A Clifford algebra quantization of Dirac’s electron positron field
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The quantum field theory of free Dirac particles (four-component massive spin-1 particles) is
“derived” by a Segal quantization procedure. First, details are given on how the spinor space of
Dirac is actually a minimal left ideal of the Clifford algebra associated with a Lorentz inner

product space ( +, —, —

, — ), and how the homogeneous group actions break the natural

two-component quaternion structure to give familiar four-component complex spinors.
Second, Wigner’s procedure for constructing unitary representations of the Poincaré group is
used to construct the appropriately induced infinite-dimensional representation of the
inhomogeneous group starting from the above four-dimensional nonunitary representation.
Third, and finally, Segal’s procedure for quantizing classical Fermion fields is adapted to this
infinite-dimensional Hilbert space to obtain the Clifford algebra of annihilation—creation
operators for spin-} particles. The familiar Fock space appears as a minimal left ideal in this

second Clifford algebra.

l. INTRODUCTION

In this paper we show how the familiar quantum field
theory of free massive Dirac spin-{ particles'? can be ob-
tained by two successive Clifford algebra constructions. We
refer to this generic field as the electron—positron field for
convenience, and have attempted to use notation familiar to
the physics community when possible.

In Sec. IT we give a short introduction to the standard
construction of the Clifford algebra associated with a real
vector space possessing a nondegenerate inner product.®*
This construction is applied to an infinite-dimensional space
in Sec. IV. However, in Sec. II emphasis is placed on a Min-
kowski inner-product space with signature — 2 and its cor-
responding Clifford algebra of gamma matrices. The tech-
nique for generating spinor representations of the associated
Clifford algebras is given and applied to the four-dimension-
al case.>™ By carefully including the discrete transforma-
tions (parity and time reversal) we are able to show how the
presence of projective representations and additional group
actions (i.e., phase rotation and charge conjugation) in the
Dirac theory destroys the expected two-component quater-
nion structure of spinors for the ( +, —, —, — ) metric. We
assume the homogeneous group structure to consist of a cov-
ering group of the homogeneous Lorentz group and the
above additional members. Throughout we use the four-di-
mensional spinor basis corresponding to rest states having
spins oriented along the + z axis and possessing + 1 parity.
Our motive is to use an explicit basis that produces the
Pauli-Dirac representation of the gamma matrices familiar
to all physicists."? Other representations such as Weyl or
Majorana could easily be used.

In Sec. III we use Wigner’s procedure for constructing
unitary representations of the Poincaré group to construct a
representation of the inhomogeneous group obtained by
combining the above homogeneous group with Minkowski
space translations.®~!* Two ingredients are critical and both
make use of the four-component Dirac representation of Sec.
I1. The first is a character, or equivalently a one-dimensional
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unitary representation of the translations (massive for the
case considered here), and the second is a unitary represen-
tation of the Little group of this character (the invariance
group of this character). Both are found in the above four-
component representation; e.g., when the homogeneous
group is restricted to the Little subgroup, the spin represen-
tation becomes unitary.

The reason for constructing this representation and its
infinite-dimensional Hilbert space is that in Sec. I'V a second
Clifford algebra, the operator algebra of the electron—posi-
tron theory, is constructed. By a straightforward extension
of the general construction outlined in Sec. II, and previous-
ly attributed to Segal,'*"! this complex Clifford algebra is
constructed from the infinite-dimensional complex Hilbert
space. All the general notions introduced in Sec. II can be
applied to this infinite-dimensional Clifford algebra. In par-
ticular, a projection operator (the Fock vacuum) is used to
generate the space of spinors (the Fock space).?” This is a
new construction differing from a previously introduced
Fock space.'® Prior to Sec. IV the only complex structure
present came from the four-component spinor representa-
tion of the first Clifford algebra and appeared in the unitary
representation of Sec. I1I; however, in Sec. IV another com-
plex structure in the second Clifford algebra appears.

In this paper we have tried to “draw” a straight line
from Minkowski space to the quantum field ¥, however, as
the reader will obviously notice we made several choices
(usually among a few possibilities) along the way. Since the
Dirac theory is the standard theory for electrons and posi-
trons, we have used it as a guide to make the appropriate
choices.

Il. THE MINKOWSKI CLIFFORD ALGEBRA AND DIRAC
SPINORS

This section serves primarily to establish needed back-
ground and notation. However, inclusion of group actions,
beyond special Lorentz, is new and allows us to clarify why
Dirac spinors are four-component complex and not two-
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component quaternion when the signature is — 2.3%%-2

The 16-dimensional real Clifford algebra R, ; can be
attached to each point xeM * of Minkowski space by select-
ing a translationally invariant set of basis vectors e, =d,
satisfying e, e, =g,, = diagonal(l,—1,—1,—1) to
span the tangent space at each x. In general, the universal
Clifford algebra (CA) associated with a real vector space V
possessing a nondegenerate symmetric bilinear form (,) is
the unique associative algebra:

(i) with identity 7,

(ii) generated by a subspace V' C CA isomorphic to V,

(iii) which has its algebraic multiplication constrained
by

viw' + wh! =2(v,w) 1. (2.1)

For M* we write v =r e, , and the isomorphic vector im-
ages in V' CCA as v' = r*y,. The defining algebraic con-
straint (iii) familiarly appears as y,, 7, + 7,7, = 2g,.1.

