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Domain wall in ultrathin magnetic film: Internal structure and dynamics
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Detailed micromagnetic study of internal structure and dynamics of domain wall in ultrathin
magnetic film with thickness ;<1 (l.x is the exchange length) is carried out. It is revealed that
deviations of stationary magnetization distribution inside the wall from the one of the Bloch domain
wall are small and proportional to (¢7/l)0" 1. The limiting velocity of uniform domain wall
motion coincides with the same for the Bloch wall (Walker’s critical velocity) with an accuracy of
terms proportional to (#;/1 0)>. It is also found that the same small parameter describes deviation of
stationary distribution of magnetization in a vertical Bloch line and deviation of Bloch line velocity

from the expressions found for films with #,>1,.
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I. INTRODUCTION

Physics of ultrathin magnetic films (films with thickness
from several atomic layers to several dozens of atomic lay-
ers) have been an object of intensive studies during the last
ten years. Such unremitting interest of researchers is caused
by the significance of these new objects for development of
physics of magnetism on the one hand and by their practical
importance on the other hand. Ultrathin films of magnetic
metals and alloys are the constituting elements for magnetic
multilayered structures. These artificially created structures
known as magnetic multilayers or magnetic superlattices are
of a great interest for a wide range of applications based on
the phenomenon of magnetoresistance. Results of studies of
magnetic multilayers and ultrathin magnetic films can be
found in numerous publications (see, for example, Refs.
1-7). It has to be noted, however, that in spite of the intent
attention paid by researchers to investigations of ultrathin
magnetic films, the domain walls in these films were not
studied in detail.

From the standpoint of a rigorous micromagnetic theory
the ultrathin magnetic film is the film whose thickness satis-
fies the condition

1<l = JAI(2TM?),

where t; is the film thickness, [, is the characteristic param-
eter called the exchange length of magnetic material, A is the
constant of the inhomogeneous exchange interaction, 4 7M,
is the saturation magnetization. A comprehensive collection
of results of theoretical as well as experimental investiga-
tions of domain walls in thin magnetic films with thickness
satisfying the opposite condition, namely, #:>/,; can be
found in Refs. 8 and 9.
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There exist a substantial amount of publications devoted
to investigations of domain structures, remagnetization pro-
cess, and domain wall dynamics in ultrathin magnetic
films.!®-?2 Studies of remagnetization in ultrathin film'®
showed that the remagnetization occurs via nucleation of
small domains with reverse orientation of magnetization.
The nucleation of these domains is then followed by the
process of their expansion by means of domain wall propa-
gation. As follows from the results of Ref. 16 magnetization
reversal in ultrathin magnetic films with perpendicular an-
isotropy occurs in two stages. The first initial stage of the
remagnetization is determined to a large extent by the nano-
structure of the film (the defects localized on the crystallite
boundaries, the size of atomically flat terraces, etc). The ini-
tial stage of remagnetization corresponds to low enough val-

ues of bias magnetic field. The domain wall dynamic be-
comes dominant at higher values of the bias field. The case

of the film with inhomogeneous coercivity was numerically
analyzed in Ref. 21.

Contemporary technology of ultrathin film preparation
made considerable progress and the quality of the samples
available at present enables the obtaining of reliable data on
dynamic behavior of magnetization in these films. The last
circumstance makes us believe that detailed micromagnetic
study of domain wall in ultrathin magnetic field is topical.
Preliminary results of analysis of static distribution of mag-
netization in a domain wall in ultrathin film with the thick-
ness satisfying the condition (1) were reported in Ref. 22.

