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Abstract The ability to rapidly acquire synchronized 
phasor measurements from around the system open up new 
possibilities for power system operation and control. A 
novel neuro-fuzzy network, Fuzzy Hyperrectangular 
Composite Neural Network, is proposed for voltage security 
monitoring (VSM) using synchronized phasor 
measurements as input patterns. This paper demonstrates 
how neuro-fuzzy networks can be constructed off-line and 
then utilized on-line for monitoring voltage security. The 
neuro-fuzzy network is tested on 3000 simulated datas from 
randomly generated operating conditions on the IEEE 30- 
bus system to indicate its high classification rate for voltage 
security monitoring. 

1. Introduction 

In recent years an instability, usually termed a voltage 
instability, has been observed and been responsible for 
several major network collapses in many countries [I, 21. 
The phenomenon was not always in response to a 
contingency such as the loss of an important transmission 
line or a generator, but rather in response to an unexpected 
raise in the load level, sometimes in combination with an 
inadequate VAR support at critical network buses. 

Significant research efforts have been devoted to 
understanding voltage phenomena. A large portion of this 
research in focused on the steady-state aspects of voltage 
stability. Indeed, a lot of researchers have proposed the 
concept of voltage security margin which show how close 
the current operating point of a power system is to the 
voltage collapse point [3-151 as monitoring of voltage 
security. Specifically, Tiranuchit [ 3 ]  proposed the 
minimum singular value of the Jacobian of the load flow 
equation as a voltage security index. The concept of 
multiple load flow solutions was proposed to deal with 
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voltage security problems [4, 51. Lof [6] presented a fast 
method to calculate the minimum singular value and the 
corresponding (left and right) singular vectors. 
Continuation methods were also applied to compute the 
exact collapse point and the voltage security margin in MW 
[7-91. Van Cutsem [lo] used the solution of a reactive 
power optimization problem as the voltage security. Gao 
[ll] used the modal analysis technique to compute the 
voltage security. One main disadvantage of aforementioned 
techniques is that they require large computations and are 
not efficient for on-line use in control center. For on-line 
applications there is a need for tool which can provide 
timely evaluation of voltage security such that operators 
may observe advance warning signals in order to steer the 
system away from a developing voltage collapse whenever 
possible. 

Except the above methods, there is another class of 
techniques applied to voltage security monitoring (VSM) 
which are artificial intelligence methods in nature. 
Specifically, there are Artificial Neural Network [ 12 - 1 41, 
and Decision Tree [15] for VSM. The artificial intelligence 
methods can learn in off-line from training set and are used 
in on-line to classify new data much faster than would be 
possible by solving the model analytically. 

With the advent of systems capable of making 
synchronized phasor measurements, the on-line monitoring 
of the voltage security has become an possibility [16-181. 
Commercially available systems based on GPS (Global 
Positioning System) satellite time transmissions can 
provide synchronization to 1 microsecond accuracy. By 
communicating time-tagged phasor measurements to a 
central location, the state of the system can be tracked 
on-line. Utility experience indicates that communication 
bandwidths can handle 12 complete set of phasor 
measurements per second [19]. In this paper, we propose a 
two-layer Fuzzy Hyperrectangular Composite Neural 
Network (FHRCNN) using synchronized phasor 
measurements as input patterns for VSM. The FHRCNN 
first introduced in [20] has been proved to have several 
advantages over traditional Feed-forward Artificial Neural 
Network (ANN) in the context of pattern recognition. In 
particular, F'HRCNN can provide explanations of their 
responses, i.e., explicit IF-THEN rules or logical reasoning 
processes. This expert system like property makes 
FHRCNN especially suitable for VSM since a trained 
FHRCNN can explicitly provide the security range of input 
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patterns, which is useful for power system operator to 
identify the key influencing patterns. The minimum 
singular value and corresponding right singular vector are 
adopted to train and test FHRCNN. 

