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Abstract— This work proposes the design of robust Power
System Stabilizers (PSS) for the supplementary damping of the
largest industrial power system in Taiwan. The design procedure
integrates several existing robust control techniques, including
the linear matrix inequality (LMI) framework, the mixed-
sensitivity formulation and model-order reductions. The selection
of weighting function for shaping the open loop control will
also be considered. Nonlinear power system transient simulations
incorporating with various faults are also performed to confirm
the effectiveness of the proposed design. Simulation results have
demonstrated that the resulting robust PSS can indeed enhance
the damping of the low-frequency oscillations and improve system
performance specifications in both the frequency domain and the
time domain.

Index Terms— Damping Control, Power System Stabilizer
(PSS), Robust Control, Linear Matrix Inequality.

I. INTRODUCTION

W ITH the increasing number of inter-connections and
interchanges of electrical energy in power networks,

power systems have recently experienced low-frequency os-
cillations, either unstable or poorly damped [1]. When severe
disturbances occur or the power network is weakened by
cascading outages of tie lines, the stability of the power system
stability deteriorates. This oscillatory phenomenon has been
observed in Taiwan’s largest industrial power plant. Hence,
special attention has been paid to designing control signals to
damp out such oscillations. Power system stabilizers (PSSs)
have been widely used in practical applications to enhance
the damping of such system [2], [3]. The basic operating
principle of PSSs is to generate an electrical torque component
in phase with variations in the rotor’s speed. By controlling
the excitation system using an auxiliary stabilizing signal, the
system can be damped to suppress oscillations of the rotor.
Several methods have been adopted to design PSSs, including
root locus method [4], sensitivity analysis [5], pole placement
[6], and tuning the gain and the time constant of lead-
lag compensators [2]. Although such design techniques are
given by a practically operating point, they do not guarantee
robustness under a wide range of operating conditions. The
current design strategy moves toward robust control design to
overcome this issues [3].

Among various techniques for designing robust controller,
including LQG/LTR [7], �� optimal control [8], [9], [10],
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[11], [12], and structured singular value (SSV) or � synthesis
approach [13], [14], [15], [16], have been applied in designing
PSSs. Although the resulting power system with robust PSSs
is guaranteed to be stable even under severe disturbances, all
of these methods depend on the Riccati equation to be solved.
Riccati-based designs depend heavily on the proper selection
of weighting functions for conditioning of the plant, and no
clear method for selecting these weighting functions. Accord-
ingly, time domain specifications cannot easily be obtained for
practical PSS design.

Linear Matrix Inequality (LMI) techniques have recently
emerged as powerful design techniques for verious linear
control systems [17]. The multi-objective design based on the
LMI formulation has great potential in the field of power
system damping control design [18], [19]. The selection of
weights is very easy, as no restriction is imposed on the
augmented plant. The LMI framework enables the placement
of the closed poles in the specific region of the left-half
plane to control the damping ratio. Additionally, �� can be
mixed with �� and pole placement, improving the closed-loop
behavior [20].

This work investigates the effectiveness of LMI techniques
on designing a robust PSS for the largest industrial power
plant in Taiwan. This design integrates many existing robust
control techniques, including the LMI framework, the mixed-
sensitivity formulation, and model-order reductions. The se-
lection of the weighting functions for shaping the open loop
control is also examined. The performance of the conventional
PSS is compared with that of the proposed robust LMI design
using the power system transient simulation package PSS/E
Ver 28.1 [21]. The results of simulation show that the robust
PSSs using LMI technique can effectively damps out low-
frequency oscillations under various operating conditions.

The work is organized as follows. Section II describes
the studied power system. Section III provides a theoretical
overview of the robust control design using LMI techniques.
Section IV summaries a robust PSS design procedure. Section
V draws conclusions.

