HADAMARD INEQUALITIES FOR WRIGHT-CONVEX FUNCTIONS

KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR

Abstract

In this paper, we establish serveral inequalities of Hadamard's type for Wright-Convex functions.

1. Introduction

If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is known as the Hadamard inequality ([5]).
For some results which generalize, improve, and extend this famous integral inequality see $[1]-[8],[10]-[15]$.

In [2], Dragomir established the following theorem which is a refinement of the first inequality of (1.1).
Theorem 1. If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, and H is defined on $[0,1]$ by

$$
\begin{equation*}
H(t)=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x \tag{1.2}
\end{equation*}
$$

then H is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)=H(0) \leq H(t) \leq H(1)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1.3}
\end{equation*}
$$

In [10], Yang and Hong established the following theorem which is a refinement of the second inequality of (1.1).
Theorem 2. If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, and F is defined on $[0,1]$ by

$$
\begin{align*}
F(t)=\frac{1}{2(b-a)} \int_{a}^{b}\left[f \left(\left(\frac{1+t}{2}\right) a\right.\right. & \left.+\left(\frac{1-t}{2}\right) x\right) \tag{1.4}\\
& \left.+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)\right] d x
\end{align*}
$$

then F is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x=F(0) \leq F(t) \leq F(1)=\frac{f(a)+f(b)}{2} \tag{1.5}
\end{equation*}
$$

We recall the definition of a Wright-convex function:

[^0]Definition 1. (see $[9$, p. 223]). We say that $f:[a, b] \rightarrow \mathbb{R}$ is a Wright-convex function, if, for all $x, y+\delta \in[a, b]$ with $x<y$ and $\delta \geq 0$, we have

$$
\begin{equation*}
f(x+\delta)+f(y) \leq f(y+\delta)+f(x) \tag{1.6}
\end{equation*}
$$

Let $C([a, b])$ be the set of all convex functions on $[a, b]$ and $W([a, b])$ be the set of all Wright-convex functions on $[a, b]$. Then $C([a, b]) \varsubsetneqq W([a, b])$. That is, a convex function must be a Wright-convex function but not conversely (see [9, p. 224]).

In this paper, we shall establish several inequalities of Hadamard's type for Wright-convex functions.

2. Main Results

In order to prove our main theorems, we need the following lemma:
Lemma 1. If $f:[a, b] \rightarrow \mathbb{R}$, then the following statements are equivalent:
(1) $f \in W([a, b])$;
(2) for all $s, t, u, v \in[a, b]$ with $s \leq t \leq u \leq v$ and $t+u=s+v$, we have

$$
\begin{equation*}
f(t)+f(u) \leq f(s)+f(v) \tag{2.1}
\end{equation*}
$$

Proof. Suppose $f \in W([a, b])$. If $s, t, u, v \in[a, b]$, and $s \leq t \leq u \leq v$, where $t+u=s+v$, then we can write $x=s, x+\delta=t, y=u, y+\delta=v$, it follows from (1.6) that

$$
f(t)+f(u) \leq f(s)+f(v) .
$$

Conversely, if $x, y+\delta \in[a, b], x<y$ and $\delta \geq 0$. We may have

$$
x \leq x+\delta \leq y \leq y+\delta
$$

or

$$
x \leq y \leq x+\delta \leq y+\delta
$$

In either case we have, by (2.1), that

$$
f(x+\delta)+f(y) \leq f(x)+f(y+\delta) .
$$

Thus $f \in W([a, b])$.
Theorem 3. Let $f \in W([a, b]) \cap L_{1}[a, b]$. Then (1.1) holds.
Proof. For (2.1), we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & =\frac{1}{(b-a)} \int_{a}^{\frac{a+b}{2}}\left[f\left(\frac{a+b}{2}\right)+f\left(\frac{a+b}{2}\right)\right] d x \\
& \leq \frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}[f(x)+f(a+b-x)] d x \quad\left(x \leq \frac{a+b}{2} \leq \frac{a+b}{2} \leq a+b-x\right) \\
& =\frac{1}{b-a}\left[\int_{a}^{\frac{a+b}{2}} f(x) d x+\int_{\frac{a+b}{2}}^{b} f(x) d x\right] \\
& =\frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{f(a)+f(b)}{2} & =\frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}[f(a)+f(b)] d x \\
& \geq \frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}[f(x)+f(a+b-x)] d x \quad(a \leq x \leq a+b-x \leq b) \\
& =\frac{1}{b-a}\left[\int_{a}^{\frac{a+b}{2}} f(x) d x+\int_{\frac{a+b}{2}}^{b} f(x) d x\right] \\
& =\frac{1}{b-a} \int_{a}^{b} f(x) d x,
\end{aligned}
$$

This completes the proof.
Theorem 4. Let $f \in W([a, b]) \cap L_{1}[a, b]$ and let H be defined as in (1.2). Then $H \in W([0,1])$ is increasing on $[0,1]$, and (1.3) holds for all $t \in[0,1]$.