The paper is organized as follows. Section 2 briefly 
explains the measuring technique of synchronized phasor 
measurements. The FHRCNN is described in Sec. 3. The 
adopted voltage security index and weak bus identification 
are described in Sec. 4. In section 5, the proposed scheme is 
simulated on IEEE 30-bus system. Finally, a summary 
conclusion is given in Sec. 6. 

2. Synchronized Phasor Measurements 

A detailed description of phasor measurement units 
(PMUs) utilizing time synchronized sampling over an 
entire power system to simultaneously obtain the phasor 
measurements can be found in 116-181. Here a brief 
description of this technique is provided below for the case 
of reference. Let y(t) represent a voltage or current in 
sine-cosine form where E ( f )  represents noise like signals 

y(t) = Yccosoot+ Y,sinwot+&(t) 

Estimates of the values pc and ts can be obtained with 
a Fourier calculation where there are N samples per cycle 
or half-cycle of the fundamental frequency W O  (the nominal 
power system frequency, 50. or 60 Hz.. 

If y(t) is a pure sinusoid that equals cos(oot+ 6), the 
complex number ? computed from eqns. l a  and lb  has the 
angle 6 . If y(t) is a bus voltage the resulting complex 
voltage phasor can be thought as the state of the system for 
many applications. As the window of N samples moves in 
time [the sums in eqns. a and b taken from n=k to 
n=N+k-1] the angle of ? rotates. A reference angle can be 
established and the calculations made recursively by 
writing the equation with $ equal to WOAT and fL as the 
phasor computed using N sample values ending at sample 
L .  

FL = YL-' + ( 6 ) I Y L  -yL-Nexp(i"xp(-jL+) (2) 

The recursive calculation is computationally efficient 
since only one multiplication is performed in eqn.(2). Even 
more importantly, if the signal y(t) is a pure sinusoid at the 
nominal frequency WO,  then kL is stationary in phase with 
a phase angle equal to the angle 6 at the instant at which 
the recursion was begun. Currently, one limiting factor to 
this technology is the availability of an accurate sampling 
clock synchronism system. The use of a navigation 
broadcast system such as the global positioning system 

(GPS) has made it possible to produce synchronizing pulses 
once every second with accuracy of 1 microsecond. 

3. The Proposed FHRCNN 

A two-layer FHRCNN with hybrid training algorithm is 
developed to monitor voltage security in this section. A 
description of basic elements of two-layer FHRCNN (shown 
in Fig. 1) follows. 

Fuuy membership 

I output 

Fig. 1 A two-layer FHRCNN 

Input Vector 
;(=[x, , x, ,... , x,,]) is an input vector and should 

be properiy chosen for the success of FHRCNN application 
in VSM. Since the GPS based synchronized voltage phasors 
provide the on-line information of system state, in this 
paper, we choose the set of voltage phasors of monitored 
buses as the input vector. Thus the input vector, 3, is of the 
following form: 

Output variable 
The magnitude of output variable is employed to 

label the voltage security levels. Suppose the study power 
system voltage security levels are classified into 5 levels 
according to the magnitude of the minimum singular 
value, s,,: very secure level (s,, 2 0.4450), secure level 
(0.4449 2 s,, 2 0.3600), alert level (0.35992 s,, 2 0.1950), 
dangerous level (0.1949 2 s,, 2 0. lOOO), very dangerous 
level (0.0999 2 s,, > 0.0). Of course, the determination of 
range of the minimum singular value depends heavily on 
the specific power system under operation. On possible way 
to do this is to extensively conduct simulations off-line for 
the study power system under various operating conditions 

label the 5 levels as output values like this : 
to statistically determine the range. We use five integers ta 

5 -+very secure level 
4 +secure level 
3 +alert level 
2 -+dangerous level 
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1 +very dangerous level 

ips between input vector and output 
can be described by the following 

equation. 

where 
(4) 

And, 
hybrid training algorithm. 

wI, 8, s,, M,,, m,, : scalar parameters adjusted by 

Hybrid Training Algorithm 
The supervised decision-directed learning (SDDL) 

algorithm and back-propagation (BP) algorithm are 
combined to train FHRCNN. The SDDL is based on an 
approach that divides the input vector space into proper 
subsets (i.e. hyperrectangles). Each hyperrectangle, 
corresponding to a hidden node, is n-dimensional and 
defined by [m,l,Mjl] x +.. x [mJn,MJ,] in R" space. Once 
the number of hyperrectangles and initial parameters, 
m,~,  M,I, ... , m,,, MI,, are determined by SDDL. The BP 
algorithm is used to adjust parameters, w,, 8, s,, U,,, mjl ,  
such that the following error function is minimized. 

