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The "Bryn Processor" is a well-known array 
processor; its design depends on spectral densi- 
ties of the signal and noise processes. Array out- 
put signal-to-noise ratio can be decreased because 
of errors in sampling times: (1) When array 
design parameters are estimated from sampled data; 
(2) when operating on sampled input data. We 
model errors in sampling times as a discrete-param- 
eter random process. Expressions for array output 
SNR of the Bryn processor are determined for the 
two situations listed above. Numerical results are 

presented for some specific assumptions on signal, 
noise, and sampling error. 

Introduction 
This paper contains an analysis of the effect 

of sampling time jitter on the array output signal- 
to-noise ratio and array gain of the "Bryn proces- 
sor". This is a well-known processor [1], [2] for 
the detection of a stationary band-limited Gaussian 
signal in independent stationary band-limited 
Gaussian noise. The design of the processor is 
data-dependent, varying with the spectral proper- 
ties of signal and noise. 

Errors in sampling time can arise in either 
the evaluation data (data being tested for signal) 
or in the design data (the data used to determine 
the components of the processor). Thus, one could 
have sampling jitter in the evaluation data and 

jitter in the design data, or jitter in evaluation 
data and no jitter in design data, or jitter in 
design data and no jitter in the evaluation data. 
Each of these combinations is considered here. 

We proceed as follows. First, the digitized 
Bryn processor is derived, assuming no jitter. 
The processor is then implemented with an array 
followed by a spectral filter. Assuming this 

implementation, we compute array output SNR for the 
various combinations of jitter in design data and 
evaluation data. The resulting expressions for 
array SNR are then analyzed to determine the effect 
of jitter. Finally, we present curves of array 
output SNR as a function of frequency, under two 
sets of assumptions on signal, noise, and jitter 
characteristics. 

Our results are stated in terms of array out- 
put SNR. Array gain is Usually defined as the 
ratio of output SNR to input SNR. Thus, the com- 

parisons presented here for output SNR can be 
interpreted as comparisons of array gain. 
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Derivation and Implementation of the Bryn Processor 
The basic philosophy of the Bryn processor is 

given in [1], and its implementation (for continu- 
ous-time operation) under the assumptions to be 
used here is given in [2]. We give the derivation 
of the digitized processor, and its implementation; 
this will also help to fix our definitions and 
framework. 

A set of K sensors is assumed; the output of 
the ith sensor is 

i(t), 
0 < t < 

T0. L(t) is the 

K-component vector with i(t) 
as 1th component. If 

noise alone is present, ijt) = n1(t); if signal- 
plus-noise is present, i1(t) 

= 
s1(t) + n(t). The 

following assumptions will be made. (1) Signal 
and noise are segments of independent and station- 

ary zero-mean Gaussian processes, with spectral 
densities S(w) (for signal) and N(w) (for noise), 
the spectral density being the same for each 
sensor. (2) Signal is present at one sensor only 
if signal is present at all sensors. (3) The 

signal and noise spectral densities are essentially 
band-limited, with the frequency band having posi- 
tive frequencies in the region (4) In 

implementing the processor, the signal will be 
assumed to be a plane wave, so that s(t) 

= 

s(t - ri), where T1 is a time delay measured from 
some reference. (5) The vector of sensor outputs, 
L(t), can be 

reresented 
by 

— fu 0 jkGt < '- ) — L_f T ' — — U uO 
where 0 = 

2Tr/T0, and Z(kG) is a K-component column 

vector with th component Z1(kQ). In order for 
equation (1) to accurately represent L(t), one must 
have either f -'- or 

T0 
÷ . We assume here (as 

in [1], [2]) that T0 
is sufficiently large, so that 

equation (1) adequately represents L(t) Further, 
since Z(kD) is a Fourier coefficient, Z (kG) = 
Z(-kQ). (6) Z.(kG) Y.(kG) when noise alone is 

present; Z(kQ) X(kQ) 
+ 
Y(kQ) when signal-plus- 

noise is present. We assume that and Y. can be 

adequately approximated by a discrete Fourier 
transform. Thus 

X.(kG) a (I/vM)2 s(ma)e3' (2) 
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Y. (kG) S l/v M-l n. (ma)emma 1 m=O 1 
where a<l/2B is the nominal sampling interval and 
M=T0/a is the total number of samples taken. 