Il. INTERNAL STRUCTURE OF THE STATIONARY
DOMAIN WALL

The following geometry of the problem is considered in
this ‘article. The plane of film is paralle] to the xOy plane of
the coordinate system. The midplane of the film correspond
to the coordinate z=0. The axis of magnetic anisotropy is
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oriented along the z axis of the coordinate frame. The distri- -

bution of the magnetization inside the transition region be-
tween two domains magnetized to the saturation along the
directions +z and —z is to be studied. The energy density of
magnetic subsystem may be represented as a sum of the fol-
lowing contributions:°

w=w,+wgtw,. 1)

Here w,, is the energy density of inhomogeneous exchange
interaction, wy is the anisotropy energy density, and w,, is
the energy density of magnetic dipole interaction.

The following remark has to be made before we give
concrete expressions for terms in formula (1). We will use
expressions for contributions to the energy density of ultra-
thin magnetic film in the continuous medium approximation.
Justification of use of a given approximation is, generally
speaking, a subject of a separate investigation. However, ap-
plicability of continuous medium approach was discussed in
Ref. 5 (Chapter 3).

The energy density of inhomogeneous exchange interac-
tion has the form

Wex=A{(Vm,)?+(Vm,)2+(Vm,)%}. @

In this expression m(r,#)=M(r,t) - M, 1 M(r,t) is the vec-
tor of the magnetization. The anisotropy energy density is
given by the formula

wx=K[m’=(n,-m)], €)

where K is the constant of uniaxial magnetic anisotropy, ny
is the unit vector along the anisotropy axis (the z axis in our
case). The energy of magnetic dipole interaction has a stan-
dard form

L=—LEMM), @

where H™ is the demagnetization field, which is determined
by the magnetostatic equations

curl H™=0, div{H"™ +47M}=0 - )

with proper boundary conditions. External magnetic field can

be easily included in the expression (1) by adding the energy

density wy=—(M-H,) (H, is the bias magnetic field) de-

scribing interaction with external bias field, for example
The Landau-Lifshitz equation is used for analysis

M= — y[MxM], - (©

where M=JM/Jz, 7y is the gyromagnetic ratio, and the ef-
fective field H is determined by the relation

eff 5W
B =— =1 M
which in our case leads to the expression
Hf=aV?m— g[m—n(n,-m)]+h™. | (8)
Here
24 2K h(’")—H(M) ©)
a—-m, B_M_fs’ =M.
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Equation (6) written in terms of Cartesian cémponents for
the static case (M=0) has the following form:

1
meZmy—myVme=;[myh§'">—mxhg'")],

1
mzvzmx_- mxvzmz_ ( 2) mn,= ;[mxhgm) - mZhi'n)]’
(10)
mi + m§+ m? =1

Equations (10) have to be accompanied by the boundary con-
ditions for magnetic moment on the film surfaces. For the
above-discussed geometry these boundary conditions may be

chosen as follows:32324
m a'%—ﬁ'n(n-m) -m a, amy -0
T oon “om
' 3Tnz P , 3mx B
my &' —-= —B'n(n-m)|—m,a -0 =0, (11)

om, am,

™ ™

=0, at z=*14/2.

Parameters o’ and B’ characterize the exchange interaction
and magnetic anisotropy at the surface of the film corre-
spondingly, n is the direction of the external normal to the
film surface. The anisotropy of the easy axis type at the
surface of the film is considered (see Refs. 4 and 5 for details
about surface anisotropy of ultrathin magnetic films). The
components of the magnetization vector at z= *14/2 have to
satisfy the following conditions m,, my-—>0, m,—*1aty
— o, The system of Egs. (10) with boundary conditions
(11) has to be analyzed to obtain the distribution of the mag-
netization inside the domain wall separating two domains
with opposite directions of magnetization Miin and —Miin.
Solution of magnetostatic Eqs. (5) for the case when the
domain wall plane coincides with the x0z plane of the coor-
dinate system are given by expressions

® inh(us)
m_ _ ~(uri2) _Smus)
by 417J‘ 0 due cos(u) sinh( 7wu/2)’
‘ (12)
Mo _ar | due-@" g _cosh(us)
h; 477[0 due sin(u n) Soh(mui2)’

In these expressions s=z/Ap, 7=y/Ap, Ag=(A/K)" is
the width of the Bloch domain wall, and 7=¢;/Ap.

