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Absiruct - In this paper, the synthesis problem of 
reduced-order f f 2  dynamic output feedback controllers with 
coefficient constraint is considered. Sufficient LMI conditions 
for the existence of such controllers are given and explicit 
formulas for the controllers are derived. Numerical examples 
are provided to demonstrate the effectiveness of the proposed 
method. 

Index Terms - Robust control, H ,  control, reduced-order, 
controller coefficient constraint, linear matrix inequality(LM1) 

I. INTRODUCTION 

In the past two decades H, and H,control have been 
active areas of research. While the synthesis methods for 
obtaining full-order controllers for both of the problems have 
reached a certain level of maturity, there still lacks an 
efficient algorithm for the reduced-order case even if the 
solutions do exist. 

in the literature most of the papers relevant to the 
reduced-order case are concerned with H, performance. The 
existence of reduced-order suboptimal H, controllers can be 
fully characterized by a system of linear matrix inequalities 
together with a rank constraint [I], [2]. However, the 
mathematical problem is very dificult to solve. A number of 
optimization techniques have been proposed to attack this 
problem, see e.g., [ 1,3]. In [4] the problem was reformulated 
and solved by an alternative projection technique. In [ 5 ]  the 
synthesis problem was converted into a static output feedback 
design problem. Sufficient LMI conditions were derived. 
Several other LMI-based methods were proposed [6-101 via 
employing different formulations and concepts. Despite the 
hot studies on the reduced-order H, controller issue, little 
attention has been paid toward the corresponding H ,  problem 
[ I l l .  

On the other hand, it is known that the existingH,and 
H, synthesis methods have no control on the magnitude of 
the resulting controllers' coefficients. Sometimes, the 
controllers obtained by these methods exhibit very large 
coefficients which are too big to be realized. Therefore, the 
purpose of this paper is to propose a design method for 
obtaining H, reduced-order controllers with coefficient 
constraint taken into consideration . We will present a LMI 
approach to tackle this problem. Due to space limitation, 
some of the proofs have been omitted. 

11. PROBLEM FORMULATION 

We consider a linear, time-invariant, single-input-single- 
output (SISO) continuous-time control system as shown in 
Fig. I., 

i 

where Po represents the nominal plant, W, denotes a 
weighting function reflecting the frequency content of the 
disturbance w , and K is the dynamic output feedback 
controller to be designed. Our goal is to design a 
reduced-order, if possible, dynamic output feedback 
controller K ( s )  with reasonable coefficients to achieve 
closed-loop stability as well as to attenuate the effect of the 
disturbance on the system as possible. This problem can be 
recast as a reduced-order H, control problem. To this end, it 
is routine to convert the conventional control system 
framework in Fig. 1. into the popular robust control 
framework as shown in Fig. 2. 

zz+-w Y 

Fig. 2. G - K framework. 

For hrther exposition, we make the following assumption: 
both the nominal plant and the weighting function are strictly 
proper. Furthermore, without loss of generality we may 
assume that the generalized plant G is of dimension n. It 
follows that 

U (s) (b,_,s"-'  + b, -2sn- *  + b , s  + b o )  Y ( s )  = 
s n  + a,-,s"-' + *.. a , s  + a, 

+ (C,-]s.-' + C,-2Sn-2 + ... C I S  + 
(s) s n  + a,-,s"-' + ... a,s + a, 

where Y ( s ) ,  U(s) ,  and W ( s )  are the Laplace transform of 
the signalsy , U , and w , respectively. Multiplying every 
term by the common denominator and dividing every term by 
(s + d)n-l , where d is a positive number, yield 

- - 
sY(s )  =a,Y(s )+%Y(s)+ ... +- Y ( s )  

s + d  (s + d )'-I 

b bn-1 +b,u(s)+-J-u(s)+ ... +- 
s + d  (s + d>n-' 

+ H(s) W(s) .  

where 

We define a new state vector 6 E RZn-' as follows. 

Fig. 1 .  Feedback control system with disturbance. 
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which slightly generalizes the definition of the new state 
vector in [ 121. The introduction of the new states decomposes 
the system Tw in Fig. 2 into two subsystems TTT and 
H ( s )  , in serial connection as shown in Fig. 3. 

where 

with 

A, = 

G7J 
Fig. 3. State-feedback interconnected system 

- - - - - -  
a, a, b, Z2 b2 ... a,,_? b,r-2 a,,_, bn-, 
1 - d  0 0 0 . "  . . .  0 
0 0 - d  0 0 . ' .  . . 0 
0 1 O - d O . . . .  . .  0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 0 .  . . . . . . . .  0 
0 0 .  . . . . . . . .  0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . .  0 0 I O - d o  
0 0 0 I O - d  . . . . . .  

