
IEEE Region 10 Conference. Tencon 92
11th - 13th November. 1992

A QUANTITATIVE MEASURE&""'^*
- FOR DIFFERENT TESTING METHODOLOGIES

Chi-Ming Chung and Wen C. Pai
Graduate Institute of Information Engineering

Tamkang University, Tamshui, Taiwan, R.O.C.

Abstract

Program testing is a singnificant process to assure
and control software quality. Many s o h a r e tasting
methodologies have been proposed and wildly ap-
plied[l]. However, there is few research providing
scale measurement of the difference within them.
This paper propose a quantitative analysis to meas-
ure the difference between All-P-USES cderwn
and All-EDGES cderhn. A theoretical basis for
measuring testing efforts is presented and propose a
criterion for selection of testing criteria.
Keywords : Control-Flow Analysis, Data-Flow
Analysis, White box testing, Black box testing,
Static analysis, Dyririic aiialysis.

1. Introduction

Software testing is an important process in soha re
quarlity assurance. A stronger testing methodology
maybe found more errors of the being tested pro-
gram, however, the cost of the testing action is
higherthan a weaker one. It is a trade ofbetween the
correctness of the software and its corresponding
Cost.

ALL-PATHS
1

ALL-DRTP / B T p L ALL-D .-PATHS ALL-PRTP
-1

ALL-USES
\

ALL-P-USES/

ALL-DEFS ALL-P-USES
4
3.

ALL-EDGES

ALL-NODES
Figure 1-1. The relationship oftesting path selecting
criteria

A family of testing methodologies have been pro-
posedforchoice testingpath[l-21. Figure. 1-1 show
the relationship of these testing criteria, where we
say criterion C1 is includes criterion C2 iff for every
programgraphG,anyset ofcompletepathsofG that
satisfies C1 also satisfies C2 (denoted by ClaC2).
and that the criterion C1 and C2 are incomparable iff
neither C 1 X 2 nor C2-Xl.
The quantitative analysis for different testing crite-
rion is important to provide a guideline for tester to
select a most appropriate criterion. We have pre-
sented the quantitative measurement for All-edges
,Wl-bianches) criterion and A I h d a (A li-siuie-
zi&.$ ci i i~d~tt [3j. This paper provides die quad-
tative measurcmcnt for All-edges criterion and the
ALL-P-USE criterion. In the next section, testing
terminologies, defmitions andtheirassociated terms
are introduced. Insection3 weanalyethesingnificant
measurement for the all-puse criterion andall-edas
criterion. In the section 4, we rise an algorithm for
analysis tested program. The conclusion and the
futun research suggestions are risen in the last
section.

2. Structural Quantitative Analysis Concepts

We define a p-use about a variable X as there is a
predicate-use of X in some edge. We denote this by
pu(x). The analysisbetween al l -pats criterion and
all-edges criterion is derived from: under the spe-
cific command type, when testing traversal satisfies
all-p-uses criterion, how many p-use of some vari-
able will belu~inall-edgescriteriontraversal. Ifthe
number ofthe p-use lost is 0. then these two criteria
are equivalence in this command type. When the
number ofthe p-use lost is larger than 0, then we will
discuss the best-case and worstase subsquently.
For simplifing the analysis, we compare all-p-uses
criterion and all-edges Criterion based on a subset of
“C” language. There are eight basic instructional
types in C language. These command types are
showed in the figures 2-1 to 2-8.