Using orthonormal frames such as these (e, <7,) al-
lows the 16-dimensional real Clifford algebra R , 5 to be de-
composed into a direct sum of Lorentz scalars, vectors, bi-
vectors, pseudovectors, and pseudoscalars R | ; = Ve V'
o VieV3ie V* where

vo={m}, V'={r*y,}, V:={rey),
V3 = {r “Viyu yv}’y} = {r 'u‘)/u y}’
V4= {ry} where Y=¥,¥,7273

vV

with r,r#r#", and r“"* real,

(2.2)

p<v<Ad, and yy= — L

Ingeneral, theevensubalgebraCA*={V%o V2@ Ve ---}
of a Clifford algebra is isomorphic to another Clifford alge-
bra. In the case of R, ; the even subalgebra is isomorphic to
R, the eight-dimensional real algebra associated with the
three-dimensional Euclidean space. The algebra R ; , is iso-
morphic to the four-dimensional complex Pauli algebra be-
cause the center of R;, is isomorphic to the complex
numbers. Then,

Ry ={e{r~y,r.}e{rn
={r}e{r'e;}o{r'a,a} e {ra}
=R, ={rte{r'o,}o{r'o.0} e {ra}

=Pauli={(r+ir)}e{(r' +ire}, (2.3)

where a;=y,v, a=a,a,a; =y. The center of R;, is
{r} e {ro}t={(r + ir)I}. In (2.3) the o, are images of an
orthonormal basis €;, (€,-¢; =35;) of a three-dimensional
Euclidean space and generate the associated Clifford algebra
R, . The isomorphism to the familiar complex Pauli matrix
form is 0, «<>Pauli matrix o;, o<»imaginary unit *“i.”” The pre-
cise identification of R ;% with R;, requires a choice of ob-
server e, and its corresponding 7, in V'. By identifying
O, = ¥; Yo, then i«>a = y and we have the desired even-
subalgebra isomorphism. We also have the decomposition of
the total Clifford algebra,

Ri3=R;,®YR 30, (2.4)

allowing (anti)automorphisms of R, , tobe extendedto R, ;
by defining their effect on y,. Every universal Clifford alge-
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bra associated with a real or complex vector space possesses
a fundamental antiautomorphic involution called reversion
¢—¢ and a fundamental automorphic involution called in-
version ¢—¢. The defining properties are

6, =063, ¢=c c €V,

(2.5)

CICZ =E|62, [+ eVl.
Vectors are invariant under reversion but are reversed in
direction by inversion. For R, ; we denote reversion by tilde

as above but for inversion we can write
c=7ys(c)=yey™!, (2.6)
where we have used the notation y; of the Dirac helicity
operator. For R, , we use ¢ —c*, the familiar Hermitian con-
jugation for the Pauli algebra, for which a!=gq,, ot
= (a,a,a;)! = a;0,a, = —a. Equation (2.4) allows
Pauli reversion to be extended to R, ; by requiring ¥} = 7,
where

c=t=ylyy 'Y= — v 2.7)
The Pin group is a subgroup of the multiplicative group

of invertible elements in CA that leave the subspace V! invar-
iant when acting as inner automorphisms, i.e.,

cePinceVic ' =V,

c= —¢,

(2.8)

With a choice of observer ¥, in R, ;, the Pin, ; constraint
(2.8) can be written

and satisfy ¢c= + I

Mot = + 70 (2.9)

The subgroup connected to the identity is isomorphic to
SL(2,C) and is generated by products of rotations and
boosts,

Rotations = ' 7" \[0'0'<4x,

(&
’

Boosts = e —w<f<w, (2.10)

SL(2,C) g{e[(f"/bwr ;’/2]a,}.

The three other disconnected parts of Pin, , are generated by
products of the identity component with parity P (multipli-
cation by 7,) and time reversal T (multiplication by ¥,7,75).
The identity and parity components satisfy éc = + I or
equivalently ¢* y,c = + ¥, whereas the T and PT compo-
nents satisfy éc = — I or equivalently ¢* yoc = — ¥,. When
Pin acts as inner automorphisms on V' (called the vector
representation) it double covers the invariance group of ¥’s
inner product (for R, ; the invariance group is the homoge-
neous Lorentz group),

YVu— (2O, () '=7,A" , (2.11)

where A" , is a Lorentz matrix. The spin representation of
Pin arises by letting Pin act as left multiplications on CA. Tt
is reducible with each invariant subspace giving a spinor
space. A CA is decomposed into a direct sum of minimal left
ideals, called spinor spaces CA,,, by finding a complete set of
mutually annihilating primitive idempotents ( projection op-
erators) P,,®

PIle=6n,mPn’ I=2Pn:>CA=zCAn,
where CA,=CAP,. (2.12)
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Decomposition of R, ; requires two idempotents. To obtain
matrix representations of the y,’s familiar to the physics
community, we choose an observer (,) and construct a pair
of projection operators P using a unit spatial direction a;
(a3 = I) in the even subalgebra,

P, =l(I+a;),=>R ;=R 3, ®R5_. (2.13)

It is at this point that clear differences in the fields of R, ;,
R, , and the complex numbers required for Dirac theory
begin to appear. Both spinor spaces R, ;. as subspaces of
R, ; form eight-dimensional vector spaces over the reals, but
if they are used only as representation spaces for left multi-
plication by Pin, ,, they form two-dimensional vector spaces
over the field of quaternions. However, Dirac theory con-
tains an additional continuous U, group action (a right mul-
tiplication on R, ; ), uses a projective representative for time
reversal T rather than using left multiplication by
T = ¥,%.%s, and introduces a projective representative for
the additional charge conjugation symmetry C, all of which
are inconsistent with the quaternion structure of R, ; , .
These new group actions “break” the two-component qua-
ternion structure leaving a four-component complex struc-
ture for each spinor space. The remaining complex structure
is defined by right multiplication by ¥, i.e., multiplication by
the unit imaginary “#” of the complex field is defined by
i(¢) =cy. Using the above minimal left ideals (R, ;, ) the
U, group action on R, ; can be taken as right multiplication
by

