A Don’t-Care Based Image Circuit for

Function Verification

J. C. Rau, Y. M. Chen*, and S. C. Chang*
Department of Electrical Engineering
Tamkang University, Taipei, Taiwan, R. O. C.
*Department of Computer Science and Information Engineering
National Chung-Cheng University, Chiayi, Taiwan, R. O. C.

0-7803-7448-7/02/$17.00 ©2002 IEEE

Abstract

In this paper, we propose a novel way to build
a “DC_image” circuit for the don’t cares. The
DC_image circuits are concatenated with the
inputs of the two circuits under verification. By
adding the image circuits, no matter how don’t
cares are in on-/off- sets, we can directly verify the
two circuits with DC_image circuits and claim
whether there exists an inconsistency between the
original and optimized circuits. Our experimental
results show that by the DC_image circuits, the
verification process can be sped up tremendously.

1. Introduction

Traditionally, equivalence checking of
circuits can be achieved by the method of
Automatic Test Pattern Generation (ATPG)
[1][2][41{6] or the method of Binary Decision
Diagrams (BDD) [3][7]. However, for large
circuits, these two methods may suffer from
huge CPU run time or memory exploration
because the problem of equivalence checking
is an NP-complete problem. On the other
hand, if two circuits under functional
verification are structurally similar, a modern
equivalence checker such as AQUILA [5] can
verify two large circuits in few seconds.
This type of function verification, also called
incremental verification, attempts to identify
equivalent pairs for verification. An
observation shows that a high percentage of
equivalent pairs can be identified by only
considering a small sub-circuit surrounding a
candidate signal pair. Therefore, instead of

checking two entire circuits, one can verify
the equivalence by gradually finding
equivalent pairs between two circuits. In this
way, the verification process can be sped up.

In this work, we propose a novel way to
build a “DC_image” circuit of don’t cares to
resolve the problem of function verification
with don’t cares. In our method, the outputs of
DC_image circuits are concatenated with the
inputs of circuits under verification where the
number of outputs for a DC_image circuit is
the same as the number of inputs for the
verified circuits. Note that for a multiple
output circuit, it is possible that some output
combinations cannot be generated by all
possible input combinations. A DC_image
circuit of don’t cares is built in the way that
any don’t care vector cannot be generated by
all possible input combinations.

The rest of this paper is organized as
follows. In Section 2, we describe the basic
concept of DC_image circuits for don’t
cares. In Section 3, we describe our
algorithms to construct the DC_image circuits.
We present the experimental results in Section
4 and give the conclusions in Section §.

2. Basic Concepts of DC_image Circuits

Suppose a circuit Cp has the don’t care
set DC and let the optimized circuit be C;. We
say that two circuits Cy and C; are consistent
if we evaluate each min-term in the care set,
the outputs of C; and C; are the same;
otherwise, we say there is an inconsistency
between Cp and C;. In our technique, a

V-325

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 23:27:40 EDT from IEEE Xplore. Restrictions apply.

DC_image circuit is added at the inputs of Cy

and C, as in Fig. 1. In our definition, a

DC_image circuit of a don’t care set DC must

obey the following two rules.

1. No min-terms in the don’t care set DC can
be generated from a DC_image circuit. In
other words, for all possible input
combinations, there is no such an output y
€ DC in the DC_image circuit.

2. All other min-terms #ot in the don’t care set
DC must be generated by the DC_image
circuit.

b4 4 t 4t
co c1
| EERNE | EEEEE
imaging imaging

FEFeFs FEFFS

Fig. 1: The construction of a DC_image Circuit
3. Serial Cube Chain DC_image Circuits

In this section, we discuss a novel
method that can have a DC_image circuit of
.small size if the DC set is small. We assume
that the DC set is given in the form of DC
cubes (SOP). In most of cases, the size of a
DC_image circuit constructed in this method
is the same as the number of literals in the
corresponding DC set. The method basically
constructs a circuit module for each DC cube
and then concatenates all circuit modules to
form a DC_image circuit. Each circuit
module “filters” out the corresponding DC
cube and when all of them concatenate
together, it becomes a DC_image circuit
whose output cannot produce all DC cubes in
the DC set. We say that a circuit module is a
cube_filter module of a DC cube if
1. The number of inputs is the same as the

number of outputs
2. The module outputs the same vector for
each input vector except it is in the DC set