Proof. If $s, t, u, v \in[0,1]$ and $s \leq t \leq u \leq v, t+u=s+v$, then for $x \in\left[a, \frac{a+b}{2}\right]$ we have

$$
\begin{aligned}
b & \geq s x+(1-s) \frac{a+b}{2} \\
& \geq t x+(1-t) \frac{a+b}{2} \\
& \geq u x+(1-u) \frac{a+b}{2} \\
& \geq v x+(1-v) \frac{a+b}{2} \geq a
\end{aligned}
$$

and if $x \in\left[\frac{a+b}{2}, b\right]$, then

$$
\begin{aligned}
a & \leq s x+(1-s) \frac{a+b}{2} \\
& \leq t x+(1-t) \frac{a+b}{2} \\
& \leq u x+(1-u) \frac{a+b}{2} \\
& \leq v x+(1-v) \frac{a+b}{2} \leq b
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[t x+(1-t) \frac{a+b}{2}\right]+[u x+} & \left.(1-u) \frac{a+b}{2}\right] \\
& =\left[s x+(1-s) \frac{a+b}{2}\right]+\left[v x+(1-v) \frac{a+b}{2}\right] .
\end{aligned}
$$

By Lemma 1, we have

$$
\begin{aligned}
f\left(t x+(1-t) \frac{a+b}{2}\right)+ & f\left(u x+(1-u) \frac{a+b}{2}\right) \\
& \leq f\left(s x+(1-s) \frac{a+b}{2}\right)+f\left(v x+(1-v) \frac{a+b}{2}\right)
\end{aligned}
$$

for all $x \in[a, b]$. Integrating this inequality over x on $[a, b]$, and dividing both sides by $b-a$, yields

$$
H(t)+H(u) \leq H(s)+H(v) .
$$

Hence, $H \in W([0,1])$.
Next, if $0 \leq s \leq t \leq 1$ and $x \in\left[a, \frac{a+b}{2}\right]$, then

$$
\begin{aligned}
t x+(1-t) \frac{a+b}{2} & \leq s x+(1-s) \frac{a+b}{2} \\
& \leq s(a+b-x)+(1-s) \frac{a+b}{2} \\
& \leq t(a+b-x)+(1-t) \frac{a+b}{2}
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[s x+(1-s) \frac{a+b}{2}\right] } & +\left[s(a+b-x)+(1-s) \frac{a+b}{2}\right] \\
& =\left[t x+(1-t) \frac{a+b}{2}\right]+\left[t(a+b-x)+(1-t) \frac{a+b}{2}\right] .
\end{aligned}
$$

By Lemma 1, we have

$$
\begin{aligned}
H(s) & =\frac{1}{b-a} \int_{a}^{b} f\left(s x+(1-s) \frac{a+b}{2}\right) d x \\
& =\frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}\left[f\left(s x+(1-s) \frac{a+b}{2}\right)+f\left(s(a+b-x)+(1-s) \frac{a+b}{2}\right)\right] d x \\
& \leq \frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}\left[f\left(t x+(1-t) \frac{a+b}{2}\right)+f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right] d x \\
& =\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x \\
& =H(t)
\end{aligned}
$$

Thus, H is increasing on $[0,1]$, and (1.3) holds for all $t \in[0,1]$.
This completes the proof.
Theorem 5. Let $f \in W([a, b]) \cap L_{1}[a, b]$ and let F be defined as in (1.4). Then $F \in W([0,1])$ is increasing on $[0,1]$, and (1.5) holds for all $t \in[0,1]$.

Proof. If $s, t, u, v \in[0,1]$ and $s \leq t \leq u \leq v, t+u=s+v$, then

$$
\begin{aligned}
a & \leq\left(\frac{1+v}{2}\right) a+\left(\frac{1-v}{2}\right) x \\
& \leq\left(\frac{1+u}{2}\right) a+\left(\frac{1-u}{2}\right) x \\
& \leq\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x \\
& \leq\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x \leq b \text { for all } x \in[a, b]
\end{aligned}
$$

and

$$
\begin{aligned}
a & \leq\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x \\
& \leq\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x \\
& \leq\left(\frac{1+u}{2}\right) b+\left(\frac{1-u}{2}\right) x \\
& \leq\left(\frac{1+v}{2}\right) b+\left(\frac{1-v}{2}\right) x \leq b \text { for all } x \in[a, b]
\end{aligned}
$$

where

$$
\begin{aligned}
& {\left[\left(\frac{1+u}{2}\right) a+\left(\frac{1-u}{2}\right) x\right]+\left[\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right]} \\
& =\left[\left(\frac{1+v}{2}\right) a+\left(\frac{1-v}{2}\right) x\right]+\left[\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right]+\left[\left(\frac{1+u}{2}\right) b+\left(\frac{1-u}{2}\right) x\right]} \\
& \quad=\left[\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right]+\left[\left(\frac{1+v}{2}\right) b+\left(\frac{1-v}{2}\right) x\right] .
\end{aligned}
$$