Ui(g) = e (0<¢ <2m), (2.14)

rotating the phases of the two spinor spaces R, ; , opposite-
ly. The quaternion structure “broken” by (2.14) but not by
left multiplications (spin transformations) is generated by
right multiplications by ¥,, ¥,, and ¥,y,. These commute
with the projection operators P, leaving R, ;, invariant
and obviously commute with left multiplications. The full
16-dimensional real Clifford algebra could be represented by
2 X 2 quaternion matrices using for example w, and w, from
(2.15) below as basis vectors of R, .2»**?7 Because
(2.14) does not commute with ¥, or ¥,, two additional basis
vectors must be introduced to represent the U, needed in
Dirac theory. To obtain the familiar Pauli-Dirac matrix rep-
resentation for the y,’s, we use the following w, basis of
R,;, and to obtain the associated z axis oriented, positive
and negative energy spinors u,, and v,,, we use the asso-
ciated basis 2, :

wi={+ )P,
w,= + vo)a Py,

zi=(I+y)P,,
=+ y)a,P,,

(2.15)
wy=(I—-y)P,, z=(I-y)al,,
wi=(I—v)aP,, z,=U—-7y)P,.
Using

VuWa=w,T,4, where (Q,A) ={1,234} (2.16)
gives

1 0 0 —o
VOQFO—(O _1)’ yigri=(a,i 0)’
0 i (2.17)
=I'=r, T, —(
Y ol 1,13 i o)’

and

0
Ys(wg) = ywey ™ '=w,Tsq,=>Ts = (I (I))’

where in (2.17) I is the 2 X2 identity, o, are the standard
Pauli matrices, and ¥ on the right (defining the complex
structure) has been replaced by multiplication of the imagi-
nary unit “#”’ from the complex field. If we were interested in
the Dirac wave theory we could and would now go to the
above matrix representation; however, since we are interest-
ed in the Dirac quantum field theory, which requires a differ-
ent complex structure (see Sec. IV), we keep the concrete
basis picture w, with right multiplication by y. It should be
observed that the representation matrices for the Clifford
algebra (2.16) and (2.17) are unaffected by a change of basis
wq, — Wq "™ = wq e*”. This invariance constitutes the glo-
bal U, invariance of the free electron—positron theory and it
along with the following * innerautomorphism of R, , are at
the core of the projective representatives of time reversal and
charge conjugation actions on spinors. Given a basis for
R,;, such as wg, and its complex structure mapping ¥,
Pauli reversion * of (2.7) can be decomposed into a com-
muting pair of involutions, * and ', called complex conjuga-
tion and transposition,

O T=(N*=¢, (NT=¢ (&)* =g

constrained by

W =we, ¥=—9 =y"=y (2.18)

Complex conjugation * is a pure innerautomorphism, and
transposition is * followed by *. They are defined in terms of
an element CeR, ; that depends on the spinor basis,

(&) = (Cro)e(Croy) " = (C¥o)¥5(c) (Cyp) !

=CeCc,

cT=E*=C5C“,:>C7MC“= -5
where

ci=c-!, C==z+cC (2.19)
For the basis (2.15) we have

C= iazii’o:%’ ;’1=7’1: ;’3=?’3’
and

h= -1 (2.20)

The constraints of (2.18) were placed on * so that the repre-
sentative matrices (2.17) also satisfy (2.20) where * be-
comes complex conjugation of components.

The discrete spinor transformations of Dirac theory
representing parity P, time reversal T, and charge conjuga-
tion C (written in capital bold Roman letters) are:

P(c)= 1 yo0,

T(C) Ez.xc—le'h’}'a.‘ — drya,

(C= + az)s
(2.21)

— YoCY2€

C(c) =7eyoC ™1™ = — yep,e®™,
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where ¢, and @ are arbitrary real constants. Of these three,
only the parity representative could be guessed without prior
knowledge of the Dirac wave theory. The choice of *“ + ” is
left to convention, both generate the same connected part of
the group and both have the same effect on vectors. The
projective representative of time reversal is antilinear, satis-
fies T = — I, does not change parity or charge, but flips the
spin eigenvalue. The projective spin representative of charge
conjugation is antilinear, satisfies C* = Z,flips the parity and
the charge, but not the spin. We give the matrix representa-
tives of the discrete transformations using the z, basis
(2.15) rather than the w,, basis because we need them in Sec.
III:

P(z,)=z,P3,

where

_ I 0 (0o 0)
P= i(o —1)’ T“(o —a,)’
C— ( 0 - 0'3) .
— 0, 0

In the above we have described a representation of a
group we call the homogeneous group H without discussing
the structure of H itself. Our point of view is that H consists
of eight disconnected parts, the identity component being
SI1(2,C) XU, and the other seven given by products of
$1(2,C) XU, and one or more of P, T, and C. The structure
of this homogeneous electron—positron invariance group is a

direct product of Pin, ; and the gauge group G, which con-
sists of the phase rotations U, and charge conjugaton C,

H= Pinl’:; X G. (2.23)

