {C 4 , £ 4/4.1 } -design with balanced color-

4. 2-Colorable { C 4, Cfc}-Designs

By Corollary 3.8, we have dealt with the case of odd k. If k is a multiple of 4, a 
straightforward counting argument shows that a {C 4 , C'/c}-design must be of order 
n =  1 (mod 8). Therefore we can handle this case with a 2-colorable 4CS(n), 
without using any Ct-

If we insist 011 having a Ck in the design, then we can use the construction 
indicated in Figure 4.1 to obtain such a design, where we replace the 4-cycles in 
the shaded area with k /4 copies of Ck- This construction depends on Sotteau’s 
theorem [5].

Theorem 4.1. [5] K m n̂ can be decomposed into copies of C2t if and only if m ,n  
are even, m , n > 2t and 21 divides mn.
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n-St-1

Figure 4.1: Construction of a {C 4 , Ck}-design of order n =  1 (mod 8).

Thus K k/ 2,k/2 (represented by the shaded area in Figure 4.1) can be decomposed 
into cycles of length k. Since each fc-cycle is a hamiltonian cycle in K k /2,k/2i it is 
2-colored in accordance with the 2-colorings of the 4CS(n — St) and 4CS(8f +  1 ) in 
Figure 4.1.

Thus we need only consider k =  2 (mod 4). Now n =  1 or 5 (mod 8); again 
a straightforward counting argument shows that we need only consider n =  5 
(mod 8). Since k/ 2 is odd, we have to modify Figure 4.1 to make sure that we have 
Ck in the design. First, we need a lemma.

Lemma 4.2. Let h be an integer such that 8h-\-5 >  k — 4t +  2. Then K 8h+5 \ Ck 
can be decomposed into 4-cycles, and colored so that each of the 4-cycles is 2 -  
colored. Further, the Ck is also 2-colored.

P roof. The proof is by induction on the order 8h +  5 and on k.
First, we claim that Ksh+5 \ Cq can be decomposed into 2-colored 4-cycles if 

8/1 +  5 > 6 . For we have a 2-colored MP4CS(8h +  5) with leave (0, a, c) U (0, 6, d) 
by (ii) of Theorem 2.1. Also in the construction (a, 1 , 6, 2) and (c, l,d , 2) are two 
2-colored 4-cycles in the maximum packing. Since (0, a, c) U (0, 6, d) U (a, 1, b, 2) U 
(c, 1, rf, 2) contains the same set of edges as (1, a, c, 2 ,6, d) U (1, c, 0, b) U (2, a, 0, d), 
and since both of (l,c , 0 , b) and (2 ,a ,0 ,cJ) are 2-colored, our first claim is proved. 
The fact that the Cq is 2-colored follows from the fact that V(Cq) D {a, 1, b, 2}.

Secondly, we claim that Kgh+5 \ C 10 can be decomposed into 2-colored 4-cycles. 
To see this, let h =  h' +  h" +1, so that 8h +  5 =  (8h! +  6 ) +  (8h" +  6 ) +1. We already 
have a 2-colored MP4CS(8/i' +  7) and a MP4CS(8/i" +  7), each with leave a C5 . 
(Note here that the proof of Theorem 2.1 shows that the leave C5 is also 2 colored. 
Thus there are two adjacent vertices in C5 which have different colours; let them 
be d and e (d' and e' respectively) in Figure 4.2. Also let (d, d',e, e!) be one of 
the 4-cycles between A  and B , just as we have assumed in the preceding lemmas.) 
Now the 10-cycle can be obtained from (a, 6, c, d, e) U (a;, b c', d', e') U (d, d\ e, e') 
which contains the same set of edges as (a, b, c, d, d!, c', b', a', e', e) U (d, e, rf', e!).

Finally we assume as our induction hypothesis that 8/i +  5 > 4t' +  2 and that 
there is a 2-colored 4-cycle decomposition of _K8(h -i)+5 \ ^ 4^+2, where 64^+2 is 
itself 2-colored. We claim that there is also a 2-colored 4-cycle decomposition of 
K s h +5 \ C a v + io- Since Kg \ Cg has a 2-colored 4-cycle decomposition, as shown in 
Figure 4.3, we can use the same idea again, as shown in Figure 4.4, to obtain the 
required construction. Since V(C\t’+ 10*) 2  V (C u ’+ 2), CW+io is also 2-colored.
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Sh"+6'

Figure 4.2: Construction of Lemma 4.1. 