It is convenient to introduce the spherical coordinates
with the polar axis oriented along the normal to the domain
wall. The vector of magnetization m has the following com-
ponents in this system

m,=sin 3sin@, m,=cos ¥, m,=sindcosp, (13)
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where polar 4 and azimuthal ¢ angles of magnetization are
the functions of s and %. The system of Eqgs. (10) has to be
rewritten in terms of angles ¥ and ¢. Solutions of the system
(10) will be represented in the form

F=3+6(7,5), ¢=do(7n)+¢(n,s), (14)

where 3, and ¢¢(7) describe the distribution of magnetiza-
tion inside the stationary Bloch domain wall

m
13():'5'

Equations (10) now have the form

, and sin ¢p= (15)

cosh g’

[0— —] (n,s)= mhy")( 7,5),

- (16)

Og(m,8)= 55 sin do(h(7,5),

where the operator O is determined by the expression

A

2 2
0= (;?—777+ 5—5) —cos 2 do( ) 17)
and Q= (lx/Ap)?. Parameter Q is called the quality factor
of a magnetic material. This parameter is greater than unity
Q>1 for materials under consideration. The main small pa-
rameter of the problem is 7=¢,/A B=th1’2/lex. Boundary
conditions (11) are transformed into

(50( 7],9)/(99);:1-.,/2-—-0, (5(ﬁ( 77,9)/39)g= :':1'/2=0'
(18)

Operator O is a modified Winter’s operator.zs'26 The spec-
trum of the original Winter’s operator

) &
0,=— W+COSZ¢O( 7) (19)

contains two modes. One of these modes Y™ =sin ¢(7)
corresponds to translational motion of the domain wall and
another one Y7 ~[ix+cos ¢dy(7]e’” (x is the dimension-
less wave vector k=kA g) corresponds to precession of mag-
netization inside domains. We represent solutions of Egs.
(16) as expansion with respect to these modes

o(n.9)=0 U+ [ duc™ (s (n).
(20)

Here we denoted values 8(7,s) or ¥(n,s) by o(#,s). The
following result for the contribution of the translational
mode localized in the vicinity of the domain wall to the
0(7n,s) angle can be obtained

7 ’ .
0 (n.s )N—— (3)sin ¢o(7), 21
where §=2¢/7 and
E(9)=3[(1+8)’In(1+8)—(1-8)In(1 - 9)
-2§(1+21n2)]. (22)

The value of 6(#,s) at =0 (the center of the domain
wall) and = * 7/2 describes the domain wall twisting. As

. R — S
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one can easily see this contribution is really very small
6(y=0,z==* t/2)~(t;/l.)*. The contribution of the
precession mode obtained in a similar manner is described
by the formula

g(pr)(.;’k)
! Jd inh[ p(k
= 3m0p (%) s’ sinh[p(k)(s—s')]
(m)ey v SiDR[p(K)s]
Xhy kS ) = R ()]

X f s’ cosh[p(k)(g-—e')hg'")(k,e')”, (23)
0
where p(k)=+1+ (kAB)2 and
™ oy (m) (pr)*
hy (ks)=5—1 dﬂh (ms)yg” (k, 7). (24)

Expression (23) has the following form at the film surface
that is at z=*1,/2

g(pr)(%,k)=— ! 1

QOp(k) cosh[ 7p(k)/2]

7/2 .
xJ’O desinh[sp(k)]hg'")(k,q). (25)

Using the above expression one can get an approximate for-
mula for 6P?(z=1,/2,y) in the region |y| <t corresponding
to the vicinity of the domain wall

1 t b’l}
(pr) [ R _f —_
0P (z=1t/2,y)= - ( lex) [1114 T » (26)