2 
Error = C E - C :(Outp - t p )  

P p - P  (7) 

where 
tP : desired output value of the p-th input vector, 
Out, : output value from FHRCNN. 

A detailed description of the hybrid training algorithm is 
given in [20]. 

F-THEN Rules 
After sufficient training, the synaptic of a trained 

FHRCNN with hidden nodes can be utilized to extract the 
classification knowledge which are then represented as a 
set of IF-THEN rules such as the following examples: 

IF (2 E HR ), THEN output is 5 .  
IF (2 E HR2), THEN output is 4. 
IF (2 E HR3), THEN output is 3. 
IF (2 E HR4), THEN output is 2. 
IF (2 E HR5), THEN output is 1. 

Where HR, represent an n-dimensional hyperrectangle 
defined by [rn,l , M,1] x [mj2 , M121x . . . x[mjn , Mjnl, 
j=1,2, ... , 5 .  

4. The Adopted Voltage Security Index 
and Weak Bus Identification 

The goal of a static voltage security index is to measure 
how "close" a specific operating point is to the point of 
voltage collapse, i.e. to estimate the steady state voltage 
stability margin of the power system. One suggestion for a 
static voltage security index is to use the minimum singular 
value of the power flow jacobian matrix. The use of this 
index, obtained from a singular value decomposition of the 
power flow jacobian matrix, has been proposed and verified 
by Tiranuchit and Thomas in [3]. In this paper, the 
minimum singular value, sn,  and its corresponding (righ 
and left) singular vector, R,, L n ,  are adopted to obtain the 
attributes of training and test patterns for FHRCNN. 

Consider the following well-known linear power flow 
equation,- - -  - 

Where P and Q are the active and reactive power, 
respectively, 8 and V are the node angles and voltage 
magnitudes, respectively, and J is the Jacobian matrix of 
power flow equations. According to Eq. (6), The effect on 
the [ A 0 ,  AV* vector of a small change in the active and 
reactive power @jectio_ns can-be rewritten as 

(9) 

The singular value decomposition is applied to the 
power flow Jacobian matrix, J .  The matrix J n x ,  then has 
form 

J =  LSRT = 2 L,S,RT (10) 
i=l 

where L and R are n by n orthonormal matrices, the 
singular vector L,  and R,  are the columns of the matnces L 
and R, respectively, S is a diagonal matrix, and s, is a 
singular value of matrix J .  As a result, Eq. (9) can be 
rewrittenras ~ r 

l o  
(11) 

where SI 2 s2 2 s3 2 . - a  2 sn 2 0. From Eq. (11), if the 
minimum singular value, S n ,  is equal to zero then the 
Jacobian matrix is singular and no power flow solution can 
be obtained. At the point where sn = 0 is called a Static 
Bifurcation Point which is associated with voltage collapse 
phenomena [3]. Therefore, the smaller of the magnitude of 
s, is, the closer to voltage collapse of the operating point is. 
Ifwelet- 

12 ] = L n  
where Ln is the last column of L, then from Eq. (1 1) 
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where R, is the last column of R. 
A summary of the above analysis is : 