The Pin, , group consists of the four disconnected parts de-
scribed below (2.10) and the G=U, ® {I,C} group con-
sists of two parts, giving eight all together. In G the semidi-
rect product action of C on U, is u—u~"'. The spin
representatives of H are just the transformations of R , gen-
erated by products of left multiplication by (2.10), right
multiplication by (2.14), and (2.22) actions; and leave in-
variant a Hermitian inner product on R, ; (considered as an
eight-dimensional complex representation space with ¥ on
the right defining the complex structure). The Hermitian
(Dirac) inner product is the familiar one constructed using
Pauli reversion,

T(zo)=z,T), C(z,)=2z,C4,

(2.22)

(cne2) = (el ey, +ps (5 7ocy )§+ps = (e,

(2.24)
where s+ ps stands for scalar and pseudoscalar (i.e.,
V°e V*) partsonly. When is applied to the unit pseudosca-
lar 7 in (2.2) it changes its sign, i.e., changes i to — i as
required of Hermitian inner products. In other words,
(2.24) says that to compute the Hermitian inner product of
¢, and ¢, considered as two eight-dimensional complex vec-
tors in R, ;, use the 16-dimensional real Clifford algebra
multiplication to evaluate c} y,c, and keep only the scalar
and pseudoscalar parts, remembering that the unit pseudo-
scalar y of the Clifford algebra, when acting on the right, is
equivalent to multiplying by the unit imaginary “”* of the
complex field. We observe that because (R, ; , ,R,,_ ) =0,
the Hermitian inner product provides an inner product on
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each spinor subspace separately, i.e., on R, ; , ; it is the fa-
miliar Dirac V9,

waor) = Gazn) = (7 _9),

wherez,, and w, are basis vectors of (2.15). We also observe
that when the Boosts are excluded from the homogeneous
group, invariance of (2.24) is equivalent to invariance of the
Hilbert space inner product

(2.25)

(<C1,C2)>E(C:§C2)S+Ps = (C§01)§+PS = (<62!c1)>IJ
(2.26)

which on R, ; . is simply
((2q,2,)) = 603 (2.27)

With respect to this inner product, the identity and parity
component representatives are unitary whereas the time re-
versal and charge conjugation component representatives
are projective and antiunitary.

For a global picture we wish to look at the homogeneous
group H as the Lie group of a trivial principal fiber bundle
HB over M*,

HB=M*xXH-M*. (2.28)

We call this the homogeneous bundle and think of it as an
enlargement of the bundie of orthonormal frames for M *
(whose global gauge group is the homogeneous Lorentz
group and whose fibers consist of only four disconnected
parts). We take this point of view primarily to avoid double-
valued representations. It is sometimes beneficial (but incor-
rect) to think of HB as the spinor frame bundle. One obvious
incorrectness occurs because of the projective action of the T
and C components on the spinor frames. The invariance
group P, of Dirac’s free electron—positron theory is a semidi-
rect product of space-time translations R * and the homoge-
neous group H,

P=R*‘Q®H, (2.29)

and can be thought of as the Poincare group enlarged to
remove double-valued representations of the Lorentz group
as well as to include U, and charge conjugation C. In (2.29),
H is the isotropy of the origin (x = 0). The inhomogeneous
group acts as fiber preserving mappings on HB, (r,h)ePacts
on (x,h’)eHB by

(xh") = (r + h(x),hh"), (2.30)

where the A action on x is the expected vector action for
hePin, ; and is ineffectual for 4G. Here, Pisseentoactasa
group of bundle automorphisms because its action com-
mutes with the H action of HB. The isotropy subgroup
H, CP isisomorphic to H and consists of those inhomogen-
eous transformations that leave xeM 4 invariant,

H, ={(x — h(x),h)eP}=H. (2.31)

lli. WIGNER'’S INDUCED REPRESENTATION
PROCEDURE

Dirac electron—positron theory contains another repre-
sentation of the semidirect product (2.29) beyond the four-
component spin representation given in Sec. IL. In this sec-
tion we use Wigner’s procedure for constructing induced
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representations to construct this second representation that
is in fact faithful, irreducible, and unitary®'* We are neces-
sarily careful to keep track of the gauge group action and the
discrete transformations. In Sec. IV we apply Segal’s quanti-
zation procedure to this infinite-dimensional representation
and arrive at free positron—electron quantum field theory.

To construct a unitary representation of the inhomogen-
eous group R * ® H, Wigner’s procedure requires first the
selection of a one-dimensional representation of the transla-
tions (often called a character);

YRA-Uoy(r) =e ™ =1, (3.1)

to which we have already adapted a global frame e, (fixes ¢,
only). We have selected a character appropriate for a mas-
sive particle and, by using the complex structure mapping y
rather than imaginary field unit *“,” indicated that the trans-
lations will act on the right of the four-component spinor
space R,;, . The subgroup LCH whose vector action
leaves ¢, (and hence y) invariant is called the Little group
and is generated by products of spatial rotations
SU,CSL(2,C), U, phase rotations, parity P, and charge
conjugation C. The Little group L thus consists of four dis-
connected parts: the indentity component SU, XU, and
three other components generated by multiplications with P
and C. The second needed ingredient in the Wigner con-
struction is an irriducible unitary representation of L. In the
electron—positron case this representation is given by the
LCHactionson R, ; , described in Sec. II. Even though, as
a representatin of H, the four-component spin representa-
tion is not unitary, as a representation of the subgroup L, it is
[see (2.26)]. Under L actions, R, ;, decomposes into the
direct sum of two orthogonal two-component Pauli spinor
subspaces of opposite parity,

R, =.R30_Ry;,,

+ Ry =[(I+7)/2]R; 5, . (3.2)
Eachis invariant under SU, and parity P [P of (2.21) ] butis
exchanged by the action of charge conjugation C [C of
(2.21)]. This s easily seen by choosing (z,,2,) and (z,,z,) of
(2.15) as respective pairs of basis vectors.