(7) The Fourier coefficients 

fiTo 
< k < fTo} are a set of independent random 

variables for each i = 1,... ,K. If one had 
T0 

- 

and equation (3) were actually a Fourier transform 
rather than an approximation by a DFT, this would 
necessarily follow from the fact that s1(t) and 

n(t) are Gaussian processes [4]. 
To optimally detect the signal, we form the 

likelihood ratio [4]. Since all of the information 
in the data is contained (under the above assump- 
tions) in the positive-frequency Fourier coeffici- 
ents, this involves taking the ratio of the joint 
probability density function of the positive- 
frequency Fourier coefficients under the hypothe- 
sis of signal present to the ratio of the joint 
probability density function under the hypothesis 
that signal is absent. Since the Fourier coeffi- 
cients are assumed independent for different values 
of kG, and the data is Gaussian, the likelihood 
ratio becomes f T * 

A(Z) = y eyp{-l/2 kfT [Z T(kG){(cov[X(kQ) 

+ Y(kQ)]Y1 - (cov[Y(kG)]Y1}Z(kG)]) 
where y is a constant, and cov(.) denotes the 
covariance matrix. 

Let Q(kG) be the matrix of normalized correla- 
tion coefficients of the vector noise process, with 
ij element qjj (kG). N(kG)q1 

(kG) is approximately 

(large M) the cross-spectral density for the noise 
process in the ith and Jth channels; 

q.. (kG) = E Y.(kG)Y(kG)/N(kG). The covariance 
matrix of the vector noise process is thus 
N (kG) Q (kG), while the covariance matrix of the 
plane wave ector signal process is 
S(kG)V(kG)V T(kG), where V(kG) is a K-component 
vector whose th component is j k3rj 
e (see 
matrices). 
frequencies 

If A(Z) represents the likelihood ratio for 
the Fourier coefficients {Z(kG), 
fiTo 

< k < fTo), then one has [3] 

-2 lo AZ = fTo S(1)IZ*T(kG)W(kG)I2 5 g ( ) LkfT B(kG) 

where W(kG) Q(kG)V(kG), and B(kG) N(kQ) [N(kG) 
+ S (kG) V*T (kG) Q (kG)V(kG)]. The processor can be 
implemented as shown in Figure 1, where the Fast 
Fourier Transform in the th channel computes 

Z(kG) l/VM ui(ma)ema, and the spectral 
filter is F(kG) [S(kG)/B(kG)]. The output of 
the spectral filter is passed through a square-law 
device, and then summed over k = f1T0,... fuT0• 
This sun is -2 logA(Z), under the above assump- 
tions, and is compared with a threshold. 

(3) 
We assume hereafter that the processor is 

implemented as shown in Figure 1; the array is that 
part of the processor preceding the spectral filter 
F(kG). 

Bryn Processor with Sampling Jitter 
Suppose now that the actual sampling times are 

(ma + where 5m E s(ma) represents the jitter 
for mtl sample. m' 0 < m < M-l} is assumed to be 
a random process independent of both signal and 
noise. 

Em is also assumed to be independent of 
for m n, and the probability distribution func- 
tion of c is the sane as that of c , with charac- m 

juEm n 
teristic function (w) E e . The output of 
the FFT for the ith array element at angular fre- 
quency kG is then 

rM-l -jkna 
[Zi(kG)]jitter 

= l/VM Lm0 (ma + c)e 
The covariance matrices of the jittered signal and 
noise processes are derived in [3]. For the 

jittered signal one obtains E[X(kG)X*T(kG)] 
= U 

+ 0(kG)2 S(kG)V(1GV*T(k() where D = [d..], 
3w(T. -T.) 13 

d. = (l/2ii 1Band e 1 3 [1 - j(w) I ]S(w)du. 
For the jittered noise, the covariance matrix is 

2 
E[Y(kG)Y (kG)] 

= U + N(kG)14(kG)I Q(kG), where 

(4) 
U = [u] a/2 1Band1 

- 0(w) I2}1 (w)N(w) 

dLs. The spectral densities for the jittered signal 
and noise thus become 

S(kG)= l/2r)fBd 
[1 - I(w)l2]S(w)ds + I0(kG)12 S(kG) 2 
N(kG) 

= "2Band [1 - (w) 2]N(w)d + I0(kG) I 
N(kG). The normalized correlation matrix for the 
noise is now 

Q(kG) 
= 

(u11 
+ N(kG)jO(kG)12)-l 

[U + N(kG)I0(kQ)12Q(kG)]. 
In computing array output SNR, under the 

assumption that the design data contains jitter, 
one has [W(kG)] = 

Ql(kG)V(kG). 
Expressions for Array Signal-to-Noise Ratio 

The array output SNR at angular frequency k 
is defined as the ratio of the difference in the 
average power output when signal is present and 
signal is absent, to the average power output when 
signal is absent, or 