II. SYSTEM DESCRIPTIONS

Formosa Plastics Corporation proposed a project in cen-
tral Taiwan in response the absence of raw petrochemical
materials, and its restriction the development of downstream
industries. The project involves more than 50 large-scale
petrochemical plants, including a large thermal power plant, an
Independent Power Plant (IPP) and many Cogeneration Power
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TABLE I

POWER FLOW DATA FOR THE STUDIED SYSTEM

From To Active power(P) Reactive power(Q)
Bus2 Bus1 591.6 MW 94.2 MVAR
Bus2 Bus3 169.4 MW 14.2 MVAR
Bus3 Bus4 67 MW 33.4 MVAR
Bus5 Bus2 210 MW 28.2 MVAR

Plant (CPP). The combined output of generators is 1.8 million
kW. Generated all energy has been sold to Taiwan Power
Company (TPC) and incorporated into the national power grid.

Fig. 1 is a single line diagram of the studied system. The
IPP contains generators GA1-GA3. The CPP includes the
other generators. The external output of the studied system is
connected to TPC, a state-owned utility. TPC is represented as
an infinite bus. Table I and II show the power flow data and
generation data for the system, respectively. Low-frequency
oscillations with poor damping have been observed in this
interconnected system. Hence, Formosa Plastics Corporation
plans to install PSSs to improve the stability of the system.

The power flow data shows that the IPP and the CPP
have almost identical power flows. Additionally, these two
areas are connected by relatively weak tie lines (��-��). As
illustrated in [22], this system can be approximated as a two-
area system with a weak tie-line. Low-frequency oscillations
has been recently observed. A corresponding dynamic model
is used to describe such behaviors and analyze such oscillatory
phenomena. For simplicity, network-reduction models are used
to represented the overall power system [23], including (1)
generator models, (2) control equipment models, and (3) load
models. Herein this work, generators are described using two-
axis detailed models [21], [22], [23]. The variable of the
generator models includes (1) rotor angle �Æ, (2) rotor speed
��, (3) direct axis rotor flux linkage ����, (4) quadrature
axis rotor flux linkage ����, (5) direct axis sub-transient
voltage ��

�

�, and (6) quadrature axis sub-transient voltage
��

�

� , The control equipment includes (1) an exciter, (2) an
turbine, (3) an governor, and (4) an PSS [22], [23]. The
IEEESGO governor/turbine model is used to represent each
unit [21]. Each generator has its own exciter model. Table
II decribes this equipment. All loads are represented using
constant impedance models.

Accordingly, the system state � includes the following
entries � � � ��� ��� � � � �� �� where

�� � � �Æ� ��� ����� ����� ��
�

�� ��
�

�� ��
�

�� � � � �
�

represents the i-th generator, � � �� �� � � � � 	 . Linearizing of
the studied power system yields the state space representation,

�� � 
����� 
 � ��� (1)

The system matrix 
 depends on the operating conditions.
Variables 
 and � are vectors of output variables and control
inputs respectively. After such algebraic manipulations, a
201th-order system is obtained and will be used to design
a robust PSS.

III. LMI-BASED CONTROLLER DESIGN

This section offers a brief overview of multi-objective
design in terms of LMI. Theoretical details can be found
in [17]. The design problem treated in this work is to con-
struct an internally stable controller which satisfies ��/��
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Fig. 1. The single-line diagram of an industrial power system in Taiwan.

TABLE II

GENERATION DATA FOR THE STUDIED SYSTEM

Area Generator Exciter model P (MW) Q (MVAR)
GA1 EXPIC1 552 111

IPP GA2 EXPIC1 552 111
GA3 EXPIC1 552 111
GB1 IEEET1 552 111
GC1 IEEET1 150 21
GC2 IEEET1 150 21
GD1 EXAC1 25 16

CPP GD2 EXAC1 32 10
GD3 EXAC1 50 15
GD4 EXAC1 33 11
GD5 EXAC1 47 15
GE1 IEEET1 104 17
GE2 IEEET1 104 17
GE3 IEEET1 104 17

performance and pole placement. Figure 2 depicts the mixed
sensitivity configuration where � indicates the open loop
plant, � represnets the controller to be designed. ��	�
 and
��	�
 are weighting functions for shaping characteristics of
the open loop plant. The objective of the controller is to
provide additional damping to the system, or equivalently to
reduce the resonant peak of the closed-loop transfer function.
Therefore, the state-space description of the augmented is

�� � 
����� ���� (2)

� � �������� ����� (3)


 � ��������� (4)

where � � �� represents the control input, � is a vector
of exogenous inputs (such as reference signals, disturbance
signals, or sensor noise), 
 � �� represents the measured
output, and � is a vector of output signals.

