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Planar Dirac electron in Coulomb and magnetic fields:
A Bethe ansatz approach
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The Dirac equation for an electron in two spatial dimensions in the Coulomb and
homogeneous magnetic fields is an example of the so-called quasi-exactly solvable
models. The solvable parts of its spectrum were previously solved from the recur-
sion relations. In this work we present a purely algebraic solution based on the
Bethe ansatz equations. It is realized that, unlike the corresponding problems in the
Schrödinger and the Klein–Gordon cases, here the unknown parameters to be
solved for in the Bethe ansatz equations include not only the roots of the wave
function assumed, but also a parameter from the relevant operator. We also show
that the quasi-exactly solvable differential equation does not belong to the classes
based on the algebrasl2 . © 2002 American Institute of Physics.
@DOI: 10.1063/1.1418426#

I. INTRODUCTION

Recently a new type of spectral problem, the so-called quasi-exactly solvable model~QESM!,
was discovered by physicists and mathematicians.1–8 This is a special class of quantum
mechanical problems for which analytical solutions are possible only for parts of the e
spectra and for particular values of the fundamental parameters. The reason for such quasi
solvability is usually the existence of a hidden Lie-algebraic structure.2–6 More precisely, a quasi-
exactly solvable~QES! Hamiltonian can be reduced to a quadratic combination of the gener
of a Lie group with finite-dimensional representations.

The first physical example of QESM in atomic physics is the system of two electrons mo
in an external oscillator potential discussed in Refs. 9 and 10. The authors of these works
ently were unaware of the mathematical development in QESM. Later, several physical Q
were discovered, which include the two-dimensional Schro¨dinger,11 the Klein–Gordon,12 and the
Dirac equations13 of an electron moving in an attractive/repulsive Coulomb field and a hom
neous magnetic field. The essential features shared by all these above examples are as follo
differential equations are solved according to the standard procedure. After separating o
asymptotic behaviors of the system, one obtains an equation for the part which can be ex
as a power series of the basic variable. But instead of the two-step recursion relations
coefficients of power series so often encountered in exactly solvable problems, one gets thr
recursion relations. The complexity of the recursion relations does not allow one to determi
energy spectrum exactly from the normalizability of the eigenfunctions. However, one can im
a sufficient condition for normalizability by terminating the series at a certain order of pow
the variable; i.e., by choosing a polynomial. By doing so one could obtain exact solutions
original problem, but only for certain energies and for specific values of the parameters
problem. These parameters, namely, are the frequency of the oscillator potential and the e
magnetic fields.

In Ref. 14 a systematic and unified algebraic treatment was given to the above-men
systems, with the exception of the Dirac case. This was made possible by realizing tha
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systems are governed essentially by the same basic equation, which is quasi-exactly s
owing to the existence of a hiddensl2 algebraic structure. This algebraic structure was fi
realized by Turbiner for the case of two electrons in an oscillator potential.15 In this algebraic
approach, analytic expressions of the solvable parts of the energy spectrum and the a
parameters were expressible in terms of the roots of a set of Bethe ansatz equations.

In this article we would like to extend the method of Ref. 14 to the planar Dirac equatio
an electron in the Coulomb and magnetic fields. It turns out that a set of Bethe ansatz eq
can also be set up in this case. However, unlike the systems considered in Ref. 14, h
unknown variables in the Bethe ansatz equations involved not only the roots of the wave fun
assumed, but also a parameter from the relevant operator. We also demonstrate that th
ansatz approach yields the same spectrum as that obtained by solving recursion relations.
we show that the quasi-exactly solvability of this system is not related to thesl2 algebra.

II. THE DIRAC EQUATION

In 211 dimensions the Dirac algebra

$gm,gn%52gmn, gmn5diag~1,21,21! ~1!

may be represented in terms of the Pauli matrices asg05s3 , gk5 isk or, equivalently, the
matrices (a1 ,a2)5g0(g1,g2)5(2s2 ,s1) andb5g0. Then the Dirac equation for an electro
minimally coupled to an external electromagnetic field has the form~we setc5\51!

