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- Abstract

A latin square of order n is an n X n array of cells containing one of
the n elements in {1,2,...,7n} such that in each row and each column each
element appears exactly once. A partial transversal P of a latin square
L is a set of n cells such that no two are in the same row and the same
column. The number of distinct elements in P is referred to as the length
of P, denoted by |P], and the maximum length of a partial transversal in L
is denoted by #(L). In this paper, we study the the technique used by Shor
which shows that t(L) > n — 5.53(In)? and we improve the lower bound
slightly by using a more accurate evaluation.

1 Introduction

A latin square of order n is an n x n array of cells containing one of n
distinct symbols such that in each row and column every symbol appears
exactly one. A transversal of a latin square of order n is a set of n cells,
one in each row, one in each column, and no two of them contain the same
symbol. If we simply select a set of n cells in a latin square of order n, one in
each row and one in each column, then we have a partial transversal P. The

*Research supported by National Science Council of the Republic of China (NSC-85-
2121-M-009-010).

JCMCC 43 (2002), pp. 57-64



number of distinct clements in P is referred to as the length of P, denoted by
|P|. We are interested in finding a partial transversal in a given latin square
which has the maximum length. For convenience, let t(L) = max{|P|| P is
a partial transversal in L}. In 1967, Ryser[1] conjectured that t(L) >n—1
if L is a latin square of even order n and ¢(L) = n otherwise. In 1969,
Koksmal[2] showed that ¢(L) > (2n + 1)/3, then Drake[3] improved this
lower bound to 3n/4 in 1977. In 1978, this lower bound was increased to
n—+/n by Brouwer et al. [4] and Wollbright[5] independently. Later in 1982,
Shor[6] gave a better bound for n > 2,000,000, namely, n — 5.53(Inn)?. So
far, this is considered as the best known lower bound. In this paper, we
apply an elementary argument using calculus to obtain a better lower bound
n—5.51(lnn)?.

2 Improvement of Shor’s lower bound

First, we introduce the key idea of Shor’s approach in finding the lower
bound for #(L). Let L be a latin square of order n and P be a partial
transversal which has length at most n — 2. For otherwise, there is no
room for improvement. Then there exist at least two cells of P, (21,1)
and’ ('ig,j-g), such that L(il,jl) = L(i',j/) and L(ig,jg) = L(’I;”,j”), for
some (i',7') and (i",5") in P\ {(i1,71), (42, J2)}. Clearly, if we let P’ =
(P\ {(i111), (i2,32)}) U {(i1,42), (i2,71)}, then |P'| > |P|. The operation
obtained above will be called the operation §. See Figure 1.

i J L
a a
i B - i 2 -
J ﬁ ..... j2 <
b b
C. C‘

Figure 1. Operation §

Now if we start with a partial transversal P of maximum length n — &,
then by applying operation # to the partial transversal, and then to another
partial transversal, and so on, we obtain a set of partial transversals closed
under 4, i.e., no other cells can be added by using operation §.
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Since P is of maximum length n — k, we obtain a partial latin square of
order n and only n — k distinct elements are used as entries. We shall call
this partial latin square Ag, i.e.,
4i: The partial latin square contains only n — & distinct elements, and
these elements are exactly those contained in the cells of a set of partial
transversals obtained by 4 and closed under f.

Then the following lemma is not difficult to see.

Lemma 2.1.[6] Given a partial latin square L satisfying A, such that
no proper subsquare satisfies Ay, then no cell is contained in all partial
transversals.

The above lemma shows that every cell in the partial latin square L
gets moved. Without loss of generality, we may let (1,1) be a filled cell
and L(1,1) = a. Now if we fix the cell (1,1) and consider the set of partial
transversals generated by # acting on the subsquare formed by deleting the
row and the column containing (1, 1) cell, then we have an (n—1) x (n—1)
partial latin square L' satisfles Ax_,. Note that we have n — k elements in
the partial latin square L' of order n — 1. Now it is not difficult to see that
I’ must have at least one fixed position. Suppose not. Since (1,1).can be
moved (by Lemma 2.1, and for each filled (i, ) in L' can also be moved, we
conclude that (1,7) must be hilled. By the fact that 4 is an arbitrary index
and each column contains at least one filled cell of L', the first, row of L
must be completed. This implies that L contains n distinct elements. But,
by assumption, L contains exactly n — k elements. Hence, we conclude that
L' contains some fixed positions.

Now we have the following result which was obtained in [6].

Lemma 2.2.[6] Let L be a partial latin square of smallest order satisfying
Ay, Then there are at least ng_1 +k filled cells in each row and each column,
where ny_y is the order of smallest subsquare satisfying Ag—,.

Let L; be a partial latin square of smallest order which satisfies Ay.
Then define L;, 2 < i < k, recursively as a smallest subsquare of L;y;
which satisfies 4;, and the order of L; is n; 7 = 1,2,...,k. Again the
following inequality was obtained by Shor.

Lemma 2.3.[6] In Ly, as defined above,
(ng—y +n; —np+k)(ng—n;) <nj(nj—nj_y~275)+(ng—n;)(ng—k—n;+7)
for all j < k.