For example, consider a circuit module
in Fig. 2(a) where the truth table of the
module is also shown in Fig. 2(b). The circuit
module has three inputs (x, y, z) and three
outputs (x;, y;, z;). From the truth table, one
can find that the output vectors are the same
as the corresponding input vectors except the
input vector (x, y, z) = (1,1,1), whose output
vector is (x;, y5, z;) = (4, 1, 0). The circuit
module in this example cannot generate the
output of (I, 1, I) but can generate all other
3-variable vectors {(0,0,0), (0,0,1), (0,1,0),
0,11, (1,00), (1,0,1), (1,1,0)}. In addition,
except the input vector (1, 1, 1), the circuit
module outputs the same vector as the input
vector. In this case, we say that the circuit
module “filters” out the vector (/, I, I). The
module is called a cube_filter module of cube
(1,1,I). We also say that the inputs of a
module are directly mapped to the outputs
except the input vector (1,1,1).

X X

1]1]0J111:0

110

1

®

Fig. 2: (a) Cube_filter module construction for DC
cube xyz; (b) The truth table of (a)

V-326

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 23:27:40 EDT from IEEE Xplore. Restrictions apply.

Note that the condition of a cube_filter
module is stricter than the condition of a
DC_image circuit because in a DC_image
circuit, we only require to output vectors in
the care set and not to output vectors in the
don’t care set. On the other hand, a cube_filter
module of a cube requires the module outputs
the same vector as the input vector except the
DC cube vectors

There are many different ways to build a
cube_filter module of a cube. Our proposed
method of constructing a cube_filter module
is as follows. Basically, we construct a
cube_filter module of a cube ¢ by mapping
cube ¢ to another cube c¢’. Without losing
generality, we illustrate the concept by the
example in Fig. 2. Let the cube under
consideration be c=xyz. In the first step, we
select a new cube ¢’ to which cube c=xyz is
mapped. (The selection process is discussed
later.) Let us assume that cube ¢ '=x;y.z;" is
chosen. We then construct a circuit as in the
Fig. 2(a). In this circuit, when x=1/ and y=1,
the output of z; is forced to 0 such that the
output vector of (/,/,/) cannot be produced,
shown in Fig. 2(a). Therefore, the cube vector
c=xyz is mapped to c¢’= x;y,z;” while all other
vectors are mapped to the same values.

Finally, a DC_image circuit can be
constructed by concatenating all cube_filter
modules of all DC cubes together as in Fig.3.

cl @2 o} Girl n

..... > S —»
Bilock 1] - Block 2 Block i Block i+ Block n

s —

—»
24} D2 Di Di+1 On
> e O T . > —>

Fig. 3: The structural drawing of serial cube
chain DC_image circuit

To avoid the re-generation of filtered
cubes, we enforce the following rules. When
the ¥" cube_filter module of cube c¢; is
constructed, the mapped cube ¢;’ must not be
contained in the sum of cubes in the previous
modules; i.e., ¢, '€ Xc; (Where i=1..k-1).

The heuristic method of selecting
mapped ¢’ for a cube_filter module is
described as follows.

1. Simplify and collapse DC to get the

minimum SOP.

2. Order the cubes of the minimum SOP by
the increasing number of literal count of
the cubes.

3. Get a cube ¢; compute the differences
between c; and the cubes that are after c;.

4. According to the differences, we can build
the new cube d, which can guarantee the
minterms of ¢; will not appear on
DC_image circuit.

S. Repeat (2) to (4) until all cubes of DC are
chosen.

6. From all d;, we can construct DC_image
circuit.

4. Experimental Results

In this section, we present our
experimental results in Table 1. All
experiments are conducted on ULTRA 2
machines. To verify the correctness of circuits
optimized with don’t cares, we use the
verification package of SIS [8], AQUILA [5],
and the concept of set containment as a way
of comparison. The set containment method is
described as follows.

Let the Boolean function under
verification be Fy, the don’t care set of Fy be
DC and the Boolean function after optimizing
Fo with DC be F,. We have the following
relation.

Fg—DCCFICFO+DC

To verify whether there is an
inconsistency between F, and F;, we check
whether the above containment operations are
satisfied. The set containment operations can
be achieved by using BDD operations.