B , , = [ l  0 0 0 '.. "' 0 0 0 o r  
B,*=[bo 0 1 0 '.. "' o ~ 7  

c, = [ 1 0 0 0 " '  '.' 0 0 0 0 1  

Moreover, the static feedback control law U = F = F& 
in Fig. 3 is equivalent to a dynamic output feedback 
controller of order no greater than n - 1 in Fig. 2. Thus the 
original reduced-order H ,  dynamic controller synthesis 
problem turns out to be a state feedback gain design problem. 
Next, merging the ( n  - I)th order filter H ( s )  into GI (s) results 
in a static output feedback system as shown in Fig. 4. 

zzz$: 3; 
Fig. 4. Static output feedhack scheme 

i = Ax + B,w+ B,u 

J = c,x 
(1) 

where x = [ < ' , x f ' ] '  is the augmented state vector consisting 

of both (t: and the filter state x f  . Thus the order of G, is 

3n - 2 and C, = 0(2n-l)x(n- , ) )  . After closing the 

loop, i.e., consider U = F j  = FC,x, the closed-loop system 
becomes 

X = ( A + B , F C * ) x + B , w  i z = c,x 

The problem now becomes finding static output feedback 
gain F = b, ... , fZn-, ]  with reasonable magnitude constraint, 

such that the closed-loop transfer function T,, is stable and 

the performance I) TaC 1 1 2  is minimized. 

111. MAIN RESULTS 

In this section, we present a LMI approach to solve the 
reduced-order H ,  output feedback controller design problem 
mentioned above with and without considering magnitude 
constraint on the controller coefficients, respectively. 

A.  Reduced-order H ,  controller design without coeflcient 
constraint 

Lemma 1 :  Consider the system described by ( 1 ) .  Given 
v + 0 . If there exist matrices N E  R'x(2n-i) , M = M' E 

, w22 = w$ E R(n-l)x(n-l) and Q = Q ' E R  R( 2n-I)x(Zn-I) 

satisfying LMls (2)-(4). 

Q I '  
Trace(Q) + v'. (4) 

Then there exists a dynamic output feedback controller K ( s )  
of order no greater than n - 1 which renders the closed-loop 
system in Fig. 1 stable and I( TSc ) I 2  4 v . Furthermore, 

where 
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Prooj Given v + 0 . The closed-loop system T' in Fig. 1. 

is stable with 11 Ti, 11, + v if and only if there exist matrices 

P =  P T ,  Q = QT and output feedback gain F with 
appropriate dimensions satisfying the following BMls. 

P ( A  + B , F C , ) + ( A  + B 2 F C , ) T P  P B ,  .[ * - I  1 
Trace ( Q  ) 4 v 2 .  

Let W = P-' and perform congruence transform diug(W,I) 
on the first two BMls. The above condition turns out to be the 
existence of matrices W = W T ,  Q = QT and F such that 
the following BMls hold. 

( A  + B,FC,)W + " ( A  + B , F C , ) r  
* - I  

Trace (Q) + v 2  

Assume F = NM-' where N and M are matrix variables. 
Under the proposed condition C ,  W = MC, [ 131 which is 

equivalent to = (" 0 ) because C; =(Zm qm).,+,)) , it 

follows that B,FC,W = B2NC,.  Substituting these into the 
above BMIs; it is easy to check that the assertion is proved. 
The formula for the resultant controller is easily derived via 
the definition of the state vector. 

0 w,2 

0 

In case f2n-1 and f2n-2 are not both zero, then the 
controller is of order n - I . Extension to obtain controllers of 
order less than n - 1 is straightforward via controlling the 
number of the variables of the feedback gain vector F . 

Proposition I :  Under the same premise as that of Lemma 1. 
For each integer i = 0,1, 2, ..., n - 1 if there exist matrices 

3 w22 =w2: N E ~Ix(2n-1-2;)  

E ~ ( n - 1 + 2 i ) x ( n - l + 2 ; )  

= M T  E R(2n-1-2i)x(2n-1-2r) 

, and Q = QT E R satisfying LMIs (2)-(4) 

with C2 = (12n-1-2i 0~2n-1-2i)x(n-1+2i) ). Then there exists a 
dynamic output feedback controller K ( s )  of order no 
greater than n - i - 1  , which renders the closed-loop system 
in Fig. 1. stable and 1) Tm ) I 2  + v . Furthermore, 

n-I-i 

fi (s + d ) n - ' - i  + c fij (s + q - 1 - i - j  

(5) j=l 

n-I-i 
K ( s ) =  

( s  + d)"-'-' - (s + d)"-1-;-j 

j=l 

The optimal H 2  performance achievable by this approach 
can be obtained by performing bisection method on v or 
directly using LMI toolbox command "mincx". 

B. Reduced-order H ,  controller design with coefficient 
constraint 

The following lemma is applicable to convert magnitude 
constraint on the controller coefficients into LMI conditions. 

Lemma 2: Given p+ 0 .  Let F ,  N ,  and M be matrices 

with F = NM-' and M + O  . Then I( F 11. p if there 
exist a scalar a satisfying the following LMIs. 

(7) a I + P M .  