It has to be noted that the contribution of the precession
mode in the interval |y|<Ap is even smaller because the
expression (26) has to be multiplied by the factor of the order
of 0~ 1. It is clearly seen that both contributions of the trans-
lational and precession modes are small and can not influ-
ence the initial value of the angle ¥ and thus 9= ¥,=n/2.
Let us now consider the contribution of translational and
precession modes into the angle y(#,s). Taking into ac-
count that H™(y)= —Hﬁ’”)(-—y) and using the second
equation from Eq. (16) one can see that the translational
mode does not give any contribution to ¥(»,s). The contri-
bution of the precession mode is given by the expression

I1+In

H for |}’<tf|’
@7

1
PR E)

which was obtained in the frames of the same approxima-
tions as formula (26).

Thus the consideration of the internal structure of the
domain wall in ultrathin magnetic film carried above allows
us to conclude that the structure of the stationary domain
wall is close to the one of the Bloch wall and contributions

Copyright © 2000. All rights reserved.



4786  J. Appl. Phys., Vol. 88, No. 8, 15 October 2000

of twisting caused by the translational and precession modes
are negligibly small being proportional to Q™ 1(tf/ I, or
even smaller.

(18 DOMAIN WALL LIMITING VELOCITY AND BLOCH
LINE MOTION

We have to make several remarks before starting the
analysis of the domain wall motion. First, the analysis of the
dynamic behavior of domain wall will be done using differ-
ent orientation of the polar axis of a spherical coordinate
frame for magnetization. Now the z axis will be the polar
axis and thus the following expressions for the components
of the magnetization will be used:

m,=sin @ cos ¢, m,=sin fsin¢@, m,=cos 6. (28)

Second, the static structure of the domain wall is now de-
scribed by the formulas

1
cosh(y/Ag)’

As one can see we have neglected all static features of the
internal structure of the stationary domain wall analyzed in
the previous section because they are negligibly small.

Third, we will consider the translational motion of the
domain wall along the y axis, which remain’s normal to the
domain wall plane. The motion of the domain wall is caused
by the presence of an external driving magnetic field H,
parallel to the anisotropy axis H,l0z. Thus, the problem is
similar to the one treated by Walker?’ (see also Refs. 8 and
9). As was shown in Ref. 27 the motion of the domain wall
was accompanied by the additional dynamic deviation of
magnetization from the domain wall plane. This deviation is
described by the azimuthal angle of magnetization ¢ in the
midpoint of the domain wall. The appearance of a magneti-
zation component in the direction of normal to the domain
wall plane leads to the change of components of demagneti-
zation field. Thus the first step of our analysis is to obtain
new expressions for components of the demagnetizing field,
which are now determined as follows:

sin 00 = Qo= 0. (29)

® sinh(us)
(m)_ _ —(url2) T
Py 4”[0 du °°S(‘”’){e sinh(mul2)
oy 1—e~®" cosh(us)
sin; cosh(wu/l2) ’ '
i} (30)
B = -47rf du sin(un)e” 72 M
z 0 sinh( ru/2)
) sinh(us)
sin cosh(mu/2)|’

Here 7=y/A and s=z/A, where A=A(¥):is the width of
the moving domain wall. It was shown by Walker” (see also

Refs. 8 and 9) that the translational moﬁomof the domain

wall leads to the dependence of the domaln wa.ll width on the
azimuthal angle characterizing the devxanon of' magnetiza-

tion from the domain wall plane. J ":1:": o
[ S
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It is convenient to use a variation principle®® for analysis
of the limiting velocity of domain wall motion. The structure
of the moving domain wall is given by the following formu-
las:

=y(t). (31)

" Here ¢(t) is the coordinate of the midpoint of the domain

wall and (¢) is the azimuthal angle of the magnetization in
the center of the domain wall. Generally speaking these
quantities are the functions of the coordinates in the domam
wall plane

q=q(x,z;t), Y=u(x,z;t). (32)

Dependence of parameters g and  on the z coordinate is due
to the account of demagnetizing field and dependence of g
and ¢ on the x coordinate appears if one takes into account
the presence of vertical Bloch lines in the domain wall. The
statics and dynamics of vertical Bloch lines will be studied
further.