In Table 1, the first column shows the
names of benchmark circuits. The external
don’t cares of circuits in Table 1 are randomly
generated. All the circuits are then simplified
with the don’t cares by SIS command
“full_simplify -d” We use cube_filter
modules to construct DC_image circuits.
Column 2 shows the time to construct
DC_image circuits and to verify using SIS.
Column 3 shows the time to construct
DC _image circuits and to verify using
AQUILA. The last column shows the
verification time using set containment
operations. For example, when using the

V-327

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 23:27:40 EDT from IEEE Xplore. Restrictions apply.

cube_filter DC_image technique, circuit cse
takes 0.17 seconds by SIS 0.44 seconds by
AQUILA., and 0.30 seconds by the set
containment technique.

In general, by constructing the
DC image circuit, we have obtained
reasonable improvement for the experiments
on sequential circuits. However, we are
unable to extract the external don’t cares for
large sequential circuits due to the limitation
of SIS command “xdc.” As a result, the
circuits in our experiments are small and
cannot demonstrate the full advantages of our
approaches. We, on the other hand, have
shown significant improvement using the
DC_image techniques. Many circuits cannot
finish the function verification by the set
containment operations while can be finished
by the DC_image circuit approaches. Hence,
the serially chained cube_filter is better.

Serially Chained Cube
Imaging Circuits

:;;‘fc‘: SIS | AQUILA| Sets
cse 0.17 0.44 0.30
- dki5 0.08 0.16 0.08
donfile 0.17 0.37 0.19
keyb 0.30 . 130 1.72
kirkman 0.20 0.62 0.30
me 0.04 0.09 0.05
planet 2.37 3.62 3.70
planet] 2.34 3.59 3.59
 sla 0.43 1.14 4.53
sand 0.41 3.01 7.12
styr 0.54 1.23 2.09
train1l 0.04 0.12 0.05

Tablel: The verification results of sequential
circuits

5. Conclusions

In this work, we discusses the
verification problem resulted form using DC
condition to simplify circuits. For efficiently
solving the problem, we present a novel
strategies. First, we design a cube_filter
module for a DC cube, the function of the
cube_filter module is to filter the min-terms in
the DC cube. After constructing the

cube_filter modules for all DC cubes of a DC
condition, we connect them into a DC_image
circuit. Such DC_image circuit can guarantee
to produce no min-terms in the DC condition
and can be employed to efficiently verify the
consistence of a circuit and its simplified
version with the DC condition. For avoid
re-producing the min-terms filtered in former
blocks, we also propose a heuristic to
determine the cube order by which we
construct the cube_filter modules. In the
experiments, we use three methods to perform
verification, and the results show that with the
DC_image circuits, the verification can be
sped up and are very encouraging.

References

{1] M. Abramovivi, M. A. Breuer, and A. D.
Friedman, “Digital Systems Testing and
Testable Design,” IEEE Press, 1990.

[2] D. Brand, “Verify of Large Synthesized

Designs,” Proc. of Int Conf on
- Computer-Aided Design, pp. 534-537, Nov.
1993. :

[31 R. E. Bryant, “Graph-based Algorithms for
Boolean Function Manipulation,” [EEE
Trans. on Computes, vol. 35, No. 8, pp.
677-691, Aug. 1986.

[4] A. Ghosh, S. Devadas, and A. R. Newton,
“Test Generation and Verification for Highly
Sequential Circuits,” IEEE Trans. on
Computer-Aided Design, pp. 652-667, May
1991.

[51 S. Y. Huang, K. T. Cheng, and K. C. Chen,
"AQUILA: An Equivalence Verifier for
Large Sequential Circuits,” Proc. of Asia and
South Pacific Design Automation Conf., pp.
455-460, Jan. 1997.

[6] W. Kunz, “CANNIBAL: An Efficient Tool
for Logic Verification Based on Recursive

Leamning,” Proc. of Int Conf. on
Computer-Aided Design, pp. 538-543, Nov.
1993.

{71 R. Rudell, “Dynamic Variable Ordering for
Ordered Binary Decision Diagram,” Proc. of
Int Conf. on Computer-Aided Design, pp.
42-47, Nov. 1993.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C.
Moon, R. Muragi, A. Saldanha, H. Savoj, P.
R. Stephan, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “SIS: A System for
Sequential Curcuit Synthesis,” University of
California, Berkeley, Technical Report
UCB/ERL M92/41, May 1992.

V -328

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 23:27:40 EDT from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