With the lemma at hand, we are in the position to state 
another result which give a sufficient condition for the 
existence of reduced-order H ,  controller with a prescribed 
magnitude constraint on the controller coefficients. 

Theorem I :  Consider the system described by (1). Given 
performance level v > 0 and magnitude constraint /3 + 0 . 
For each integer i = 0,1,2, . . - , n  - 1 if there exist 
matrices N E ~ l X ( 2 l I - 1 - 2 ; )  M = M T  E ~(2 l I -1 -2 i )X(2 l I -1 -2 ; )  

w2, = w2; E ~ ( n - I + Z i ) x ( n - l + Z i )  
, 

and scalar a satisfLing the 
LMIs (2)-(4) and (6)-(7). Then there exists a dynamic output 
feedback controller K(s )  of order no greater than 
n - i - 1 described by (5) with coefficient constraint 
)I h, ... , f2n-l-2i]1) + /3 , which renders the closed-loop 

system in Fig. 1 .  stable and 11 Tm 11, + v . 

1V. NUMERICAL EXAMPLES 

Example I : Consider the system as depicted in Fig. I ,  where 
the transfer function Po(s) is taken from [14]: 

54s+90 1 
; w,=- 

s4 +2.8s3 + 5 b 2  + 3 b  -0.1 S + l  
p,(s) = 

Using the LMI control toolbox [ I S ]  yields the optimal H ,  
performance 0.01 82, and the corresponding controller is 
given by 

1 d' 44.3 S' -6.25~10' S' +5.52~10' S' -1 x XI 0's-4.88~1 U) 
s5 +2.6x 1 Us4 +2.9x 1 d2s' +5.1 x 1 d7s2 + 1 . 4 ~  1 dRs +8.5x 1 d' K"&) = 

which is of order 5 and has extremely large controller 
coefficients. Applying our method(with ad hoc choice d = 1 ) 
without taking coefficient constraints into consideration, i.e., 
we solve the minimization problem : Minimize v subject to 
LMIs (2)-(4), where v represents the upper bound of 
)I T,  I t 2  . The results are shown in the 2nd column of Tab. 1. 
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* 
Order of K(s) V 

4 0.0 189 

3 0.0200 

2 0.022 1 

1 0.672 1 

where the values V *  are the H2 performance of the 
closed-loop systems and the resultant controllers of the 
individual cases are given by 

** 
V 

0.1551 

0.1692 

0.5822 

0.6025 

16x(565%+285) 
s+29 1x1 d 46) = 

In order to make the controller coefficients more reasonable 
while approximately preserving the performance, we solve 
the following generalized eigenvalue minimization problem 
(GEVP): Set the valuev in (4) as close tov’ as possible, 
minimize /3 subject to LMIs (2)-(4) and (6)-(7), wherep 
represents a magnitude constraint on the controller 
coefficients. The reduced-order controllers obtained are as 
follows. 

I O 4  ~ ( 7 . 7 6 ~ ~  +26.36s3 +39.01s2 +28.17~+7.77) 
s4 + 240.4 s3 + 54120 s2 + 143000s + 89140 K4(S) = 

I O 4  x (4.80 s3 + 11 .19s2 + 12.43s + 4.813) 
s3 + 181. ls2 + 27320s + 61690 

K3 (s) = 

250.6 s2 - 86.04s + 802.1 
s2 +48016s+1411 

K2 (s) = 

17020s + 14690 
s + 7326 K , ( s )  = 

Note that, while the performance v** becomes worse a little, 
the controller coefficients are indeed much smaller than that 
in the unconstrained case. 

Example 2 : In this example, we propose to design a 
controller, preferably reduced-order, not only to enlarge 
stability margin of the system against perturbation A ,  but 
also to attenuate the effect of the disturbance on the system 
output. This problem can be cast as a mixed H 2 / H ,  
problem as shown in Fig. 5. Assume that the plant and the 

W 

weighting functions are the same as example1 . We solve the 
linear objective minimization problem: Minimize 

)I Tziwi 11, + 11 T,2w2 11; by LMI toolbox and our method in 

which magnitude constraint is not considered. In both cases 
situation of large controller coefficients remains. Again, by 
our method which takes the magnitude constraint into 
consideration (set magnitude constraint p = 100 ) we obtain 
controllers of order from 5 down to 1 with comparable 
performances and much smaller controller coefficients. 

V. CONCLUSIONS 

In this paper we dealt with the reduced-order H ,  dynamic 
output feedback controller synthesis problem which has largely been 
ignored for a long time. Sufficient conditions for the existence 
of the controllers were derived. In addition, in response to the 
unusually large coefficients of the resulting H, controllers 
in many cases, magnitude constraint on the controller 
coefficients was taken into consideration during the design 
process. These conditions are all in LMI form which can be 
efficiently solved via existing software. Numerical results 
show that the controllers found by our method indeed exhibit 
much lower coefficients. 
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Fig. 5. Perturbed system with external disturbance 
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