0-7803-0849-2192 $3.00 Q 1992 IEEE

31 7
~~~ ~~ ~ 

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:45:29 EDT from IEEE Xplore.  Restrictions apply. 



Figure 2-2 F i p  2-3 G 
Figure 2-1 

x\ 044 until x*O 

Figure 2 4  Figure 2-5 Figure 2-6 

segueaacommaad wbileloopeommlnd fnloopcom~d 

1 donode2 

ifthen command ifthen elsecommand repeat loopcommaod 

If lose(x)=O in the comparison between all-p-uses 
criterion and all-edges criterion about variable X, 
we say that it isun1oseaboutX;denotedby unlose(x). 
Definition 2.3 Equivalence 
In a specific command type, if lose(x)=O for every 
variable X in the comparison between all-p-uses 
criterion and all-edges criterion, we say that these 
two criteria are equivalence in this command type; 
denoted by E(<eommand type>). 
Definition 2.4 Non-Equivalence 
In a specific command type, ifE(<command type>) 
is not true, then these two criteria are non-equiva- 
lence; denoted by -E(<eommand type). 

Since a structural program is a sequential statements 
of the eight instructions mention above, testing 
criteria quantitative analysis of a program can be 
done by treating the program as a combination of 
these eight instructions. The combination is divided 
into two types, they are : Link and Nest. 
Definition 2.5 Link 
Command type T1 link command type T2 iff the 
combination form between T1 and T2 is (Tl, T2), 
that is,Tl is the predecessorcommandtype oftheT2 
and T2 is the successor command type of the T1; 
denoted by TltT2. 
For example, the figure 2.9 show the sequence- 

@@ N 

command t if-then-command. 

The discuss edges following criterion. the difference definitions between need to all-p-uses be introduced and all- to 4 { q A : h a  

Definition 2.6 Nest 
Command type TI nest command type T2 iff the 
combination form between TI and T2 is the T2 
contained in the T1, that is, TI contain T2 wholly; 

t t 

Figure 2-7 Figure 2-8 denoted by TPT2. 
switch-case-with-default switch-case-without-default 

(1). AP={thepathsthat eachpath istheshortestpath 
satisf) all-puses criterion} 
(2). AE=( the paths that each path is the shortest path 
satisfy all-edges criterion} 
(3). P1&P2 : means the paths set which each path is 
shorest path traveled one of the P 1 and then one of 
the P2 subsequenty. Figure 2.9 Figure 2.1 0 Figure 3. I .2-1 example for 
(4). != :meansNOTEQUAL requence+if-then requencuif- then while-loop command 

Definition 2.1 Lose For example, the figure 2.10 show the sequence- 
The number of the pu(x) lost in the comparison command > if-then-command. 
between all-p-uses and all-edges criterion; denoted 
by lose(x). 3. Quantitative Measurement Between All-p-uses 
Definition 2.2 Unlose And All-edges 

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:45:29 EDT from IEEE Xplore.  Restrictions apply. 



3.1 No-link and No-nest Condition 

in this section, we propose a quantitative anlysis for 
all-p-uses criterion and all-edges criterion for each 
basic command type. 

3.1.1 Equivalence Case 
In the equivalence cases, the set of paths that satis- 
fies all-p-uses criterion shall be also satisfies all- 
edges criterion in each command type. 
(1). Sequence executioncomnds. (see figure 2-1) 
Fact: E(<sequence execution commands>) 
Proof: In the testing aspect, the sequence execution 
commands will be tested from the start node to the 
exit node, consequently, lose(x)=0. A l l - p e s  is 
equivalent to all-edges. 
(2). For loop commands. (see figure 2-3) 
Fact: E(<for loop commands>) 
Proof: In software testing, the specific block or 
blacks must be executed the specific tinies under the 
ki-lmp cmiiand. Thcic arc no ciffcrenccs bc- 
tween all-p-uses criterion and all-edges criterion. 
That is, lose(x)=0 and E(<for loop commands>) 
established. 
(3). If then commands. (see figure 2-4) 
Fact: E(<if then commands>) 
Proof In figure 2-4, AP = { (1,2,3), (1,3)}, and AE 
= {(1, 2, 3), (1, 3)}, such that lose(x)=O for all 
variable x p-we in edge (1,2) and (1, 3). So E(<if 
then commands>) proved. 
(4). If then else command. (see figure 2-5) 
Fact: E(<if then else commands>) 
Proof: In figure 2-5, AP = { (1,2,4), (1,3,4)}, AE = 
{ (1,2,4), (1,3,4)}. i.e., lose(x)=OandE(<ifthenelse 
commands>). 
(5 ) .  Switch case with default commands. (see figure 

Fact: E(<switch case with default commands>) 
Proof: In figure 2-7, AP = {( l ,  2, N+l), (1,3, N+l), 
..., (1, N, N+1), (1. N+1)} and AE= {(1, 2, N+l), (1, 