~ i ] t2HD!C~ t,r !50, ~2!

where

HD5aP1bm2eA0[s1P22s2P11s3m2eA0 ~3!

is the Dirac Hamiltonian,Pk52 i ]k1eAk is the operator of generalized momentum of the el
tron, Am is the vector potential of the external electromagnetic field,m is the rest mass of the
electron, and2e (e.0) is its electric charge. The Dirac wave functionC(t,r ) is a two-
component function. In an external Coulomb field and a constant homogeneous magnet
B.0 along thez direction, the potentialAm assumes the following forms in the symmetric gau

A0~r !5Ze/r ~e.0!, Ax52By/2, Ay5Bx/2. ~4!

We assume the wave functions to have the form

C~ t,x!5
1

Ar
exp~2 iEt !c l~r ,w!, ~5!

whereE is the energy of the electron, and

c l~r ,w!5S F~r !eil w

G~r !ei ( l 11)w D ~6!

with integral numberl . The functionc l(r ,w) is an eigenfunction of the conserved total angu
momentumJz5Lz1Sz52 i ]/]w1s3/2 with eigenvaluej 5 l 1 1

2. It should be reminded thatl is
not a good quantum number. Only the eigenvaluesj of the conserved total angular momentumJz

are physically meaningful.
By putting Eqs.~5! and ~6! into ~2!, and taking into account the equations

Px6 iPy52 ie6 iwS ]

]r
6S i

r

]

]w
2

eBr

2 D D , ~7!
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we obtain

dF

dr
2S l 1

1

2

r
1

eBr

2
D F1S E1m1

Za

r DG50, ~8!

dG

dr
1S l 1

1

2

r
1

eBr

2
D G2S E2m1

Za

r DF50, ~9!

wherea[e25 1
137 is the fine structure constant. In a strong magnetic field the asymptotic solu

of F(r ) andG(r ) have the forms exp(2eBr2/4) at larger , andr g with g5A( l 11/2)22(Za)2 for
small r . One must haveZa, 1

2, otherwise the wave function will oscillate asr→0 whenl 50 and
l 521.

Let us assume

F~r !5r g exp~2eBr2/4!Q~r !, G~r !5r g exp~2eBr2/4!P~r !. ~10!

In Ref. 13 we showed that parts of the spectrum could be analytically solved for by imposin
sufficient condition thatQ(r ) andP(r ) be polynomials, thus showing that the system belong
the QESM. The spectrum was solved in Ref. 13 from the recursion relations for the coefficie
the series expansion inQ andP. In this article, we will show that the same spectrum can also
obtained in a purely algebraic way. This is achieved by the method of factorization which lea
a set of Bethe ansatz equations.13,14

Substituting Eq.~10! into Eqs.~8! and~9! and eliminatingP(r ) from the coupled equations
we have

H d2

dr2 1F2g

r
2eBr1

Za/r 2

E1m1Za/r G d

dr
1E22m21

2EZa

r
1

l 1 1
2

r 2 2
g

r 2 2eB~G11!

1
Za/r 2

E1m1Za/r
Fg

r
2eBr2

l 1 1
2

r
G J Q~r !50, ~11!

whereG5 l 1 1
21g. OnceQ(r ) is solved, the form ofP(r ) is obtainable from Eqs.~8! and ~10!.

If we let x5r / l B , l B51/AeB, Eq. ~11! becomes

H d2

dx2 1F2g

x
2x1

Za

x~~E1m!l Bx1Za!G d

dx
1~E22m2!l B

21
2EZlBa

x
1

~ l 1 1
22g!

x2 2~G11!

2
Za~ l 1 1

22g!

x2@~E1m!l Bx1Za#
2

Za

~E1m!l Bx1Za
J Q~x!50. ~12!

Equation~12! can be rewritten as

H d2

dx2 1F2b

x
2x2

1

x1x0
G d

dx
1e1

b

x
2

c

x1x0
J Q~x!50. ~13!

Here b5g1 1
2, x05Za/@(E1m) l B#, e5(E22m2) l B

22(G11), b5b01L/x0 , b052EZa l B , L
5( l 1 1

22g), andc5x01L/x0 . On expressingl B in the expression ofe in terms ofx0 , we get

e5
E2m

E1m S Za

x0
D 2

2~G11!. ~14!
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It is obvious that the energyE is determined once we know the values ofe andx0 . The corre-
sponding value of the magnetic fieldB is then obtainable from the expressionl B5Za/@(E
1m)x0#. Solution ofx0 is achieved below by means of the Bethe ansatz equations.