This completes the proof. □

Figure 4.3: 4-cycles in K g\C g- 
(a,c,b,d), (e, h, f , i), (.b ,e ,g ,f ), (c,h ,g ,i), (a ,f,d ,h ), (a ,g,b,i), (c ,e ,d ,g ).

Theorem  4.3. For each k > 3, if n is an admissible order of a {C 4 , Ck}-design, 
then there exists a 2 -colorable {C^,Ck}-design of order n.

Proof. First, if k =  0 (mod 4), then n =  1 (mod 8) and n >  k. The proof then 
follows from the comment before Lemma 4.2.

Next, if k =  2 (mod 4), then n =  1 or 5 (mod 8); we need only consider the 
case where n =  5 (mod 8), and the proof follows from Lemma 4.2.

Now if k is odd, then n can be any odd integer, but again we need only consider 
the case where n ^  1 (mod 8).

1. If k =  3 (mod 4), the proof follows from Lemmas 3.4, 3.5, 3.6 and Corollary 
3.8.

2. Finally, consider the case where k =  1 (mod 4).
(a) If n =  5 (mod 8), the proof follows from Lemma 3.3 and Corollary 3.8.
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S ( h - 1)+4

^8(/i-l)+5

8

Figure 4.4: Replacing C w +2 U C4 U Cg with C w + 10 U C4.

(b) This leaves the cases where n =  3 or 7 (mod 8).
By Lemmas 3.4 and 3.6, we have a 2-colorable {C 4 , A'4z+3}-design and, 
by Corollary 3.9, the vertices in V(-?Cu+3) have a balanced coloring, with 
at least 2/ +  1 vertices of each colour.
Now a 2-colored {C 4, C^+i}-design exists provided that there exists a 
2-colored {C4, C4/+1 }-design of order 41 + 3.
In the 2-colorable {C 4 , X 4/+3}-design that we already have, let V (A"4j+3) =  
{ 001, 002}U Z 42+i, where 00i is colored i, for i =  1,2. Now K u + i can be de­
composed into 21 hamiltonian cycles and one of these, say (0 , 1 , 2 , • • • , 41), 
can be matched with 001, 002 to form 3/ +  1 4-cycles, as follows:

(001, 1, oo2 ,3), (ooi,5, oo2, 7), • • • , (ooi,4/ -  3, oo2 ,4/ -  1).
Since we can arrange the colours of 0 , 1 ,2, • • • ,4/, to alternate between 1 

and 2, all these 4-cycles are 2 colored, and K 41+3 is now decomposed into 
21 — 1 cycles of length 41 +  1 and 31+1  4-cycles, all of which are 2-colored.

5. Concluding Remarks

We have constructed 2-colorable {C 4 , A^h+ij-designs in Section 3. This sug­
gests that a 2-colorable {C 4, K ^}-design may well exist for each k >  3. The 
construction of such a design is easy for k =  4 and k =  8 , but we have been unable 
to construct one for k =  6 .

We recall that Alspach [1 ] asked the following question in 1981: Let n be a 
positive integer and let a\ +  +  • • • +  ar be a partition of either Q) if n is odd, or
( 2) — n/2  ^ n 1S e v e n 5 such that 3 < ai <  n for i — 1, 2, • ■ • , r. Does there exist a 
partition, into cycles of lengths a\, a2, ■ ■ ■ , ar, of the edge-set of K n when n is odd, 
or of K n with a 1-factor removed when n is even?

The existence of a {C 4 , Cfc}-design for all admissible orders certainly suggests 
that Alspach’s conjecture may hold for two cycle sizes, 4 and k. To construct 
a 2-colorable {C 4 , Cfc}-design with a prescribed number of 4 cycles (and hence a

(ooi,oo2, 0,4/), (oo i,0 , 1 , 2 ), (002 , 2 , 3 , 4 ), • • • , (002,4/ -  2,4/ -  1,4/),

This completes the proof. □
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prescribed number of fc-cycles) sounds feasible and interesting. Note that for k =  3, 
some restriction must be made; for instance the 2-colorable {C 3 , C^j-design cannot 
have too many triangles [3].
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