The next step in the Wigner construction is to define the
infinite-dimensional complex vector space &% of functions
from H /L = Boosts (part connected to coset L only) into the
representation space for L, i.e., into R, ;_ . Time reversal
actions are defined on these functions. The Boost actions on
translations R * pull back to actions on the set of characters
and make the Boosts topologically equivalent to the upper
mass shell. In particular,

i _ 0 - t
eV, ymeAl# e Yo

s (3.3)

where the Boost parameters £ ' are related to the mass shell
point by (2.11),

e(g"/Z)a,-yoe— «&7)e; — 7/,,1\’5 — 7’,,p"/mc. (3.4)

Consequently, 5 is equivalent to functions from the upper
mass shell to R, ;, , ie, four-component spinor valued
functions of p*, ¥(p*) = zo ¥*(p*). Notice that the compo-
nents ¢**(p*) appear on the right of the basis vectors zg,
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because the complex structure has been defined as right mul-
tiplication by y.

The induced action U, ,, of (r,4)eR “®H on Y7 is,
for seSL(2,C)CH,

[Uosn¥]1 () =e" (51/2)“'5’9(;”/2"1:',#(1\ —1v oM,
3.5)
where S is the four-component spin representative of s [see

(2.10)], A~ , isrelated to Sby (2.11), and £ "' is related
top’'=A"" ,p* by (3.4). The combination

— (¢ D)e 'i/2)a; - .
W(sp)=e €7P%ge! /D% = g viw/2ra

(3.6)

is commonly referred to as a Wigner rotation with o(s,p)
being the three rotation angles and is represented by a direct
sum of two SU, rotations. With respect to the z,, basis of
(2.15) we have the matrix representation,

W(s,p)zq =2z, (Mg,

D 1/2 0 )

(W)_( 0 oD"q)’

D 1/2E (e-— iw-c/Z).

Here o are the 2 X 2 Pauli matrices. For u(4)€U,, the action
is

(3.7)

[Uow¥] (@) = Y(p e (3.8)
The action of parity P is identical to (3.5) [see (2.21)],

[Uwr ¥]1(%0) = + 7% (2° —p). (3.9)
The action of time reversal T follows (2.21),
[4on ¥] (@°p) = (p%p)C ~'e™™,
= — (2% — PP, (3.10)
as does the action of charge conjugation C,
[4wc, Y] (@) =y (P )7C ~ 1gPcres
= — yY(p ) e (3.11)

Completing the induced representation, we use the charac-
ter and have for translation reR 4,

[U(r,1)¢] PYy=[U+ yo)/Z],l,(pV)e—yp,,r“
+ [T = y) 219 (p")e ™ ™, (3.12)

i.e., the two parity components are phase rotated oppositely
by a translation.

The Hilbert space inner product on 7% for which (3.5)—
(3.9), and (3.12) are unitary and (3.10) and (3.11) are
antiunitary is

(Hd)) = f do{($().$(2))),

where
dp=(27) "3 (me/p®)d>p,

and where ({¢(p),#(p))) is defined in (2.26). The invar-
iant volume element is dp and the integration domain is the
entire upper mass shell. To make clear the details of
Wigner’s induced unitary representation as well as to pro-
ceed with Segal quantization in Sec. IV, we introduce the
basis functions a, , and ¢, ,:

(3.13)
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a,q(p)=(27)(go/mc)8(p — @)z,
Caq (D)= (27)°(go/mc)*(p — @)z, 5, (3.14)

where ¢,= + [m*® + q*q]"/? and 4 = {1,2}. The normali-
zation has been chosen so that

({@40:95,) ) 5 = (27)*(go/mC)6,56°(q — p),
((CaqiCap ) = (2m)*(go/mc)8 56°(q — P),
({@44:C5p)) 5 =0. (3.15)

The above group actions (3.8)-(3.12) ona,, and ¢,
are

Uos)84q =apagD W2E To(s,AQ)],
U(O.s) cA,q = cD,Aq UIECD (I/Z)CB [w(S,AQ) ]UIBA ] (3 16)

where j =] representation matrices D '/? are defined by
(3.6) and (3.7):

Uow Buq =8aq8™ ™ Aom8aq =a5_q05e" "™,
UtouCaa = Caq® e, AwoT)Chq = —Cp qUZBA e’ WT,
(3.17)
Uopy84g= ta4_qs Apc)84q= —Cp_ q(,fAe + Y¢C,
UioryCaa = FCa—a A00rCaa= —8s_q0me ",

follow from (2.22) and complete the unitary and projective
antiunitary actions of the homogeneous group on the basis
functions we use for 7. Now,

— Y4u

s + rq, "
Uin@aq =044 ) '

Ui Caq =Caq® , (3.18)

give the unitary actions of the translations.

The action of the isotropy subgroup H, = H of the point
xeM* on the basis a 4.0°Ca,q0 S€€ (2.31), can easily be con-
structed by applying a homogeneous transformation
heH=H,_,, e.g., (3.16) and (3.17) followed by (3.18)
with r = x — h(x).

IV. SEGAL QUANTIZING WIGNER'S INDUCED
REPRESENTATION

In this section we construct the complex Clifford alge-
bra ¥ associated with the Hilbert space 5 in Sec. II1. This
is the algebra of annihilation and creation operators of Dir-
ac’s electron—positron theory. To construct this algebra we
follow the procedure described by Shale and Stinespring and
frequently called Segal quantization.'>-2"28-3° The proce-
dure starts by identifying the complex space 5% with a real
Hilbert space ##°; possessing a symmetric inner product,
followed by the construction of its associated Clifford alge-
bra ¥ according to the prescription given in (2.1). This
real infinite-dimensional Clifford algebra, when complexi-
fied, becomes the desired operator algebra €. Because this is
the second vector space— Clifford algebra construction re-
quired to obtain a quantum field theory of electrons and
positrons, we call it second Cliffordization.