E{ Iw*T(kG) [X(kG)+Y(kQ)]2IW*T(kG)Y(kG) 12) 

EIw*T(kG)y(kG)12 

W*T (kG) {E [X(kG)X*T (kG) ] }W(kG) (6) 
W (kG) {E [Y(kG)Y (kG)] }W(kG) 

For the various combinations of jitter, we obtain 
the following results for array SNR. For the sake 
of brevity, we assume = 0, i = 1,... ,K. For 

0, see [3]. When 
Ti 

= 0, V1(kG) = V1(0) 
= 1, 

i=l,...,K. 

Case 1. No jitter in design data, no jitter in 
evaluation data. 

p1(kG) 
= v(o) Q1(kG)V(O) (7) 

[3] for derivation of the covariance 
We assume that Q-l(kG) exists for all 
kG in the data band. 
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Case 2. Jitter in design data and jitter (with 
same statistical propeties) in evalution data. 

d11 
+ I0(kU)IS(kU) * 

p2(kU) 
= - V (0)Q (kU)V(0) (8) 

u11 
+ (kU)I2N(ko) 

Case 3. Jitter in evaluation data; no jitter in 

design data. 

2 *T IL 2 

- [d11÷I0(kC)I S(kU)][V (O)Q (kc)V(0)] 
- 

vT(o)Q(kU) [U÷I(k0) I 2N(ko)Q(ko) IQ(kQ)V(O) 

(9) 

Case 4. Jitter in design data; no jitter in eval- 
uation data. 

[V(O)Q'(kU)V(0)] 
p (kO) = Sc2 J 

(10) 

vT(o)Q(ko)Q()Q()v(o) 
Effect of Jitter 

The effect of sampling jitter on array output 
SNR and array gain can be analyzed by examining the 
above expressions for output SNR. 

First, suppose that U = zkQ(kQ). This will 

occur, for example, when the noise is independent 
between channels. More generally, it will occur 
whenever the npise cross-spectral density between 
the th and jtii channels equals N(k1)f[Ii-jI], for 
i,j 1,... ,K. Since q11 

= 1, °k must equal u11, 
and since Q(kQ) 

= 
(u11 

+ N(kQ)I0(k2Y' 
(U + N(kU)I0(kU)12Q(kU)), one has Q(kO) 

= Q(kQ). 
Examining expressions (8) and (10) for the array 
SNR when the design data contains jitter, one sees 
that 

p1(kQ) 
= 

p4(kQ) and p2(kU) 
= 
p3(kU), so that 

in this case jitter in the design data has no 
effect on output SNR. Hoiever, it can be expected 
that jitter in the design data will have an effect 
on detection performance, since the quantities in 
both the array and the spectral filter are changed 
when there is jitter in the design data; also, the 
processor loses its interpretation as an approxi- 
mation to the likelihood ratio when jitter is 

present [3]. 

If the noise is independent between channels 
at frequency ko (so that p1(kO) 

= 
p4(kc2) and 

p2(kU) 
= 

p3(kQ)), one has Q(kQ) 
= 'k (identity 

matrix in Ek). Thus, p1(kQ) 
= KS(k)/N(kQ). The 

array output SNR when the evaluation data contains 

jitter is given by 

p2(kU) 

K[(1/2Tr]fBand[lI0(w) I2] +5(1çç) 0(kU)12) - 
(1/2)fBand[ll0(W)I21N(w)dw+N(k00(kU)I2 

Thus, if 0(w) 1 across the data bandwidth, then 

p1(kQ) 2(1) However, if 0(w) 0 across the 

data bandwidth, then p2 (kU) K Band S(w)dw/ 

I N(w)dw. In this case there will be a loss 
Band 

in peak array SNR, and a complete loss of frequency 
selectivity. 

If the noise is not independent between 
channels, but U = u11Q(kU), then the behavior of 

p1(kU)/p2(kc) 
is the same as if the noise were 

independent between channels. If it is not true 
that U = u11Q(kC), the effect of jitter is not so 

easy to analyze [3]. 

Since 0(w) is an L1 
Fourier transform, 

I0(w)I 
- 0 as wi ÷ . Thus, the effect of sam- 

pling jitter on array SNR and array gain will 
usually become more serious as the high-frequency 
content of the data increases. 

