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The Dirac equation for an electron in two spatial dimensions in the Coulomb and
homogeneous magnetic fields is an example of the so-called quasi-exactly solvable
models. The solvable parts of its spectrum were previously solved from the recur-
sion relations. In this work we present a purely algebraic solution based on the
Bethe ansatz equations. It is realized that, unlike the corresponding problems in the
Schralinger and the Klein—Gordon cases, here the unknown parameters to be
solved for in the Bethe ansatz equations include not only the roots of the wave
function assumed, but also a parameter from the relevant operator. We also show
that the quasi-exactly solvable differential equation does not belong to the classes
based on the algebsd,. © 2002 American Institute of Physics.
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I. INTRODUCTION

Recently a new type of spectral problem, the so-called quasi-exactly solvable (@&tf&WV),
was discovered by physicists and mathematictafisThis is a special class of quantum-
mechanical problems for which analytical solutions are possible only for parts of the energy
spectra and for particular values of the fundamental parameters. The reason for such quasi-exactly
solvability is usually the existence of a hidden Lie-algebraic struc¢ttidore precisely, a quasi-
exactly solvablgQES Hamiltonian can be reduced to a quadratic combination of the generators
of a Lie group with finite-dimensional representations.

The first physical example of QESM in atomic physics is the system of two electrons moving
in an external oscillator potential discussed in Refs. 9 and 10. The authors of these works appar-
ently were unaware of the mathematical development in QESM. Later, several physical QESMs
were discovered, which include the two-dimensional Sdimger’! the Klein—Gordon? and the
Dirac equation® of an electron moving in an attractive/repulsive Coulomb field and a homoge-
neous magnetic field. The essential features shared by all these above examples are as follows. The
differential equations are solved according to the standard procedure. After separating out the
asymptotic behaviors of the system, one obtains an equation for the part which can be expanded
as a power series of the basic variable. But instead of the two-step recursion relations for the
coefficients of power series so often encountered in exactly solvable problems, one gets three-step
recursion relations. The complexity of the recursion relations does not allow one to determine the
energy spectrum exactly from the normalizability of the eigenfunctions. However, one can impose
a sufficient condition for normalizability by terminating the series at a certain order of power of
the variable; i.e., by choosing a polynomial. By doing so one could obtain exact solutions to the
original problem, but only for certain energies and for specific values of the parameters of the
problem. These parameters, namely, are the frequency of the oscillator potential and the external
magnetic fields.

In Ref. 14 a systematic and unified algebraic treatment was given to the above-mentioned
systems, with the exception of the Dirac case. This was made possible by realizing that these
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systems are governed essentially by the same basic equation, which is quasi-exactly solvable
owing to the existence of a hiddesi, algebraic structure. This algebraic structure was first
realized by Turbiner for the case of two electrons in an oscillator poténtlal.this algebraic
approach, analytic expressions of the solvable parts of the energy spectrum and the allowed
parameters were expressible in terms of the roots of a set of Bethe ansatz equations.

In this article we would like to extend the method of Ref. 14 to the planar Dirac equation of
an electron in the Coulomb and magnetic fields. It turns out that a set of Bethe ansatz equations
can also be set up in this case. However, unlike the systems considered in Ref. 14, here the
unknown variables in the Bethe ansatz equations involved not only the roots of the wave functions
assumed, but also a parameter from the relevant operator. We also demonstrate that the Bethe
ansatz approach yields the same spectrum as that obtained by solving recursion relations. Finally,
we show that the quasi-exactly solvability of this system is not related tslthalgebra.