Let ��� denotes the closed-loop transfer function from �

to � for a dynamical output-feedback law � � �


��� �

�
���

����

�
� (5)

where � � 	� � ��
�� is the sensitivity function that en-
sures disturbance attenuation and good tracking performance.
�� � �	� � ��
�� handles the issues of robustness and
constrains the effort of the controller. The goal of this work
is to obtain a dynamic output-feedback controller under a
dynamical output-feedback law � � �
, with the following
state-space representation

��� � 
��� ���
 � � � ���� ���
� (6)
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Fig. 2. Mixed Sensitivity Feedback Configuration.

The plant � and controller � are defined as above. Hence,
the closed loop system can be represented

���	 � 
�	���� ���	� � � � ��	��	 ���	�� (7)

The ��, �� and pole placement design objectives can be
expressed as an LMI formulation, as follows.

A. �� Control

The �� norm measures the system input-output gain for
finite energy. Let ������ denotes the �� norm of ���. The
objective function of �� control is

������ �

����
�

���

����

�����
�

� �� (8)

The constraint ������ � � can be interpreted as a dis-
turbance rejection problem. This constraint is also useful to
enforce robust stability. In the LMI formulation, the objective
of �� control is achieved in the sub-optimal sense if and only
if there exists a symmetric matrix � � � such that:

�
� 
�

�	� � �
�	 ���	 ��
�	

��
�	� ��� ��

�	

��	 ��	 ���

�
� � �� (9)

with (8), and the �� controller is said to be � sub-optimal.

B. �� Control

Assume that 
�	 is stable and ��	 � �. The �� norm of
��� is defined by

�����
�
� �

�

� 

� ��

��

�!	���	��


���	��

"�� (10)

which corresponds to the asymptotic variance of the output �
when the system is driven by � with white noise. The objective
function of �� control is

�����
�
� �

����
�

���

����

�����
�

�

� #� (11)

Let � be white noise. The �� performance is useful to handle
stochastic aspects such as measurement noise and random
disturbances. In the LMI formulation, the �� norm of ���
does not exceed # when there exist two symmetric matrices
$ � � and � � � such that:
�

�
�	� � �
�	 ���	

��
�	� ��

�
� � �

�
� ��

�	

��
�	 $

�
� �� (12)

where �!%�&	$
 � #���	 � �.
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Fig. 3. LMI region

C. Pole Placement

The transient response of a linear system is related to the
location of its poles. An acceptable transient response can
be achieved by placing all closed-loop poles in a prescribed
region, depicted in Fig. 3. When the closed-loop poles are in
this region, it ensures minimum damping ratio ' � �
� ( [17].
All of the poles of the state matrix 
�	 inside this conical
sector if and only if there exists � � � such that:�

��� (	
�	� � �
�
�	
 �
� (	
�	� � �
�

�	

�
� (	�
�

�	 �
�	� 
 ��� (	
�	� � �
�
�	


�
� �� (13)

This expression can be written in Kronecker product form as

�� �
� �� � � �
� � � (14)

where

� �

�
��� ( �
� (
� �
� ( ��� (

�
� (15)

D. Multi-Objective Controller Design

A mixed ��/�� with regional pole placement is employed
in designing a robust PSS. This design problem minimize #

and � over all controllers, satisfying

������ � � � ������ � #� (16)

The problem is a multi-objective control problem with two
performance specifications. Notably, the problem of the trade-
off between the �� norm and the �� norm constraint is
of interest. In practice, giving up the hard constraints and
proceeding as follows may a numerically advantageous. For
fixed real weights )� and )�, minimize

)������� � )�������

over all controllers that satisfy (16). A larger )�, corresponds
to a greater penalty for large values of ������, and to
a stronger expectation that the optimization procedure will
reduce the corresponding bound �. In order to reduce cal-
culation, This paper assumes that )� and )� are given by 1.