1. The minimum singular value, S, , is an indicator of the 
proximity to the steady-state voltage stability limit; 

2. The right singular vector, R,, corresponding to s, , 
indicates sensitive voltages (and angles). 

3. The left singular vector, L ,  , corresponding to s, , 
indicates the most sensitive direction for changes of the 
active and the reactive power injections. 
In this paper, we focus on the right singular vector, R,, 

indicating sensitive voltages. Let 

Rn = [r1,r2,.. . ,  rm, r m + I , * * * ,  r,lT (14) 

where rr , i=l, 2, ... , m are the elements which correspond 
to bus angle changes in vector R, and r r ,  i=m, m+l, ..., n 
are the elements which correspond to bus voltage 
magnitude change in vector R,. The weakest bus would 
imply the largest value of r l ,  i=m, m+l, ..., n, i.e. the 
largest change in voltage magnitudes. As a result, if bus k 
is the weakest node, then 

where JL is a set of all load buses. Based on the value of 
(index) ri , the system buses may be arranged in order of 
weakness. 

Training and test patterns of FHRCNN for VSM have 
been designed according to the above analysis. The 
minimum singular value, s,, is employed to classify 
voltage security level. The right singular vector, R,  , is used 
to identlfy weak buses, and the location and number of 
PMUs to be installed in power system is determined 
according to the ranking of weak buses under heavy load 
condition. That is, we install PMUs in weak buses to 
monitor voltage security. Moreover, the voltage phasor 
measurements from PMU form the input vector of 
FHRC”. 

5. Numerical Example and Results 

The IEEE 30-bus system with PMUs (shown in Fig. 2) 
was used to test the effectiveness of FHRCNN for VSM. 

Fast calculations of the minimum singular value and 
corresponding singular vector based on [6] were adopted to 
prepare for the training patterns and test patterns. The 2500 
training patterns and 500 test patterns were generated from 
a extensive power flows by considering random load 
changes (light load to critical load), effects of on-load tap 
changers (OLTCs), generator power limits (reactive power 
limits on generators), VAli compensators, and various 
contingencies. 

The simulation program were developed on a SUN 
SPARC I1 in C++ and MATLAB. The power flow results of 
critical load conditions is shown in Table 1. Under critical 

1. J 

28 

1 m 
1 2 2  

2 

30 29 

Fig. 2 EEE 30-bus system with 10 PMUs 

load condition, all generator buses (PV) except the swing 
bus are converted to PQ buses. 

10 phasor measurement units (?MUS) were installed on 
bus 30, 26, 29, 25, 27, 24, 23, 19, 18, 20 based on weak 
bus ranking of the test system under heavy load condition. 
The result of the weak bus ranking under heavy load 
condition is presented in Table 2. 

Table 1 power flow results under critical load condition 
(minimum singular value=0.0068) 

Bus Type voltage angle Pg Qg Pa Q a  

1 1 1.060 0.000 4.748 2.798 
2 3 0.912 -9.300 0.400 0.500 
3 3 0.852 -13.980 0.000 0.000 
4 3 0.812 -17.417 0.000 0.000 
5 3 0.760 -30.020 0.000 0.400 
6 3 0.778 -21.462 0.000 0.000 
7 3 0.752 -26.298 0.000 0.000 
8 3 0.767 -23.206 0.000 0.400 
9 3 0.750 -30.853 0.000 0.000 
10 3 0.720 -36.209 0.000 0.190 
11 3 0.811 -30.853 0.000 0.240 
12 3 0.720 -33.766 0.000 0.000 
13 3 0.764 -33.766 0.000 0.240 
14 3 0.689 -36.712 0.000 0.000 
15 3 0.680 -37.064 0.000 0.000 
16 3 0.703 -35.721 0.000 0.000 
17 3 0.703 -36.753 0.000 0.000 
18 3 0.665 -39.178 0.000 0.000 
19 3 0.664 -39.759 0.000 0.000 
20 3 0.671 -39.038 0.000 0.000 
21 3 0.690 -37.693 0.000 0.000 
22 3 0.691 -37.654 0.000 0.000 

0.000 0.000 
0.394 0.230 
0.036 0.018 
0.114 0.024 
1.507 0.304 
0.000 0.000 
0.344 0.164 
0.462 0.456 
0.000 0.000 
0.087 0.030 
0.000 0.000 
0.169 0.113 
0.000 0.000 
0.093 0.024 
0.124 0.037 
0.052 0.027 
0.136 0.087 
0.048 0.013 
0.143 0.051 
0.033 0.010 
0.264 0.169 
0.000 0.000 
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value of tolerance 