II. THE DIRAC EQUATION

In 2+ 1 dimensions the Dirac algebra
{7M1yv}=29ﬂvv gl‘“’:diaql’—l,—l) (1)

may be represented in terms of the Pauli matricesy&s o3, Y<=ioy or, equivalently, the
matrices @ ,a,)=7°(y! v?)=(—0,,0,) and 8= ~°. Then the Dirac equation for an electron
minimally coupled to an external electromagnetic field has the fevensetc=#A=1)

where
HD:ap+ﬂm_eAOEO'1P2_0'2P1+0'3m_eA0 (3)

is the Dirac HamiltonianP,= —id,+ eA, is the operator of generalized momentum of the elec-
tron, A, is the vector potential of the external electromagnetic fieidis the rest mass of the
electron, and—e (e>0) is its electric charge. The Dirac wave functioih(t,r) is a two-
component function. In an external Coulomb field and a constant homogeneous magnetic field
B>0 along thez direction, the potentiah, assumes the following forms in the symmetric gauge

A%r)=Zelr (e>0), A=-Byl2, A,=Bx?2. (4
We assume the wave functions to have the form
1 .
Y (t,x)=—=exp( —iEt) ¢(r,¢), 5
Jr
whereE is the energy of the electron, and

E il o
(re ) ®

w'(r’(p):(G(r)e‘(”l)‘”

with integral numbet. The functiony(r,¢) is an eigenfunction of the conserved total angular
momentuml,=L,+ S,= —id/do+ o3/2 with eigenvalug =1+ 3. It should be reminded thatis
not a good quantum number. Only the eigenvalue$the conserved total angular momentudm
are physically meaningful.

By putting Egs.(5) and (6) into (2), and taking into account the equations

] o i 0 eBr
Pxi|Py=—|e'“’(—i(———T)>, (7
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we obtain

dF I+§+eBr F+| E+m+ ¢ G=0 8
o\ T2 mt )60, ®
dG I+§+eBr oo me 2% g .
ar t\ Tt e EemE )P0 ©®

wherea=e?= 7% is the fine structure constant. In a strong magnetic field the asymptotic solutions
of F(r) andG(r) have the forms exp{eBr?/4) at larger, andr? with y= /(1 + 1/2)>— (Za)? for
smallr. One must hav& o< 3, otherwise the wave function will oscillate as-0 whenl =0 and
l=—-1.

Let us assume

F(r)=r"exp(—eBré/4)Q(r), G(r)=r"exp —eBr/4)P(r). (10

In Ref. 13 we showed that parts of the spectrum could be analytically solved for by imposing the
sufficient condition tha@Q(r) andP(r) be polynomials, thus showing that the system belongs to
the QESM. The spectrum was solved in Ref. 13 from the recursion relations for the coefficients in
the series expansion @ andP. In this article, we will show that the same spectrum can also be
obtained in a purely algebraic way. This is achieved by the method of factorization which leads to
a set of Bethe ansatz equatidig?

Substituting Eq(10) into Eqgs.(8) and(9) and eliminatingP(r) from the coupled equations,

we have
d? N 2 Brt Zalr? d B 2EZa 1+3 BT 41
dr? e Er T Zalr | dr m r 2 2 € ( )
pZar Jy g 1T -0 11
E+m+Zalr|r 7 || QD=0 (1D

wherel’=1+ 3+ . OnceQ(r) is solved, the form oP(r) is obtainable from Eqg8) and(10).
If we let x=r/lg, |g=1/\/eB, Eq.(11) becomes

a2 [2y Za d 2EZlga  (I+35—7)
Il Sl el 2_ 22 B

[dx2+ X X+x((E+m)IBx+Za) dx+(E Ml ——+ (T+1)
Za(l+35-7) Za 0 12
T ETm)igxtZa] (E+migxiZa| 20=0 (12

Equation(12) can be rewritten as

d2 [28 1 ]d o 13
B¢ X T xaxglax T X T ki) AXTO -

Here B=y+ 3, Xo=Zal[(E+m)lg], e=(E?—m?)I3— (' +1), b=by+L/xg, by=2EZalg, L
=(I+3—1v), andc=xy+L/xy. On expressindg in the expression of in terms ofx,, we get

Za

2
X—O) —(T+1). (14)

_E—m
““E+m
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It is obvious that the energl is determined once we know the valueseodnd x,. The corre-
sponding value of the magnetic fieB is then obtainable from the expressibg=Za/[(E
+m)xg]. Solution ofx, is achieved below by means of the Bethe ansatz equations.