In the first step of second Cliffordization, complex vec-
tors ¥, ¢, are mapped, respectively, one-to-one onto real
vectors Y ,pr €7  in such a manner as to relate real and
complex inner products by

(r:¥r)r=({{¥)) 5 + (U8)) 5 )/2. (4.1)
Multiplying 7 by the unit imaginary number ¥ does not
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give an independent vector yye¥”; however, their images in
J r>¥r,and (y) x arenot only independent but, according
to (4.1) are orthogonal. Multiplication by ¥ in # induces a
complex structure on # g, yg | # g —# g defined by

Yr[¥r]=WP)g, (4.2)

and satisfies the required ¥,y = — I. Every complex lin-
ear transformation of 7 induces a corresponding real linear
transformation 7%, that commutes with this complex struc-
ture. In particular the unitary invariance group U, of
{{(,)) » is easily seen to be isomorphic to the subgroup of
(,) g invariant orthogonal transformations Qg,, that com-
mute with y,, ie., every U, €U, satisfies U, — O for
some O provided

(QR¢R’0R¢R I = ('/’R,¢R bR

and

for all ¢p, ey

(4.3)

Notice that y«>y, belongs to this isomorphism. In terms of
the basis functions (3.14) of 77, the one-to-one >
mapping appears as

Qa9 a9 2aqVOVr [ a.1q ] ’
Caq<Cpaar CaaV VR [Craa ] (4.4)

and from (3.15) and (4.1) the symmetric real inner product
of basis vectors becomes

(940985 ) r = (CraaeBo ) g
= (27)°(go/mc)8,,36°(q — ),
(7= [anM ] Vr [aRB’P] Jr=(7r [CRM ] VR [anm ] )&
= (2m)*(go/mc)b 456°(q — p),

(aRA,(I’cRB.P )R = (YR [aRA,q ],‘}’R [CRva ] )R =etc. =0.

(4.5)
The real vector space #°; plays the same role as the four-
dimensional Lorentz inner product tangent space of M*
plays in Sec. II, and the above orthonormal basis plays the
role of the e,. The unitary representation P-U ., of the
inhomogeneous group (2.29), whose action on the basis vec-
tors (3.14) of 77 is given by (3.16) to (3.18) and preserves
(3.15), would now appear as an orthogonal representation
appropriately transforming the basis vectors (4.4) while
preserving (4.5).

Following (2.1) an infinite-dimensional Clifford alge-
bra ¥  can be constructed from 5. We write the isomor-
phicimage of #° in €  as € ;, and write the image vectors
in boldface rather than with a “1” superscript as in (2.1).
For example, the 77, «>% ; mapping of basis vectors is
written as

AnaBaq VYr[Faa]oV[B4q]

CetaCuqs ¥r [CRA,q ]*'*T[CA,q I-

¥YrOr = OgYg, ie., provided OreOg,.

(4.6)

This basis identification is equivalent to e, <>y, for M*. The
Clifford algebra ¥ . is generated by all real linear combina-
tions of products of €, basis  vectors,
{8,44:€44:7[844],7[€4q ]} and can be expressed as

Cr=FR0Cr0CL0Cre ", 4.7
where €% stands for all real multiples of the identity .#, €
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for all real linear combinations of basis vectors
{8,4:€44:7[844]1,7[€4q ]}, € & for all real linear combina-
tions of products of pairs of basis vectors with no two pairs
being equal, e.g., a, .8, Where 4 #B or q#p, € 3 for all
real linear combinations of products of triples of basis vec-
tors with no two being equal - -, etc. Linear combinations
include integrations over the continuous mass shell indices
g, p, etc. The Clifford algebraic multiplication constraint
(iii) of (2.1), evaluated using (4.5), appears as

a,,85, +25,8,,
=V[840]7[255] +7[25,]17[244]
=2(2m)*(go/mc)8,56°(q — P).F,
A,4Cpp T C5p8,4

=7v[24a]7[Csp] +¥[Csp17[24a]
=etc. =0.

(4.8)

Because 57, is isomorphic to ¥ ; every orthogonal trans-
formation of 7#°; in O, corresponds to an orthogonal
transformation of % %. In particular, the complex structure
mapping yg|# g —=H# g corresponds to the mapping
¥|% k — € i as indicated in (4.6). Since € ; generates € g,
an orthogonal transformation Oy of € & can be extended to
an algebra automorphism OeO, CAut(% ) of € by sim-
ply requiring O(¢,¢,) = O(¢,)O(¢,) and O(c') = O (c')
when c¢'e% . As an example, the ¥ mapping extends to all of
% & as an algebra automorphism; e.g., when ¥ is applied to
the identity .# of € i, it gives & back. Consequently, ¥ does
not satisfy the required ¥y = — I to provide a complex
structure for all of € 5. However, ¥ ; can be complexified
by taking complex (rather than real) linear combinations as
in (4.7); the resulting complex algebra % turns out to be the
desired electron—positron operator algebra,

C=%0¢'0C*0¢’e . (4.9)