23 3 
24 3 
25 3 
26 3 
27 3 
28 3 
29 3 
30 3 

1.0000e-04 weight 0.1-0.21 

0.661 
0.656 
0.648 
0.603 
0.664 
0.761 
0.610 
0.579 

- 

- 

- 

-38.415 
-38.990 
-37.677 
-39.330 
-35.908 
-22.894 
-40.619 
-44.380 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.043 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.048 
0.131 
0.000 
0.052 
0.000 
0.000 
0.036 
0.160 

0.024 
0.101 
0.000 
0.034 
0.000 
0.000 
0.013 
0.028 

* type 1:swing bus, 2: PV bus, 3: PO bus 
** PV buses change sequence: bus f 13,11,2,5,8) 

*** input variables from PMU 

Table 2 Weak buses ranking under heavy load condition 

- 

Rank r, index voltage angle loaddemand PMU 
Bus ri Mw W A R  

1 30 
2 26 
3 29 
4 25 
5 27 
6 24 
7 23 
8 19 
9 18 
10 20 
11 15 
12 22 
13 21 
14 14 
15 17 
16 16 
17 10 
18 12 
19 13 
20 9 
21 11 
22 28 
23 8 
24 6 
25 7 
26 4 
27 5 
28 3 I 29 2 

0.261 
0.256 
0.250 
0.23 1 
0.220 
0.2 18 
0.214 
0.212 
0.211 
0.208 
0.202 
0.200 
0.199 
0.198 
0.193 
0.192 
0.188 
0.183 
0.179 
0.167 
0.161 
0.130 
0.121 
0.117 
0.112 
0.102 
0.097 
0.085 
0.053 

0.752 -34.979 
0.766 -3 1.953 
0.775 -32.717 
0.800 -30.909 
0.815 -29.719 
0.804 -31.819 
0.817 -31.672 
0.815 -32.496 
0.820 -32.200 
0.822 -3 1.970 
0.838 -30.959 
0.876 -28.943 
0.827 -30.936 
0.848 -30.855 
0.841 -30.391 
0.852 -29.957 
0.851 -29.904 
0.876 -28.943 
0.913 -28.943 
0.874 -26.132 
0.928 -26.132 
0.842 -20.080 
0.848 -20.225 
0.855 -18.858 
0.838 -22.297 
0.875 -15.634 
0.852 -24.557 
0.905 -12.704 
0.958 -8.460 

15.9 
5.3 
3.6 
0.0 
0.0 
13.1 
4.8 

14.3 
4.8 
3.3 

12.3 
0.0 

26.2 
9.3 

13.5 
5.3 
8.7 

16.8 
0.0 
0.0 
0.0 
0.0 

42.0 
0.0 

34.2 
11.4 

131.9 
3.6 

32.6 

2.8 
3.6 
1.4 
0.0 
0.0 

10.1 
2.4 
5.1 
1.4 
1.0 
3.8 
0.0 

16.8 
2.4 
8.7 
2.7 
3.0 

11.3 
0.0 
0.0 
0.0 
0.0 

42.0 
0.0 

16.3 
2.4 

26.6 
1.8 

19.0 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
f 

The voltage security level is divided into 5 levels based 
on the magnitude of the minimum singular value : very 
secure level ( sn 2 0.4450), secure level (0.4449 l s n  2 
0.3600), alert level (0.3599 2 s n  2 0.1950), dangerous level 
(0.1949 2 s n  2 O.lOOO), and very dangerous level (0.0999 
2 Sn 2 0.0). Therefore, the training patterns were divided 
into five clusters according to the learning characteristics of 
hybrid training algorithm of W C N N  to train the 
FHRCNN. Training parameters of the network are shown 
in Table 3. 