[ll. THE BETHE ANSATZ EQUATIONS FOR Q(x)

We observe that the problem of finding the spectrum for(E8). is equivalent to determining
the eigenvalues of the operator

- d> (28 1 \d b+ c 15
T\ X T xxg/dx x T xtxg” (15

We want to factorize the operat@t5) in the form
D=a"a+e. (16

The eigenfunctions of the operatbr at e=0 must satisfy the equation

aQ(x)=0. (17)

Suppose polynomial solutions exist for Ed.3), say Q equals a nonvanishing constant, @r
=II;_,(x—x,), wherex, are the zeros of, andn is the degree of. In the case wher® is a
constantwhich may be viewed as correspondingnts 0), the operatorst anda™ have the form

d . d (2B 1 s
axt T T ax I x X Xaxe) (18
If Q=II;_,(x—x,), a anda™ will assume the form
d &1 1
a_&_kzlx—xk (19
and
d (28 1 |
S el _
dx X X+ Xg kgl X— X (20

We now substitute the forms af anda™ into Eq.(16) and compare the result with EGL5).
This leads to conditions that must be satisfied by the various parameters and the reotsor
constantQ (n=0), one has

e=b=c=0. (2D
The fact thatc=0 implies
X5=—L. (22)
Forn=1, one gets
n
bo+ Xiozzﬂgl X—lk e=n, (23)

L

1
Xo+ —= 2, ,
XO k=1 Xk+ XO

(29)

Downloaded 10 Dec 2009 to 163.13.32.114. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 43, No. 1, January 2002 Planar Dirac electron a7

2B 1 AR |
Xk X tXo 7k Xj— Xk

=0, k=1,...n. (25)

Equations(22), (24), and (25) constitute the set ai+1 Bethe ansatz equations relevant to this
Dirac system, which involve+1 unknown parametefg,Xq,...X,}. It is worthwhile to note
that, unlike the corresponding equations in the Sdimger and the Klein—Gordon cases discussed
in Ref. 14, this set of Bethe ansatz equations involved not only the xQotisut also a parameter
Xo from D. Summing Eq(25) overk leads to the expressidm=Xy+ Z;_ X, i.€.,bg is simply

the sum of all the roots of the Bethe ansatz equations. From the second equatiof28) e get

| -

E?~m?=>(I'+n+1). (26)

w N

Since— i<I'=<0 for Za< % we see from Eq(26) that the solvable parts of the spectrum must
satisfy|E|=m.

So we see that the solution of the solvable parts of the spedirtiwils down to solving the
Bethe ansatz equations fgg in the differential operator, and the rootg(k=1,...,n) of Q(x).
Once the value ok, for each ordem= e is known, the energy¥ is given by Eq.(14). The
corresponding magnetic fieRlis then determined from the definition lo§, or from Eq.(26). The
Bethe ansatz equations thus provide a systematic solutions of the QES spectrum. Of course, as the
order of the degree o increases, analytical solutions of the Bethe ansatz equations becomes
difficult, and one must resort to numerical methods.

IV. SOLUTIONS FOR n=0,1, and 2

In what follows we shall show the consistency of the solutions by the Bethe ansatz approach
and that by the recursion relations presented in Ref. 13 for the first three lowest onders (
=0,1,2) inQ. Instead of solving fox,, our strategy is to eliminate it in Eq14) by means of
Eqgs.(22)—(25) so as to obtain an equation obeyedibjor each order of). This equation is then
compared with the corresponding equation obtained from the recursion relations as presented in
Ref. 13.

From Egs.(21) and (22) we havexgz —L ande=0 whenQ is a constant. Substitute these
values ofx, ande into Eq.(14), and using the fact thdtL = (Z«)?, we obtain the corresponding
value ofE as

m

ST F T

(27)

This is the result presented in Ref. 13. The corresponding allowed value of the magneti§eld
then obtained from Eq$26) and(27). The fact thaik, is real leads td. <0, which in turn implies
that the energy levels given by ER7) are only possible fot<0. This is consistent with the
conclusion obtained by the method of recursion relatidns.