III. THE BETHE ANSATZ EQUATIONS FOR Q„x …

We observe that the problem of finding the spectrum for Eq.~13! is equivalent to determining
the eigenvalues of the operator

D52
d2

dx2 2S 2b

x
2x2

1

x1x0
D d

dx
2

b

x
1

c

x1x0
. ~15!

We want to factorize the operator~15! in the form

D5a1a1e. ~16!

The eigenfunctions of the operatorD at e50 must satisfy the equation

aQ~x!50. ~17!

Suppose polynomial solutions exist for Eq.~13!, say Q equals a nonvanishing constant, orQ
5Pk51

n (x2xk), wherexk are the zeros ofQ, andn is the degree ofQ. In the case whereQ is a
constant~which may be viewed as corresponding ton50!, the operatorsa anda1 have the form

a5
d

dx
, a152

d

dx
2S 2b

x
2x2

1

x1x0
D . ~18!

If Q5Pk51
n (x2xk), a anda1 will assume the form

a5
d

dx
2 (

k51

n
1

x2xk
~19!

and

a152
d

dx
2S 2b

x
2x2

1

x1x0
D2 (

k51

n
1

x2xk
. ~20!

We now substitute the forms ofa anda1 into Eq. ~16! and compare the result with Eq.~15!.
This leads to conditions that must be satisfied by the various parameters and the rootsxk’ s. For
constantQ (n50), one has

e5b5c50. ~21!

The fact thatc50 implies

x0
252L. ~22!

For n>1, one gets

b01
L

x0
52b(

k51

n
1

xk
, e5n, ~23!

x01
L

x0
5 (

k51

n
1

xk1x0
, ~24!
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2b

xk
2xk2

1

xk1x0
22(

j Þk

n
1

xj2xk
50, k51, . . . ,n. ~25!

Equations~22!, ~24!, and ~25! constitute the set ofn11 Bethe ansatz equations relevant to th
Dirac system, which involven11 unknown parameters$x0 ,x1 ,...,xn%. It is worthwhile to note
that, unlike the corresponding equations in the Schro¨dinger and the Klein–Gordon cases discuss
in Ref. 14, this set of Bethe ansatz equations involved not only the rootsxk , but also a paramete
x0 from D. Summing Eq.~25! over k leads to the expressionb05x01(k51

n xk , i.e., b0 is simply
the sum of all the roots of the Bethe ansatz equations. From the second equation in Eq.~23! we get

E22m25
1

l B
2 ~G1n11!. ~26!

Since2 1
2<G<0 for Za, 1

2,
13 we see from Eq.~26! that the solvable parts of the spectrum mu

satisfy uEu>m.
So we see that the solution of the solvable parts of the spectrumE boils down to solving the

Bethe ansatz equations forx0 in the differential operator, and the rootsxk(k51,...,n) of Q(x).
Once the value ofx0 for each ordern5e is known, the energyE is given by Eq.~14!. The
corresponding magnetic fieldB is then determined from the definition ofb0 , or from Eq.~26!. The
Bethe ansatz equations thus provide a systematic solutions of the QES spectrum. Of course
order of the degree ofQ increases, analytical solutions of the Bethe ansatz equations bec
difficult, and one must resort to numerical methods.

IV. SOLUTIONS FOR nÄ0,1, and 2

In what follows we shall show the consistency of the solutions by the Bethe ansatz app
and that by the recursion relations presented in Ref. 13 for the first three lowest orden
50,1,2) inQ. Instead of solving forx0 , our strategy is to eliminate it in Eq.~14! by means of
Eqs.~22!–~25! so as to obtain an equation obeyed byE for each order ofQ. This equation is then
compared with the corresponding equation obtained from the recursion relations as prese
Ref. 13.

From Eqs.~21! and ~22! we havex0
252L ande50 whenQ is a constant. Substitute thes

values ofx0 ande into Eq.~14!, and using the fact thatGL5(Za)2, we obtain the correspondin
value ofE as

E52
m

2~ l 1g11!
. ~27!