After training, FHRCNN extracted 21 IF-THEN rules 
for VSM, which were represented as hyperrectangulars (i.e. 
hidden nodes) in input vector space. These IF-THEN rules 
can provide utility operators with an expert-system like tool 
to analyze bus voltage phasor sensitivity to the minimum 
singular value. Table 4 shows the lower and upper bounds 
of hyperrectangles (IF-THEN rules) for various voltage 
security levels. A look of Table 4 reveals that the lower 

Table 3 Training parameters of FHRCNN for 30-bus system 

input data 
No. of records of 
training data 

testing data iteration 
No. of record of io,ooa 

I value of learning rate 1 4.0000e-04 I bias 1 0.23-0.27) 

6. Conclusions 

In this paper, we have demonstrated the success of 
properly trained FHRCNN for voltage security monitoring 
based on synchronized phasor measurements. Extensive 
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Table 4 The upper(u) and lower(L) bounds of hyperrectangles 

Very dangerous level Dangerous level Alert level Secure level Very secure level 
Rule 1-3 Rule 4-8 Rule 9-14 Rule 15-18 Rule 19-2 1 

1 FHRC" 

0.6091 0.831~-0..708 I -0.4591 0.7231 0.9441 -0.5961 -0.321 

Training set 100% 100% 100% 100% 100% 
Test set 97.72% 98.17% 98.30% 98.54% 98.02% 

0.6561 0.8731 -0.681 -0.4531 0.751 0.981 -0.5661 -0.321 

1 A" 

0.6611 0.8711 -0.671 -0.4471 0.756) 0.9751 -0.5861 -0.316 

Training set 93.18% 95.61% 94.75% 97.13% 95.08% 
Testset 84.21% 88.78% 89.00% 87.27% 87.32% 

06641 08741 -06931 

-0461 (lli (l;Ji -001 410: 0665 0873 -0683 -0454 

0676 0883 -0681 -0444 0758 0987 -0605 -0321 

Input Vector 
(20 dimensions) 

29,25,27,24,23, 
19,18,20 

V, ,en  n= 30,26, 

0.834 0.993 -0.561 -0.27 0.932 0.995 -0.406 -0.213 

0.837 0.996 -0.579 -0.277 0.936 I -0.414 -0.217 

Voltage Security Level 
Pattern Very Secure Secure Alert Dangerous Very Dangerous 

Training set 100% 100% 100% 100% 100% 

Test set 97.72% 98.17% 98.30% 98.54% 98.02% 

0.835 0.993 -0.571 -0.273 0.933 0.997 -0.41 -0.215 

0.851 0.999 -0.57 -0.274 0.944 1.007 -0.426 -0.146 

P, , Q, ,n=30,26, 
29,25,27,24,23, 
19, 18,20 

P, ,Q,i=2,5,8,13 
P, ,Q, , k=30,29, 

26,24,20,19 

Table 5 The classification rates of FHRCNN and ANN far IEEE 30-bus system 

Training set 94.18% 95.30% 92.75% 93.53% 92.42% 
. 

Test set 76.24% 78.78% 75.60% 77.27% 77.02% 

Training set 99.10% 98.25% 97.06% 95.13% 95 .OS% 

Test set 90.72% 89.98% 87.27% 86.45% 85.83% 

voltage voltage 

I -0.332 -0.2 

0.925 I -0.332 -0.2 

0.951 1 -0.324 -0.2 

Voltage Security Level 
Vervsecure I secure I Allert I Dangerous I Verv Dangerous 

Device I 
Table 6 The classification rates of FHRCNN input vector selected based on 

synchronized phasor measurements (PMUs) and SCADA systems 

testing was performed on the IEEE 30-bus system under larger system could be handled. Once the FHRCNN 1s 

various operating conditions. Accuracies in excess of 97% constructed in off-line, the on-line VSM response is 
were also obtained for these testings. The FHRCNN was extremely fast. We suggest that a FHRCNN methodology 
constructed off-line from simulated data. The can automate the process of transforming off-line 
computational burden proved to be quite reasonable, and simulation studies into on-line decision rules. 
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