We will simply denote this complex structure by multiplying
by the unit imaginary number “7”” and * as complex conjuga-
tion. The automorphisms O, of % ; can be extended to € by
simply requiring that they commute with the new complex
structure. In particular, y extends from % , to € by requir-
ing i = iy. Here ¥ ! represents the space of all one-particle
(electron—positron) annihilation and creation operators.
Rather than using {a;,,¢5,,7[a5, ],7[¢s, ]} as basis vec-
tors, the more conventional set {bg,,b},,d5,,d}5,} can be
used,

beE%(aB,p "iy[aﬂ,p]) ’ bEpE%(aB,p +i7’[aB,p]) ’
(4.10)
dfy =1(csp — i¥[€5,]1) 5 dmp=4(Ca,p +ir[cs,]) -

The conjugate linear mapping ¥ |%¢! » € * defined by (4.10)

acts as the identity on % ; commuting with ¥ but anti com-

muting with “/ multiplication. Because %' generates ¢,

the 1 mapping can be immediately extended to a unique an-

tiautomorphism of ¢ by requiring that
(e, +e)"=¢f +¢f,

€,C,E€7,

(cie)t =clel, 4.1

*
c=(r+ir)s, cg=(r+ir)fet’.
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The fundamental antiautomorphism ' is just the analog of
reversion (2.5) for real Clifford algebras. The subset of self-
conjugate elements (¢' = ¢) is just those identified with the
original Hilbert space 7 =575 . A complex algebra such as
% with such an involuting, (¢ =¢, antiautomorphism is
called a * algebra and with appropriate norm and comple-
tion becomes a C* algebra.’' To make contact with the
“CAR” algebra construction approach, one has only to
complexify #°, with imaginary unit “/ by identifying it
with ¢ '. Then % is the CAR algebra of this complex Hilbert
space.

In (4.10) careful attention must be paid to the indices
A,B = {1,2} being up or down. This index must be raised
and lowered with the Pauli spinor metric, e.g., with

. 01
" = e =iv] =(—1 o)’
(4.12)

The operators appearing in the Dirac fields ¥ (x) and ¥'(x)
are with the “4 ” index “up,”

bi=e'Pb,, bit=e'bl,,

A
bg, = €45bf, bh, =€,5b2%, etc.,

(4.13)

and from (4.8) satisfy the required anticommutation rela-
tions,

biby "+ bZ'b] = didl" + dF*as
= (2m)3(qo/mc)8 38’ (q — p).#,

bibZ + bPby = dldf + dfd} = etc. = 0. (4.14)

The y action on the conventional basis (4.10) is (using
yy= —Ion¥")

V[bsy] =gy, v[d},]=id},

v[bh]= — bk, ¥[dg]= —ids,. (4.15)

We are now in a position to compute explicitly the ex-
tension of the inhomogeneous group’s unitary action U,
(3.16)—(3.18) on # to an O, action on €. By applying

U5, of (3.16) to (4.10) and using (4.13), the identity com-
ponent of the homogeneous group acts according to

O bag =DV (@)% ,bgag, 50, b
=D(l/2)( _ m)A Bbﬁq!
O(O,s) qu = U{)CD“/Z)((‘))C Ba-fAdI)Aqibo(O.s) d:T
=01 D" (- @)® cofz)df\):’
etc., where
D(l/Z)(O))ﬁ EDll/Z)B 4 [(D(S,Aq)]
satisfies

(0:D ()0 , =D"*(@)® , =D"*(— )" ,.
(4.16)

We have used O’s to represent these linear transformations
because they are orthogonal on % % (and would be real uni-
tary on ¢ ' if given the obvious Hilbert space inner product).
Thej = | unitary representation matrices D '/ are defined by
(3.6) and (3.7). The U, homogeneous transformations from
(3.17) act simply as
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Ouunby =e* b, Oy, biT=e~ b},
O dyT=e* 4!, 04, a8 =e~*dl. (4.17)
Parity, time reversal, and charge conjugation from (3.17)
extend to

Owpy by = £ b, O(o,P)b:T= + b,
Oppmdy = Fdl, Ogpdy"= Fd¥

—q?

*
A + i B A —idpy B
A(D,T)bq = 0';39 1b—q! Apm by t= Ugae bEt

—q?
(4.18)
*
2

A —idraB A +idraB
A(O,T)dq =0’gBe Td_q, A(O_T)dq?=0"ge Td_.Tq,

0<o,c>b: =ojze” wcdfa 0(o,c>b: F=ofpe” Mcdf ",

Owo d: =03 * wcbfa Owo) d;” =0jpe wcqut
completing the orthgonal and projective antiorthogonal ac-
tions of the homogeneous group on the basis for % *. Notice
that P and C actions commute with the new complex struc-
ture, “” multiplication, but the T action has to be taken to
anticommute with it. For this reason the action of C in
(3.17) has been changed from 4 ¢, —»O ¢, While the T

action remains conjugate-linear and written as 4,1, in
(4.18). From (3.18) the translations act on %! by

O,nbi=e" "2, O, pbit=e* 21,

O,ndi=e"""a4, 0,,di =" a2t (4.19)
The above linear orthogonal transformations O,, are analo-
gous to the linear Lorentz transformations (A;) of (2.11)

for the four-dimensional M* space. We now look for the
equivalent of the Pin, ; group, i.e., the group % defined by

Ue % Ue¥,
U=,
and
Us'ut=<" (4.20)

The Pin covering of the orthogonal group % -0, is defined
analogous to (2.11) by

Uc'U'=0c!, cle?), (4.21)

and has a kernel =U,, i.e., ¢4.# - I. The complex Clifford
algebra € can be thought of as a Hilbert space by defining a
Hermitian inner product