Forn=1, we find from Eqs(14), (23), (24), and(25) that

Fioe E-m (Za)? -
2 Erm 28
L 28
b0+X—0—X—l, (29)
1 L
=Xot+ —, (30

X1+%Xo % X
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2 1
X1 X1+X0

Equations(29)—(31) imply x;=bg—Xq. Substitutingx, into Eq. (30), we obtain

2o —E -1 - 32
%o 2E(Za)? (32

Then from Eqs(32) and(28), we get
4T +1 . E2+4E I 2=0 33

The energ\E can be solved from Eq33) by the standard formula, after which the magnetic field
is determined from Eq26). Equation(33) does not resemble the one obtained from the recursion
relation in Ref. 13. However, on multiplying E¢33) by I'+1 and making use of the fact that
(Za)?=T'(I'-2y), we can show, after some algebra, that Bp) is equivalent to the corre-
sponding equation given in Ref. 13.

Finally we consider the case far=2. We have Eq.(14) with e=2, together with Egs.
(23)—(25) in the forms

r+3= E—m (Za)® 34
TErm g (39
L 2 2
bo+—=—'8+—ﬁ, (39
Xo X1 Xp
! + ! =Xo+ - 36
X1+ X x2+x0_XO Xo' (36
28 1 2
X_l_X1_ X1+X0_X2—X1_O' @7
2 1 2
B - =0. (39)

Xo 2 XptXg Xi—Xp

From these equations we fixgd+ X, = by — Xy andx;X,=2BXq(bg—Xg)/(bgXp+L). Putting these
expressions into Eq36) and using the fact thdt=28+L—1, we arrive at

bol'L

(b3—2B)x3+ b xo+[b2(L—1)—L(2B8+1)]+ v
0

0. (39

Now multiplying Eq.(39) by T, usingI'L = (Z«)?, and expressing, Ig, and 1k(2) in terms ofE,
we get finally
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6L +2(y+1)+

(2y+ 1)r“ o

1
[4(2F+3)—(Z—2 r+3

a)

1
12_@[2(7—’—1)_ '+3

N L (29+ 1)FH o
1 2y+1)T 1 2y+1)T’
+(ZT)2 6F+2(’y+1)+W}EmZ‘F(ZT)Z[Z(’y"‘l)—W m3=0.

(40)

Again, this equation does not look the same as that obtained from the recursion relations. But we
can show they are in fact equivalent as they differ only by a multiplicative fadfior X)(I"
+2).

V. THE BETHE ANSATZ EQUATIONS FOR P(x)

One may as well solve the QES energy spectrum of the problem from the differential equation
of P(x) instead ofQ(x). The analysis proceeds in exactly the same way as we diQ ). We
shall only give the outline below in order to show the similarity and differences between the two
sets of Bethe ansatz equations.

The equation folP(x) can be cast into the following form:

d> [28 1 1]d b” ¢
| xm ——| =+ e+ —— ——| P(x)=0. (41)
dx X X+ Xq | dX X X+Xg

Herex)=Zal[(E—m)lg], €' =(E?~m?)I3—T, b’ =bg+c’, andc’ = —I'/x}. Other parameters

are as defined previously. Instead of Et4d) we now have

Za\?
M -T. (42
0

, E+m
" E-m

We note here the sign difference before the mass terms in(Efjsand(42). It is obvious that Eq.
(41) is in the same form as E@13), and hence is also quasi-exactly solvable. Supf{sg has

the factorized forrrP(x)=l'[E':l(x—x,’<). Then the set of Bethe ansatz equations for the param-
eters{xg,Xy,... X} is given by

r o o1
T T2 o (43
XO k=1 Xk+XO
2B 1 o
— X ,—22 —— =0, k=1,...n". (44)
Xy Xt Xp j#k XJ— — X
In place of Eq.(23) we have
r "o
bo— =282 -,
0 XO Bkgl Xk
e'=n’, n'=12... (45)
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Summing Eq(44) overk givesby= EE': 1X - For any given integral value ef =n’ the QES part
of the energyE is determined from Eq42) once the values af; are obtained from the Bethe
ansatz equations. The corresponding value of the magneticBieéddthen obtainable from the
expressiong=Zal/[ (E—m)xg].