All inequalities in (8), (12) and (13) contain 
�	� which
is a function of the plant � and the controller �, so the
solution algorithm will involve a nonlinear formulation. Some
changes of variables may simplify this nonlinear problem to a
linear one. The detailed treatment is presented in [17]. In this
situation, new controller variables can be obtained using the
interior-point optimization algorithm [24].

IV. ROBUST PSS DESIGN

This section focuses on the design of a robust PSS for
improving the dynamic stability of the studied system. The
201th-order linear model is used to design a robust PSS. The
design procedure consists of the following steps:
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Fig. 4. Singular values of the original 201-th order power system.
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Fig. 5. Comparisons of Bode Plots: the solid line represents the original
system. The dash line is 10th-order reduced system.

A. Reducing the Plant Model

The model-order reductions of the power plant is used
to reduce the computational complexity and to expedite the
design process. The Hankel-norm approximation technique is
used since the magnitudes of singular value can be interpreted
as the strengths of each individual state. The �-Analysis and
Synthesis Toolbox, available in Matlab [25], is used to perform
this reduction. Figure 4 shows the magnitudes of the first 20
singular values of the original 201th-order plant. Since the first
ten singular values are much stronger than that of the others, a
10th-order reduced system can be used to capture the essential
dynamic behaviors of the original system. Figure 5 shows the
Bode response of the original system and the reduced system
to demonstrate that the reduced 10th-order system is very close
to the full 201th-order system. Hence, this 10th-order system
is used to represent the original power plant.

B. Selecting PSS Sites

The participation factor is the sensitivity of a mode to
changes in the machine’s damping coefficient. It is defined
by

*+�

*
��

� ,������ (17)

+� is the corresponding eigenvalue. 
�� is the diagonal entries
of the state matrix. ,�� , ��� are the left eigenvector and the
right eigenvector, respectively. The participation factor can
be used to select the PSS site [22]. Figure 6 shows the
participation factors of the lowest frequency mode. Generator
GB1 has the largest participation factor indicating that PSS
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Fig. 6. Speed participation factors of the lowest frequency mode.

on Generator GB1 will yield the best damping improvement.
Hence, the PSS is installed on the generator GB1.

C. PSS Design

The above LMI formulation is used to design a PSS that
damps out low-frequency oscillations. The PSS design can be
separated two parts, as follows:

1) Selecting Weighting Function: The standard design prac-
tice in LMI design is to choose �� as a high-gain low-
pass filter to reject output disturbance, and �� as a high-
pass filter to reduce the control effort in the high-frequency
range. Simultaneously ensuring robustness and minimizing
the control effort generates a conflict in the nature of ��.
As recommended in [19], the weights ��	�
 and ��	�
 are
chosen to have similar shapes:

��	�
 �
���� 	���� �����


�� � ����� �����
� ��	�
 � ��

����� �

������ �

2) Dynamic Output Feedback: The goal of this work is
to design an PSS that will meet three specifications, con-
cerning ��/�� performance and pole placement. Meeting
these specifications can be considered to be a disturbance
rejection problem, a noise rejection problem, and a damping
improvement problem, respectively. An output-feedback con-
troller is obtained by solving the linear minimization problem,
as follows

Step 1: Specify the pole placement area that the real parts
of system poles are restricted to be less than -0.01,
such the damping ratio of the controlled plant exceed
0.05.

Step 2: Compute the minimum of �� norm that satisfies
the constraints. It is denoted as ����. In our design,
the minimum �� norm is ���� � ����.