3,N+1), ..., (1, N,N+l), (l,N+l)}. Solose(x)=Oand 
E(<switch case with 6efau:t commands>). 
(6). Switch case without default commands. (see 

Fact: E(<switch case without default commands>) 
Proof In figure 2-8, AP = { (1,2, N+1). (1,3, N+1), 
..., (1, N,N+l)} andAE= {(1,2,N+1), (1,3, N+1), 
..., (1, N, N+1)}, then lose(x)=O and E(<switch case 
without default commands>). 

2-7) 

figure 2-8) 

3.1.2 Non-Eguivalence Case 
In this type of commands, the exercising testing 
paths are satisfies all-p-uses criterion but don’t need 
to satisfy alledges criterion. 
(1). While loop commands. (see figure 2-2) 
In figure 2-2, AE can be: { (1,2,1,3)} or {( 1,2,1,3), 
(1,2,1,2,1,3)} or {(I, 2 ,A 31, (1,2,1,2,1,3), (1, 
2,1,2,1,2,1,3)}, ..., etc.. It is dependent on the test 
cases. Subsquently, the lose(x) value (maybe larger 
than 0) is dependent on the different test dam. 
Assume the number of the while-loop-commands 
aecuted is a definite value: N, and the increment of 
each loop is a variable: n. (n =< N). For example, the 
program may be: 

N=l 
WHILE N<=10 DO 
statement 1 

statement i-1 

statement i+l 
* the increment 6 N=IGi-n 

statement m (m >= i+l) 
ENDWHILE 

then we have the fact: 
Fact: -E(<while loop commands>) and define 
M=N/n, then: 
when M is an (positive) integer: 
lose(x)=O best case 
lose( x)=m/n]- 1 worst case 
when M isn’t an integer: 
lose(x)=O best case 
lose(x)=[N/n] worst case 
(where [a] means the greatest integer<= the number 
a) 
Proof: See figure 3.1.2-1, it is obvious that the node 
2 will be executed p/n]  times when the M is an 
(positive) integer and that will be executed [N/n]+l 
times when the M isn’t an integer under all-p-uses 
Criterion. Because the AE is dependent on the test 
data, if M is an integer we have: 
lose(x)=O when the path contained in AE execute 
node 2 [N/n] times 
lose(x)=l when the path contained in AE execute 
node 2 pl/n]-l times 

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:45:29 EDT from IEEE Xplore.  Restrictions apply. 



lose(x)=[N/n]-1 when the path contained in AE 
execute node 2 one times 
Similarly, when the M isn’t an integer then we have: 
lose(x)=O when the path contained in AE execute 
node 2 p/n]+l times 
Iosc(x)=l when the path contained in AE execute 
node 2 p /n ]  times 

lose(x)=[N/n] when the path contained in AE ex- 
ecute node 2 one times 
i.e., when M is an (positive) integer: 
lose(x)=O best case 
lose(x)=[N/n]-1 worst case 
when M isn’t an integer: 
lose(x)=O best case 
lose(x)=[N/n] worst case 
39d the prod is completed. 

This command types are similar to while-loop- 
commands except that the condition is evaluated at 
the end of the loop tather than at the beginning. 
Assume the number of the node 2 that must be 
executed (include the first times without pu(x)) is a 
definite value: N+1, and the increment of each loop 
is a variable: n, the fact is as the following and the 
proof will be omitted. 
Fact: -E(<while loop commands>) and define 
M=N/n , then: 
when M is an (positive) integer: 
lose(x)=O best case 
lose(x)=[N/n] worst case 
when M isn’t an integer: 
lose(x)=O best case 
lose(x)=~/n]+l worst case 
(similarly, where [a] means the greatest integer <= 
the number a) 

(2). Repeat loop ccmmasds. 

3.2 Link Condition 

Fact: if lose(x) of the command type TI is nl, the 
lose(x)ofcommandtypeT2 isn2,thenthe lose(x)of 
any link type of two command type ( i.e., Tl+T2 or 
T2+T1) is nl+n2. 
Proof: LetAEl, API are the AEsetandAPsetofthe 
first instruction. AE2, AP2 are the AE set and AP set 
of the second instruction. Therefore : 

AE= { AEl & AE2 } 
AP= { API &AP2} 
Since AEl=APl and AE2=AP2, i.e., the lose(x) is 
not affected by the combination. So the results of 
WO linked instructions is nl+n2. 

3.3 Nest Condition 

(1). Equivalence Case And Equivalence Case 
Fact : unlose(x) 
Proof If we define API and AEl are the AP set and 
AE set of the first command type, AP2 and AE2 are 
the AP set and AE set ofthe second command type. 
It istrivialthattheAPsetofthenestcaseAP(Tl>T2) 
( or AP(T2>Tl)) and the AE set of the nest case 
AE(TPT2) ( or -TI)) are: 
AP(TPT2) = APl8c AP2 
AE(Tl>T2) = AEI & AE2 
Since API=AEl and AP2-AE2, such that 
AP(Tl>T2)=AE(TI>T2) and the result is proved. 
(2). Equivalence Case And Non-Equivalence Case 
Fact: the lose(x) of the nest type = the lose(x) ofthe 
command type of the non+x@&nce case. 
Proof: If we define AP 1 and AE1 are the AP set and 
AE set of the first command type, AP2 and AE2 are 