(c),e;) = (cIc2).fs (4.22)

where ( ), means the component of ( ) contained in
%°«.#. In this way % can be thought of as a direct sum of
Hilbert spaces (4.9), of which ©° is of dimension 1. The
group % acting as a group of inner automorphisms (vector
action) as in (4.20), acts unitarily on each % * separately.
However, as a spinor action on the left, ¢ -+ Ue, % acts unitar-
ily mixing the % *. The spin representation of this group is
found precisely as we found the four-component Dirac spin-
ors, by finding a primitive idempotent, i.e., a projection oper-
ator.3233 One choice of the idempotent is

#Z =lim [] b/b{ 'd/d!", (4.23)

=P 4,
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with the properties that
P=P, P'=2P. (4.24)

Note that we have used a discrete label 7 in place of p and
obtain the continuum by a limiting procedure. We assume
that this process can be made rigorous;** however, for our
purpose the reader can take

1

where the domains D, are disjoint, completely cover the up-
per mass shell, and have invariant volume V. The b{¥, d/,
and d/* are similarly defined and satisfy the expected anti-
commutation relations, e.g.,

(4.25)

b7 ™7 + b/t = 8527 (4.26)
The important property of & is that
b7 =47 =0. (4.27)

The Fock vacuum state |0), is defined almost identically to
&P except appropriately normalized,

0) =lim | 2b/b/'d/d’".
0)=lim [
The corresponding minimal left ideal € 22 would be called a
spinor space in analogy with (2.12) but is commonly called
Fock space. It is generated by multiplying & or |0) on the
left by ¢ and is spanned by the following basis states:

{]0),b51/0).d; 7|0},b; by *|0),
d#1d21|0),by Td21|0), -}, (4.29)

where either 4 #B or p#4q, etc. The normalization of the
vacuum state is checked using (4.22),

(0]0)=(]0)"|0)) - = (l'im [4b:v7 a7 T) -1
i~p 4 3
’ 7 (4.30)

The steps in (4.30) require using the idempotentcy of bfb? !
and d/d{* and decomposing by = (af — iy[af'])/2 into
self-conjugate parts as in (4.10).

So far we have seen how familiar quantities, like the
vacuum and the Fock space of a spin-half quantum field
theory, emerge naturally from various algebraic quantities,
such as an idempotent and its minimal left ideal in second
Cliffordization. Since the minimal left ideal Z Z provides a
spinor representation of the linear orthogonal transforma-
tions as defined in (4.16)—(4.19), we can also see how phys-
ical operators on the Fock space emerge as representations
of the generators of inhomogeneous transformations. For
example, for an infinitesimal translation by an amount €, we
have from (4.19)

(4.28)

Ownby =e” iq“d‘b:z (I — ig, )by, (4.31)

and from (4.21) the corresponding translation operator is

U= = (F + ie, P). (4.32)
The momentum operators P“ are the representatives of
translation generators and are only determined by (4.31) up
to a generator of the kernel of the Pin covering as discussed
in (4.21),
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quA(fr =0 qu
= [0 P*] = ¢'b;
== [ dggny;
A
4.33)

Similar consideration can be carried out for the d’s. Then the
total momentum operator becomes

+ commuting terms.

P* = zqu g“ (b ™ + dZ'd]) + (const).s. (4.34)
A

The arbitrary constant term comes from the generator of the

U, kernel and can be eliminated by requiring that the vacu-

um be translationally invariant or equivalently

P#|0) =0 =pconst=0. (4.35)

That is, we require the vacuum state to have zero energy and
momentum. This is equivalent to the normal ordering proce-
dure in quantum field theory. The resulting Hamiltonian for
free electrons and positrons is

H=cP°=czquq°(b;*bg A, (436)
A
where

N/ =bi"b, Ni =di'd! (4.37)

are the number operators for the electrons and the positrons,
respectively.

The final physical observable we obtain is the charge
operator Q. It comes from the infinitesimal phase transfor-
mations (4.17),

O b = e+ b= (I + ip)bL,

O(Q,H)d:*ze“"’d;”z(IqLi¢)d{l”. (4.38)
If the corresponding U of (4.21) is written as
U=e"=.7 4 idQ, (4.39)

the reader finds by steps similar to (4.33)-(4.35) but even
simpler,

Q=3 qu( — b b + d}'d]) + (const).”.
A
(4.40)

Again, the constant term comes from the U, kernel and can
be eliminated by requiring that the vacuum have no charge,

Q|0) = 0=const =0. (4.41)

V. CONCLUSIONS

In this paper we have tried to “tie together” some of the
“loose ends” in the free electron—positron field theory by
showing how the appropriate construction of two successive

. Clifford algebras can result in the free quantum field theory.
The first Clifford algebra was associated with the tangent
space of any point in Minkowski space and its Lorentz invar-
iant inner product. The second was associated with an infi-
nite-dimensional Hilbert space and its Poincaré [enlarged
(2.29)] invariant Hermitian inner product, which we con-
structed (via Wigner’s procedure) using the spinor repre-
sentation of the first Clifford algebra. All elements of the
noninteracting theory seem to be accounted for by this “sec-
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ond Cliffordization.” In particular, the operator algebra of
the free field theory is just the second complex Clifford alge-
bra. The familiar abstract Fock representation appears con-
cretely as a spinor representation space in the infinite dimen-
sional algebra analogous to four-component Dirac spinors in
the finite Minkowski algebra. Two obvious extensions of this
work are to higher dimensions and to the inclusion of inter-
actions with external fields. Extensions to other spins as well
as to massless fields seem straightforward.
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