If one is forced to work with a system having 
a fixed jitter characteristic, and the resulting 
array gain and detection performance is unsatis- 

factory, the effect of jitter may be reduced by 
sampling more frequently. This is because the 
effect of jitter is contained in its characteristic 
function (w). If the sampling interval is 
decreased, then the jitter characteristic function 
will represent adensity function confined to a 
smaller region, and so 0(w) would go to zero more 
slowly. This will be the case if the shape of the 
jitter density function is independent of the width 
of the sampling interval. This is illustrated in 
the numerical examples. 

Numerical Results 
Several calculations of array gain were made 

for specific assumptions on the characteristics of 
the signal, noise, and jitter. We present here 
curves for two sets of assumptions. Additional 
numerical results are contained in [3]. 

The jitter was assumed to have triangular 
density function p(c) of width a (the sampling 
interval). Thus 

p(s) = (2/a)2(a/2 - laD I <a/2 
=0 id >a/2 

In Figures 2 and 3, the data frequency is 
normalized by dividing by the bandwidth B. A0 is 
the normalized center frequency. The array SNR 
p in Figure 2 is computed for only one channel; 
since the data presented in Figure 2 is independent 
between channels, the value of p for one channel is 
the sane as p/K for K channels. Thus, the ratio of 

p1(no jitter) to p2(jitter) is the same for one 

channel as for K channels. Also, since the data 
spectral densities are symmetric about A0 (in the 

positive-frequency region), we present only the 

(11) array SNR as a function of frequency from A = A0 
to A = + 1/2 (i.e., over half the data band). 

The results of Figure 2 are for white noise 
(in the data band) with spectral density (I2jrr)P5, 
and for signal with spectral density (2,/7/ii)P5 
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(1 + 2[X - X0]4)* The sampling interval is a = 

(2BY1. The loss in peak array SNR (at A = A0) is 
about 13.5%, or .63 db. The array has a complete 
loss of frequency selectivity at A0 

= 4 (center 

frequency is equal to 4B). 
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Figure 3 shows a much more serious effect. 
This figure represents a signal with bimodal spec- 
tral density (in the positive-frequency region) 
given by 

S(A)=PsI 
1 + 1 

[l+[2o(A_A1)] l+[20(X-A2)] 

N(A) PS 2 
+ r 

l+[4(A-A3)] l+{4(A-A4)] J 
where A1 

= A - 1/8, A2 
= + 1/8, A3 = A0 

- 1/4, 
and 

A4 
= 

A0 
+ 1/4. Thus, the noise spectral den- 

sity peaks are at slightly different frequencies 
than those for the signal, and the noise envelopes 
are wider. This data is for a 4-channel array, and 
the noise was assumed to have cross-spectral den- 

sity (A) given by 

N1(A) 
= 

Ii-i+lI [N(A) 10s' i. The nu- 

merical results are presented only for p1 
and 

p2. 

Although the matrix U does not satisfy the relation 
U = 

U11 Q(kQ) 
across the data band because of the 

white noise component, the relatively small power 
in the white noise component (compared to that of 
the colored noise component) results in P1 P4 
and 

p2 p3. 
The sampling interval is a = (8B)3. 

The curves show a complete loss in frequency selec- 
tivity at A0 

= 16, and a maximum loss in array 

output SNR of approximately 75%, or 6 db. 

If the sampling interval a is decreased, then 
the effect is to increase the value of 

A0 
at which 

the array loses frequency selectivity. Thus, if 
the data of Figure 3 were used for a sampling inter- 
val of (32B)-1, rather than (8B)l, the array would 
not lose all frequency selectivity until A0 

64. 

This is because the characteristic function would 

change from 0(A) = sinc2(1TA/l6) to 0(A) 
= sinc2(iiA/64). In addition, the decrease in peak 
array SNR would be reduced at lower values of A0; 
for example, at A0 

= 16, the peak array SNR would 

be reduced by only 13% (rather than 75%). 

The loss of 6 db would be serious. However, 
the fact that such losses can occur seems more 

important than the actual values obtained here, 
since these values are for specific assumptions on 
the signal, noise, and jitter. It seems clear that 
one should attempt to determine the jitter charac- 
teristics and their effect for any array, using 
appropriate representations of signal and noise. 
The effect of jitter can usually be assumed to 
become more serious as the high-frequency content 
of the data increases. However, the effect can be 
alleviated in some cases by sampling more 
frequently. 
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