We note here that since the two sets of Bethe ansatz(Egjs(24) and(25), and(43) and(44)
give the same spectrum of the QES endkgsind the corresponding, we have, from the values
of €, € andbg, the following necessary conditions:

n"=n+1, (46)

n+1

n
bo=Xo+ X, X= >, X- (47)
=y =y

Conversely, one can easily show that E@) and(47) are also the sufficient conditions for the

two sets of Bethe ansatz equations to give the same QES energy spectrum and magnetic field. The
condition (46) implies that the degree of the polynomR(x) is of one order higher than that of

Q(x), which is in complete agreement with the result obtained in Ref. 13.

VI. NON-s/,-BASED QUASI-EXACTLY SOLVABILITY

We now demonstrate that the QES E¢E3) and (41) cannot be represented as a bilinear
combination of the generators of tted, algebra. The question of whether there exists non-
sl,-based one-dimensional QESM was first posed in Ref. 2 in whicklglbased QESM are
classified. The first example of such a kind was given in Ref. 16, which presents a potential arising
in the context of the stability analysis around the kink solution$6etype field theory in # 1
dimensions.

We shall show that Eq13) is not generated by th&l, algebra. The same conclusion applies
immediately to Eq(41), since both equations have the same form. Let us rewrite Ej.as

d? d
—(x2+x0x)W+[x3+ XoX?+ (1—28)X— 28%,] X ex?+(c—b— exo)x—bxo] Q(x)=0.
(48)
Turbinef has shown that alil,-based second order QES differential equations can be cast into the
form
d*Q dQ

~Pa(X) 3z +Pa(X) 4 T (P2(x) —M)Q=0, (49)

where

Pix)=a, x*+a, x>+ (a,_+ag)x?>+ag_x+a__,

Pa(x)=2(2j — D). . x+[ (3] — 1)@+ b. [X+[2] (@, - +ag) +aoo+ bolx+jag_+b_,
(50

Po(X)=2j(2]—1)a, . x*+2j(ja o+ b, )x+agoj *+byj.

Herea,,’s andby’s (k,I=+,0,—) are constants, andis a non-negative integer or half-integer.
Equation(49) corresponds to the eigenvalue problem

HQ=\Q, H=- 2> aJ¥'+ X bJd¥ (52)
k 0, k=+,0,—
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which has a polynomial solution of powejj 21 x. HereJ¥’s are the generators &fl,:

d d
Y_y2 o 0_ o -_
JT=x dx 2ix, J de i, J ax’ (52

Comparing Eqgs(48) and(49) we find that the two equations are inconsistent with each other. For
instance, the coefficient of* in P, requiresa, , =0, whereas the coefficient af in P implies
2(2j—1)a, . =1, which gives a nonvanishing, , for positive integral and half-integral values

of j. This shows that Eq.13) is notsl,-based.

VIl. CONCLUSIONS

In conclusion, we have given an algebraic solution to the planar Dirac equation of an electron
in the Coulomb and magnetic fields. The relevant Bethe ansatz equations are presented. Unlike the
corresponding equations in the Scattirger and the Klein-Gordon case discussed in Ref. 14, the
unknown variables in this set of Bethe ansatz equations include not only the roots of the polyno-
mial assumed, but also a parameter from the QES differential operator. Equivalence between this
approach and that by the recursion relations is demonstrated. Finally, we show that the QES
equation for this problem does not belong to any of the classes based sh tigebra.
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