By Lemma 1, we have

$$
\begin{aligned}
& f\left(\left(\frac{1+u}{2}\right) a+\left(\frac{1-u}{2}\right) x\right)+f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right) \\
&+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)+f\left(\left(\frac{1+u}{2}\right) b+\left(\frac{1-u}{2}\right) x\right) \\
& \leq f\left(\left(\frac{1+v}{2}\right) a+\left(\frac{1-v}{2}\right) x\right)+f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right) \\
&+f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right)+f\left(\left(\frac{1+v}{2}\right) b+\left(\frac{1-v}{2}\right) x\right)
\end{aligned}
$$

for all $x \in[a, b]$. Integrating this inequality over x on $[a, b]$, and dividing both sides by $2(b-a)$, we have

$$
F(t)+F(u) \leq F(s)+F(v)
$$

hence, $F \in W([0,1])$.
Next, if $0 \leq s \leq t \leq 1$ and $x \in[a, b]$, then

$$
\begin{aligned}
\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x & \leq\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x \\
& \leq\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right)(a+b-x) \\
& \leq\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right)(a+b-x)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right)(a+b-x) & \leq\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right)(a+b-x) \\
& \leq\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x \\
& \leq\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x
\end{aligned}
$$

where

$$
\begin{aligned}
& {\left[\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right]+\left[\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right)(a+b-x)\right] } \\
&= {\left[\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right]+\left[\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right)(a+b-x)\right] }
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\left(\frac{1+s}{2}\right)\right.} & \left.a+\left(\frac{1-s}{2}\right)(a+b-x)\right]+\left[\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right] \\
= & {\left[\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right)(a+b-x)\right]+\left[\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right] }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& F(s)=\frac{1}{2(b-a)} \int_{a}^{b}\left[f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right)\right. \\
&\left.+f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right)\right] d x \\
&=\frac{1}{4(b-a)} \int_{a}^{b}\left\{\left[f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right)\right.\right. \\
&\left.+f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right)(a+b-x)\right)\right] \\
&+\left[f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right)(a+b-x)\right)\right. \\
&\left.\left.+f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right)\right]\right\} d x \\
& \leq \frac{1}{4(b-a)} \int_{a}^{b}\left\{\left[f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right)\right.\right. \\
&+\left.f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right)(a+b-x)\right)\right] \\
&+\left[f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right)(a+b-x)\right)\right. \\
&\left.\left.+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)\right]\right\} d x .
\end{aligned}
$$

Hence, F is increasing on $[0,1]$ and (1.5) holds for all $t \in[0,1]$.
This completes the proof.

References

[1] J.L. BRENNER and H. ALZER, Integral inequalities for concave functions with applications to special functions, Proc. Roy. Soc. Edinburgh A, 118 (1991), 173-192.
[2] S.S. DRAGOMIR, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56.
[3] S.S. DRAGOMIR, Y.J. CHO and S.S. KIM, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489-501.
[4] L. FEJÉR, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369-390. (In Hungarian).
[5] J. HADAMARD, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
[6] K.C. LEE and K.L. TSENG, On a weighted generalization of Hadamard's inequality for G-convex functions, Tamsui-Oxford J. Math. Sci., 16(1) (2000), 91-104.
[7] M. MATIĆ and J. PEČARIĆ, On inequalities of Hadamard's type for Lipschitzian mappings, Tamkang J. Math., to appear.
[8] C.E.M. PEARCE and J. PEČARIĆ, On some inequalities of Brenner and Alzer for concave Functions, J. Math. Anal. Appl., 198 (1996), 282-288.
[9] A.W. ROBERTS and D.E. VARBERG, Convex Functions (Acadamic Press, New York, 1973)
[10] G.S. YANG and M.C. HONG, A note on Hadamard's inequality, Tamkang. J. Math., 28(1) (1997), 33-37.
[11] G.S. YANG and K.L. TSENG, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239 (1999), 180-187.
[12] G.S. YANG and K.L. TSENG, Inequalities of Hadamard's Type for Lipschitzian mappings, J. Math. Anal. Appl., 260 (2001), 230-238.
[13] G.S. YANG and K.L. TSENG, On certain multiple integral inequalities related to HermiteHadamard inequalities, Utilitas Math. to appear.
[14] G.S. YANG and K.L. TSENG, On quasi convex functions and Hadamard's inequality, preprint.
[15] G.S. YANG and C.S. WANG, Some refinements of Hadamard's inequalities, Tamkang J. Math., 28(2) (1997), 87-92.

Department of Mathematics, Aletheia University, Tamsui, Taiwan 25103.
E-mail address: kltseng@email.au.edu.tw
Department of Mathematics, Tamkang University, Tamsui, Taiwan 25137.
School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, MCMC 8001, Victoria, Australia.

E-mail address: sever@matilda.vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

[^0]: 1991 Mathematics Subject Classification. Primary: 26D15; Secondary: 41A55.
 Key words and phrases. Trapezoid inequality, Monotonic mappings, r-moment and the expectation of a continuous random variable, the Beta mapping.