Equations describing the domain wall motion can be ob-
tained by variation of the following density of the Lagrang-
ian function:*°

= f ’ dy f 'f/; dz{Ms'y_I()zﬁsin oJéwa}, (33)
),
where
wow=M2{3[(V 6)2+(V¢)?sin® 0]
+ § Bsin? 6— (m-h'™)—h, cos 6}. (34)

In these expressions 8=36/dt, h,=
are determined by formulas (9).

The variation procedure is standard and described in
Refs. 8 and 9 in detail. It has to be noted, however, that in
the case under consideration, namely, £;<l;=A B\/—Q_, all
calculations can be carried out analytically. The equation for
the azimuthal angle of magnetization in the domain wall’s
midpoint has the form

" =v[sin2¢—§ 2h("‘)(‘z')cos Ul (33)

Here §r=oyldt, v=13/(81e?), §=q/Vy, Vy=2myMAp
and

H, /M other parameters

B@= [ a0, =2y, 66

It has to be noted that in order to simplify further analysis we
consider material quality factor Q to be 9> 1. This assump-
tion permits us to neglect the difference between Walker’s
critical velocity”” and Schlémann’s limiting velocity,?
which is always greater than Walker’s critical one in mate-
rials with 9>1 (see also Ref. 29). The solution of Eq. (35)
will be representéd in the form

= gotugn oyt 37)

and similar expansion has to be used for the domain wal
velocity ¢

Cépyright © 2000. All rights reserved.
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§=Go+vdi+vii+---. (38)

-Limiting ourselves by the first correction to the azimuthal
angle of the magnetization and taking into account that ¢
due to that ¢4,=0, we have

Y1 ="—do+sin2¢y— 2k (Z)cos ¢, (39)
and
¥o=—d1+ 24 cos 24+ 2, B (Z)sin . (40)

The solution of Eq. (39), which satisfies the boundary con-
ditions, is given by

¥1=—E(2)cos Yo+ B,, | (41)

where E(2) is determined by expression (22). The condition
Ulp=ss f,2=0 demands the fulfillment of the relation §,
=sin 24, which is just standard dependence of the domain
wall velocity on the angle of deviation of magnetization from
the domain wall plane. Substitution of expression for the first
order term ¢, into Eq. (40) allows us to determine the con-
stant B, and §,. The procedure of integration of Eq. (40) is
rather standard but unwieldy because of the cumbersome
form of expression (41). Limiting ourselves to the terms lin-
ear in a small parameter v and taking into account the
boundary condition as well as condition of absence of diver-
gent term (these divergent terms appear at o= 7/4), we can
obtain the following expression for domain wall velocity;

. (42)

v
q‘=sin2¢/10[1+ 5(1n2+ 1)

which determines the limiting velocity of the domain wall in
ultrathin magnetic film. Theoretically speaking, the limiting
velocity of the domain wall in ultrathin films

L[ ’In2+1
S 24

Vlim = VW (43 )

lex
is higher than in the films with 1>l . At the same time the
difference between Vi, and Vy, is negligibly small being
proportional to (2;/1,,)>.