This is the result presented in Ref. 13. The corresponding allowed value of the magnetic fieB is
then obtained from Eqs.~26! and~27!. The fact thatx0 is real leads toL,0, which in turn implies
that the energy levels given by Eq.~27! are only possible forl ,0. This is consistent with the
conclusion obtained by the method of recursion relations.13

For n51, we find from Eqs.~14!, ~23!, ~24!, and~25! that

G125
E2m

E1m

~Za!2

x0
2 , ~28!

b01
L

x0
5

2b

x1
, ~29!

1

x11x0
5x01

L

x0
, ~30!
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2b

x1
2x12

1

x11x0
50. ~31!

Equations~29!–~31! imply x15b02x0 . Substitutingx1 into Eq. ~30!, we obtain

x0
25LF E1m

2E~Za!2 21G21

. ~32!

Then from Eqs.~32! and ~28!, we get

F4~G11!2
G

Z2a2GE214Em1
G

~Za!2 m250. ~33!

The energyE can be solved from Eq.~33! by the standard formula, after which the magnetic fie
is determined from Eq.~26!. Equation~33! does not resemble the one obtained from the recurs
relation in Ref. 13. However, on multiplying Eq.~33! by G11 and making use of the fact tha
(Za)25G(G22g), we can show, after some algebra, that Eq.~33! is equivalent to the corre
sponding equation given in Ref. 13.

Finally we consider the case forn52. We have Eq.~14! with e52, together with Eqs.
~23!–~25! in the forms

G135
E2m

E1m

~Za!2

x0
2 , ~34!

b01
L

x0
5

2b

x1
1

2b

x2
, ~35!

1

x11x0
1

1

x21x0
5x01

L

x0
, ~36!

2b

x1
2x12

1

x11x0
2

2

x22x1
50, ~37!

2b

x2
2x22

1

x21x0
2

2

x12x2
50. ~38!

From these equations we findx11x25b02x0 andx1x252bx0(b02x0)/(b0x01L). Putting these
expressions into Eq.~36! and using the fact thatG52b1L21, we arrive at

~b0
222b!x0

21b0Gx01@b0
2~L21!2L~2b11!#1

b0GL

x0
50. ~39!

Now multiplying Eq.~39! by G, usingGL5(Za)2, and expressingb0 , l B , and 1/x0
2 in terms ofE,

we get finally
0 Dec 2009 to 163.13.32.114. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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H 4~2G13!2
1

~Za!2 F6G12~g11!1
~2g11!G

G13 G J E3

1H 122
1

~Za!2 F2~g11!2
~2g11!G

G13 G J E2m

1
1

~Za!2 F6G12~g11!1
~2g11!G

G13 GEm21
1

~Za!2 F2~g11!2
~2g11!G

G13 Gm350.

~40!

Again, this equation does not look the same as that obtained from the recursion relations.
can show they are in fact equivalent as they differ only by a multiplicative factor (G11)(G
12).

V. THE BETHE ANSATZ EQUATIONS FOR P„x …

One may as well solve the QES energy spectrum of the problem from the differential equ
of P(x) instead ofQ(x). The analysis proceeds in exactly the same way as we did forQ(x). We
shall only give the outline below in order to show the similarity and differences between the
sets of Bethe ansatz equations.

The equation forP(x) can be cast into the following form:

H d2

dx2 1F2b

x
2x2

1

x1x08
G d

dx
1e81

b8

x
2

c8

x1x08
J P~x!50. ~41!

Herex085Za/@(E2m) l B#, e85(E22m2) l B
22G, b85b01c8, andc852G/x08 . Other parameters

are as defined previously. Instead of Eq.~14! we now have

e85
E1m

E2m S Za

x08
D 2

2G. ~42!

We note here the sign difference before the mass terms in Eqs.~14! and~42!. It is obvious that Eq.
~41! is in the same form as Eq.~13!, and hence is also quasi-exactly solvable. SupposeP(x) has

the factorized formP(x)5Pk51
n8 (x2xk8). Then the set of Bethe ansatz equations for the par

eters$x08 ,x18 ,...,xn8
8 % is given by

2
G

x08
5 (

k51

n8 1

xk81x08
, ~43!