Step 3: Obtain a series of values � � ���� at the
prescribed upper bound of the closed-loop �� norm,
and solve the constrained mixed ��/�� problem to
yield a series of values of # corresponding to the
upper bound on �� norm. Figure 7 plots the trade-
off between the �� and �� performance. This curve
shows that the output-feedback controller obtained
at the point ���� � ��� gives the best compromise
between the two objectives.

The multi-objective controller is obtained by using the function
hinfmix of the LMI control Toolbox in Matlab [26]. The LMI-
based design is such that the order of the controller in the LMI
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solution equals to the reduced plant order plus the order of the
weights. The resulting 13th-order PSS is

���
	�
 �
	
	�


�
	�


where

����� � �������
��
� ������	��� 
 ���������� � ���������


���	������ 
 ����
����� 
 ��	������ 
 ����������


��

����� 
 ���	���	�	 
 ������	�� 
 ���	��	� 
 ���
����
����� � �

�	 
 ����
���� 
 �������� 
 ������
���	�
������


���������� 
 ����	����� 
 ��
	
����� 
 ����������


���������� 
 �������	 
 ��������� 
 ��
�����
 
���	���

D. Reducing the PSS Model

The 13-th order controller is very awkward to implement
practically, so the Hankel-norm reduction techniques are em-
ployed to obtain an approximate low-order controller. Figure 8
shows the magnitude of the singular values of the 13th-order
controller. The figure shows that the differences between the
first five and other singular values is very large. A simple
5th-order controller using the Hankel norm is recommended
to approximate the original controller. Figure 9 compares the
Bode responses of the original controller and the reduced
controller. The Hankel norm yields good approximate results.
This 5th-order controller is used to construct the PSS. The
transfer function of the PSS is

����	�
 �
		�


�	�


where

���� � ��������������
�������	
�����	��
�����
�
���
�


���� � �
� 
 �������� 
 ������	 
 ���		�� 
 �������
 �	
��

E. Verifying Pole Positions

Figure 10 shows the distributions of system poles of the
reduced system with and without the 5th-order PSS. As
required by the design specifications, the controller provides
the required damping and shift the system poles into the
desired region of the complex plane. Table III reports the
frequencies - (��) and the damping ratio '(%) for the two
lowest-frequency modes. Hence, as the system equipped with
the designed PSS, the damping ratio of the system exceeds
the minimum requirement of ' � ����.

TABLE III

COMPARISONS OF THE LOWEST TWO FREQUENCY MODES

without LMI PSS with LMI PSS
Mode � (�� ) �(%) � (�� ) �(%)

������ � ����� 0.603 0.32 0.586 25.4
������ � ����� 1.544 8.64 1.576 18.5
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Fig. 8. Singular values of the robust PSS

F. Nonlinear Simulations

Nonlinear simulations are performed to evaluate the perfor-
mance of the controllers under large disturbances to verify the
robustness of the designed PSS. The power system transient
simulation tool PSS/E Ver 28.1 is performed. Three-phase
faults are applied to one of the following tie-lines :

1) Case 1: The line connecting buses �����.
2) Case 2: The line connecting buses �����.
3) Case 3: The line connecting buses �����.

The fault persists for 57ms, after which the circuit was
disconnected by suitable circuit breakers. Figure 11-12 show
nonlinear simulation results. The conventional PSS is designed
following the approach in [2]. The transfer function of the
conventional PSS is

����	�
 �
������� � ���������� ��������

�� � �������� � ��������� ������

From simulation results, it can be observed that the LMI PSS
provides robust stability and good performance in time domain
analysis. Hence, given a large disturbance, the performance of
the proposed robust PSS is very favorable.

V. CONCLUSION

The mixed-sensitivity based on multi-objective control in
the LMI framework was applied successfully to the largest
industrial power system in Taiwan, which suffers from low-
frequency oscillations. The pole placement constraint was ap-
pended to the ��/�� performance by designing a robust PSS.
The robust PSS improves the system damping with reasonable
controller orders. The robustness of the designed PSS was
confirmed verified in the frequency domain by eigen-analysis.
Nonlinear time domain simulations were also performed to
validate the PSS design.
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