the AP set and AE set of the second command type, 
then the AP set of the nest c a ~ e  AP(TDT2) ( Oi 
AP(T2>Tl)) and the AE set of the nest case 
AE(TPT2) ( or AE(T2>Tl)) are: 
AP(Tl>T2) = API & AP2 
AE(Tl>T2) = AEl 8c AE2 
Since APl=AEl but AP2!=AE2, so the lose(x) of 
thenesttype isaffectedbythesecondcommandtype 
only. such that 
the lose(x) of this nest type 
= the lose(x) of the command type of the non- 
equivalence case 
and the proof is complete. 
(3). Non-equivalence Case And Non-equivalence 
Case 
Fact: if the lose(x) of the first command typpe is nl 
forbestcaseandml forworstcase,the lose(x)ofthe 
second command type is n2 for best case and m2 for 
worst case. then the lose(x) of this nest type is: 
lose(x)=nl+n2 best case 
lose(x)=ml+m2 worst case 
ProofIf we define API and AEl are the AP set and 
AE set of the first command type, AP2 and AE2 are 
the AP set and AE set of the second command type, 
then the AP set of the nest case AP(Tl>T2) ( or 

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:45:29 EDT from IEEE Xplore.  Restrictions apply. 



AP(T2>TI)) and the AE set of the nest case 
AE(TPT2) ( or AE(TZ;>TI)) are: 
AP(TI>T2) = AP1& AP2 
AE(TPT2) = AE1& AE2 
ButAPl mayormay notequal toAEl andAP2may 
ormaynotequal toAE2. Fromthe testingaspec4the 
testing result of this nest type may be one of the 
following: 
(i), API!=AEI and AFZ!=AE2 
(ii). API!=AEl and AP2=AE2 
(iii). API=AEI and AP2!=AE2 
(iV). API=AE2 and AP2=AE2 
Since thelose(x)ofthefirstcommandtyppeisnl for 
best case andml forworst case. Besides, the lose(x) 
of the second command type is n2 for best case and 
m2 for worst case. So the lose(x) of the nest type is: 
lose(x)=nl+nl best case 
lose(x)=ml+m2 worst case 

Example: Wbile-loop-command Nest Wbiloloop 
command 
AS we described befsie, thc losc(x) of the while- 
kxpormnand is: 
define M=N/n, then: 
when M is an (positive) integer: 
lose(x)=0 best case 
lose(x)=[N/n]-1 worst case 
when M isn’t an integer: 
lose(x)=0 best case 
lose(x)=[N/n] worst case 
(where [a] means the greatest integer <= the number 
a) 
See figure 3.3-1, the lose(x) of the pu’(x) satisfies 
this result described above and pu”( x) satisfies, too. 
So the total lose(x) is: 
lose(x)=O best case 
lose(x)=2*([N/n]-l) 
integer 
lose(x)=2*([N/n]) 
an integer 

worst case when M is an 

worst case when M is not 

I 

4. Algorithm for analysis different criteria. 

The approach for analysis a tested program can be 
summarized as the following: 
Step 1. Decomposed the tested program to indi- 
vidual statement. 
Step 2. The individual statement is exercised ac- 
cording to the one of the following: 
1. If this statement is belong to the equivalence cases 
described in this paper, then lose(x)=O. 
2. If this statement is belong to the non-equivalence 
cases, then caculate the lose(x). 
Step 3. The trade-offbetween the effort ofthe testing 
and the corresponding correctness can be compared 
from the lose(x). 

5. Conclusions 

This paper provides theoretical basis for quantitative 
analysis within different testing methodologies. It 
provide the testing information and the criteria of 
tcsting methodology selection and that can I?e ex- 
tenc!ed to analyze q,in!itative difference within 
other criteria. Our future researches may be : (1). to 
have a quantitative analysis within the other criteria 
showed in the figure.1-I, (2). intr0duce.a theoretical 
conclusion that can be referred by mote methodolo- 
gies. 

References 

[I] S.Rapps, E.J.Weyuker, “Selectingsohare test 
data using data flow information”, BEE Trans. on 

[2] Chi-Ming Chung and Wen C. Pai, “A Family of 
a, Vol.SE-11, No.4, April 1985, pp.367-375. 

Data-Flow Testing Methodologies,” ht’l JoyIJla I of 
ten. Vd.13. No.1. 199L 

[3] Chi-Ming Chung, Ying-Hong Wang and J i m -  
Liang Wy ‘‘ A Quantitative Analysis Between All- 
Statements and All-Branches Criterion,”ptececdinz 
gf National c ~ u  ter S m s i u m .  . 1991. Taiwan, 
R.O.C.. 
[4] E. Oviedo, “Control flow, data flow and program 
complexity”, Proceed ines of the IEEE Compu ter 

s fourth I n t e r n  ‘onal C w u  ter Software 
and ADDlications ConferenceK!OMPSAC80], 

[SI Chi-Ming Chung, “Software development tech- 
niques -- combining testing and metrics”, IEEE 
region 10 conference, H.K., 1990. 

* ,  

pp. 146-152,1980. 

Figure 3.3-1Example for nest 

321 

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:45:29 EDT from IEEE Xplore.  Restrictions apply. 