Let us consider the stationary dynamics of the Bloch line
in domain wall in ultrathin film. The stationary motion of the
vertical Bloch line in the domain wall, which itself moves
under the action of driving magnetic field, will be consid-
ered. Generalization of Eq. (35) has the following form:

P 2 2 ‘
—\ = — 2
A )‘r‘/’ Wy lex (axi + EE) ‘/’

—sin ¢ cos ¢+ %h;,"’)(z,O)cos ://}, ‘ 6M)

where wy=4myM,. This equation was obtained with an
account of dissipation.® The standard dissipative function
corresponding to the Gilbert’s form of the relaxation term in
the Landau-Lifshitz equation was added to Eq. (33), A, is
the Gilbert relaxation parameter. The velocity of the domain
wall is now determined by the driving field g=AN"!yH,.
Static distribution of the magnetization inside the vertical
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Bloch line that is the solution of Eq. (44) at ¢= /=0 will be
analyzed considering the last term in the right-hand side of
Eq. (44) as perturbation

U=to(x)+ ¢ (x,2)+---. (4s)

The zero order distribution of magnetization in the vertical
Bolch line is standard®®

1

cosh(x/l.,) " (46)

sin lﬁo =

Using this formula one can obtain
¢1(x,2) = tanh(x/l) E(z), “@7)

where E(z) is given by formula (22). As one can see, the
span of the magnetic moment distribution in the vertical
Bloch line becomes dependent on the coordinate along the
film thickness and it is maximal in the film’s midplane and
minimal at the film surfaces. However, it has to be noted that
the additional dependence of the azimuthal angle of magne-
tization inside the vertical Bloch line on the z coordinate is
proportional to the small parameter (tf/le,‘)2 and thus negli-
gibly small.

'Let us now analyze how this change of the structure of
the vertical Bloch line may affect its dynamics. Dynamic
solution of Eq. (44) will be sought in a form y[x
—X(z,1),2)], where X(z,t)=Vpg t+X(z,x) describes the
position of the vertical Bloch line and distortion of its shape
due to the action of gyrotropic forces [it is clear that X(z,x)
is expected to be small].

Equation (44) can be now rewritten in the form

9, 9% 2 (9% 8°X 3y X
A X ox +oplex ox 3?_+6xéz a9z
# 4

="wu[l§x(g+5z)x—,\’0082¢o

1
+7 xh{"(z)sin ¢0] , (48)

where x(z,x)=9y/3xX in approximation of small distor-
tions of the vertical Bloch line shape. The right-hand side of
Eq. (48) becomes equal to zero if expression (45) along with
Egs. (46) and (47) is used for ¢ in calculation of x(z,x). The
inhomogeneous Eq. (48) can be solved if the expression for
Xx(z.x) is orthogonal to the left-hand side of the equation.
One can get from Eq. (45)

_ 1 @\,
x(z.%)= E( _cosh(x/lex) to coshz(x/lex)}x(z’x)'
49)

The condition that the above expression for y(z,x) is or-
thogonal to the left-hand side of Eq. (48) can be written in
the form of the equation

ku

2
1+v( > ;)E(z)], (50)

; , T
AX— leexafx= EQ\/E

which has to be solved along with the following boundary

conditions (9X/0z),= +, 2 The solution is given by

Copyright © 2000. All rights reserved.




coincides with the standard expression® for the velocity of
the vertical Bloch line in the domain wall moving with ve-
locity ¢ and

g(D=2\In2+ 7| -2~ 0 (53)
The second term in expression (51) describes the dynamic
distortions of the distribution of magnetization inside the
vertical Bloch line. Very small (being proportional to v?)
distortion of the vertical Bloch line shape is, however, anti-
symmetric with respect to the film thickness.

Summarizing the analysis carried out here, we can con-
clude that our analysis provides theoretical justification of
the fact that static and dynamic properties of domain wall in
ultrathin ‘magnetic film are notably close to the ones of a
standard Bloch wall. The limiting velocity of the uniform
motion of the domain wall in ultrathin films has to be greater
than that observed in thicker films with ;> 1., , because it is
practically equal to Walker’s critical velocity.

Our study has also shown that the distribution of the
magnetization inside the stationary Bloch line is very close
to the one in films with #,>1.. We also showed that the
dynamics of vertical Bloch lines in ultrathin magnetic films
is similar to that of thicker films with thickness > 1.
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