2b

xk8
2xk82

1

xk81x08
22(

j Þk

n8 1

xj82xk8
50, k51, . . . ,n8. ~44!

In place of Eq.~23! we have

b02
G

x08
52b(

k51

n8 1

xk8
,

e85n8, n851,2.... ~45!
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Summing Eq.~44! overk givesb05(k51
n8 xk8 . For any given integral value ofe85n8 the QES part

of the energyE is determined from Eq.~42! once the values ofx08 are obtained from the Beth
ansatz equations. The corresponding value of the magnetic fieldB is then obtainable from the
expressionl B5Za/@(E2m)x08#.

We note here that since the two sets of Bethe ansatz Eqs.~22!, ~24! and~25!, and~43! and~44!
give the same spectrum of the QES energyE and the correspondingB, we have, from the values
of e, e8 andb0 , the following necessary conditions:

n85n11, ~46!

b05x01 (
k51

n

xk5 (
k51

n11

xk8 . ~47!

Conversely, one can easily show that Eqs.~46! and ~47! are also the sufficient conditions for th
two sets of Bethe ansatz equations to give the same QES energy spectrum and magnetic fi
condition~46! implies that the degree of the polynomialP(x) is of one order higher than that o
Q(x), which is in complete agreement with the result obtained in Ref. 13.

VI. NON-sl 2-BASED QUASI-EXACTLY SOLVABILITY

We now demonstrate that the QES Eqs.~13! and ~41! cannot be represented as a biline
combination of the generators of thesl2 algebra. The question of whether there exists n
sl2-based one-dimensional QESM was first posed in Ref. 2 in which allsl2-based QESM are
classified. The first example of such a kind was given in Ref. 16, which presents a potential a
in the context of the stability analysis around the kink solution forf4-type field theory in 111
dimensions.

We shall show that Eq.~13! is not generated by thesl2 algebra. The same conclusion appli
immediately to Eq.~41!, since both equations have the same form. Let us rewrite Eq.~13! as

H 2~x21x0x!
d2

dx2 1@x31x0x21~122b!x22bx0#
d

dx
2ex21~c2b2ex0!x2bx0J Q~x!50.

~48!

Turbiner2 has shown that allsl2-based second order QES differential equations can be cast int
form

2P4~x!
d2Q

dx2 1P3~x!
dQ

dx
1~P2~x!2l!Q50, ~49!

where

P4~x!5a11x41a10x31~a121a00!x
21a02x1a22 ,

P3~x!52~2 j 21!a11x31@~3 j 21!a101b1#x21@2 j ~a121a00!1a001b0#x1 ja021b2 ,
~50!

P2~x!52 j ~2 j 21!a11x212 j ~ ja101b1!x1a0 0 j 21b0j.

Here akl’s andbk’s (k,l 51,0,2) are constants, andj is a non-negative integer or half-intege
Equation~49! corresponds to the eigenvalue problem

HQ5lQ, H52 (
k,l 51,0,2

k> l

aklJ
kJl1 (

k51,0,2
bkJ

k, ~51!
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which has a polynomial solution of power 2j in x. HereJk’s are the generators ofsl2 :

J15x2
d

dx
22 jx, J05x

d

dx
2 j , J25

d

dx
. ~52!

Comparing Eqs.~48! and~49! we find that the two equations are inconsistent with each other.
instance, the coefficient ofx4 in P4 requiresa1150, whereas the coefficient ofx3 in P3 implies
2(2j 21)a1151, which gives a nonvanishinga11 for positive integral and half-integral value
of j . This shows that Eq.~13! is not sl2-based.

VII. CONCLUSIONS

In conclusion, we have given an algebraic solution to the planar Dirac equation of an ele
in the Coulomb and magnetic fields. The relevant Bethe ansatz equations are presented. Un
corresponding equations in the Schro¨dinger and the Klein-Gordon case discussed in Ref. 14,
unknown variables in this set of Bethe ansatz equations include not only the roots of the p
mial assumed, but also a parameter from the QES differential operator. Equivalence betwe
approach and that by the recursion relations is demonstrated. Finally, we show that the
equation for this problem does not belong to any of the classes based on thesl2 algebra.
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