Now we can derive a lower bound for ¢(L) using the inequality in Lemma
2.3 and the ratio =*.

g
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Theorem 2.4. Let L be a latin square of order n. Then

(Inn)?
Colnun B’
q q

HL) >n

1
where = < 1 < 1.
2. p
Proof. We shall use the notations mentioned above. By Lemma 2.3, we
have the following inequality.
(ng—1+n;—np+k)(ng—n;) <nj(n;—n;—1—25)+(ne—nj)(ng—k—n;+7).
Since ny — ng—y = dy and n; —nj = d;,
ne —n5)(2n; +ng—1 — 2ng + 2k — §) <nj(n; —n;_1 — 27).

and then

N — 7Ny

dj —2j=mn; —nj_1 —25 > (an—dk-—nk+2k—j). (1

7
Consider n; and ny where j <k, and 1/2 < £ < 1. Then either there
exist j and k such that n; > gnk or n; < §Tbk for all j and k. First if
n; > %nk for some j and k. Then

dy =ng —ng_1 < nk—njﬁp_q’nk,
: . 2p—1
nrdy < Py,
p
20 —
ne+de < P fracpeny),
< e+ di). 2
ng < 2p_q(”k+ k) (2)
From (1) and (2)
d; > M(an_dk_nk),
nj
di + g
4 2 (ng—my)2— TRy
n;
2p —
A > ()2 - =),
3q -2
di = (nj—njo1) 2 (= —ny).

We add 3i;—zl’—(n] —nj—1) to both sides of the above inequality, then

4q — 2p
q

3q—2p

(nj —mnj-1) > (ng —nj-1),
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and hence

3
nj = nj-1 > 4q_2p(nk—nj—1)- (3)
Therefore
, , 3g—2p

(g —mj_1) = (nj —nj—1) < (ng=nj-1) - o 2p(nk - nj-1),

ng—n; < Fr 2p(n,C —nj_1).
Since n; < %nk, hence for each k > j' > j, ny > %nk. By induction:

p k—j
1< ng — ng— < _ g —nji_
<np =np-y < (4q _2p) (ne —nj-1),
4q —2p . _.
(u)kﬂ < np —nj-y,
q

k—j < loga—2 (g —nj-1). (4)
Now if

k= > loguuse (Pt ),

then
P—q
l0gas=2p (N = 7j-1) 2 10Bag—zp (](_q—‘“‘nj—l),
- —1
e =Nj—1 2 p_nj—la
q
-1 S gnk.
p

And if

k —j > logas=2s (1),
by (4), we have q
k—j—1 > logag-z(ng —ny),
k—j > logﬁ;ﬂ(nk—nj)+1,
- 4q - 2p

k—j > 10g4q;23('ﬂk_n]')( p )-
So we have
4qg — 2
n; < d P p(”k_”a)’
aq—?PJ < 4q-2p 6
q q
59 — 2p
e < j -
Nk 4(]—2an
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s =
Smce —1——-‘14(/ 5 2 q,

g

<

q
—Nyg-
p

Now we obtain a recurrence relation of k; where k; is the index of n.

Let k4 = 2 and

ki = ki + [logag=zs (4, -1)]-

This implies that

ki > ki1 +1ogag—2p (nki—l)-

Since ng, > (%)”‘1, then from (5), by direct counting, we have

o> Zlogtlg——ZE Zglog4p 22(2)
j—1
k‘t Z -2—1(7,+ 1) IOg‘lq-;Zg(a) 2 —2-111 Y % .
Thus
. 4q=2p
s (Byitt L q /2y
nE > (q) , wherei=|(2 e )

4
Inn, > (2n

On the other hand, if there exists no j such n; > %nk, then

ng,

Ng—1

and so on. Hence we have

Thus,
Pyk—2
( q)
k-2
k

(Inn)?
On de=22 |p B’
q q

In

IA A

IA

2

v

q—2p lng)l/zkl/z’
q

p
—Ng-1
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Since

) (Inn)? n
n~/<:2mm{n—m;2—ln§, n—log%n—z—l—Q},
we conclude that )
HL) > n— (lan)

q q

0
We note here that the lower bound for #(L) obtained by Shor can be
obtain a letting & = 2.
a2
Now assume that I = z, then #(L) > n — 21“(4_.12“/:)) m(i7z)- In order
to obtain a better lower bound for ¢(L), we have to minimize f(z), where
f(z) = W) Now consider {z |} <z < 1}.

1 ' 1

; _ 1
f=) In(4 - 2/3:)(1113:)2;[(4 —2/z)zln(4 —2/z) * 21na:]’ and
o 4 - 2
f(=) " In(4 - 2/z)3(Inz)z* (4 — 2/7)% (4-2/z)?(Inz)2z3(4 — 2/z)
2 2
" In(4 - 2/z)2(In z)a* (4 - 2/a) T (4=2/2)*(Inz)zt (4 — 2/z)?
1 1

CIn(4 - 2/z)(nz)dz? (4 - 2/z)(nz)2a?

By direct counting, we obtain a local minimum at z ~ 0.793921. Subse-
quently f(z) & 5.518427 which gives the local minimum.Thus we have

Proposition 2.5. Let L be a latin square of order n, then t(L) > n —
5.518427(Inn)?.

Finally, we remark here that the idea of improving the lower bound using
the above technique (changing 4) has been mentioned in Shor’s paper, but
as we know no one has tried tﬁat so far. In this paper, we complete the
research in this direction and we conclude that his method can only improve
the lower bound for #(L) a little bit further, and the result obtained in this
paper should be the best possible.
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