Electronic structure of GaN nanowire studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy

J. W. Chiou, J. C. Jan, H. M. Tsai, and W. F. Pong
Department of Physics, Tamkang University, Tamsui, Taiwan 251, Republic of China

M.-H. Tsai
Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China

I.-H. Hong, R. Klauser, and J. F. Lee
National Synchrotron Radiation Research Center, Hsinchu, Taiwan 300, Republic of China

C. W. Hsu, H. M. Lin, and C. C. Chen
Department of Chemistry, National Taiwan Normal University and Institute of Atomic and Molecular Sciences, Academic Sinica, Taipei, Taiwan 106, Republic of China

C. H. Shen and L. C. Chen
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan 106, Republic of China

K. H. Chen
Institute of Atomic and Molecular Science, Academic Sinica, Taipei, Taiwan 106, Republic of China

(Received 3 March 2003; accepted 14 April 2003)

X-ray absorption near edge structure (XANES) and scanning photoelectron microscopy (SPEM) measurements have been employed to obtain information on the electronic structures of the GaN nanowires and thin film. The comparison of the XANES spectra revealed that the nanowires have a smaller (larger) N (Ga) K-edge XANES intensity than that of the thin film, which suggests an increase (decrease) of the occupation of N 2p (Ga 4p) orbitals and an increase of the N (Ga) negative (positive) effective charge in the nanowires. The SPEM spectra showed that the Ga 3d band for the nanowires lies about 20.8 eV below the Fermi level and has a chemical shift of about −0.9 eV relative to that of the thin film. © 2003 American Institute of Physics.

[DOI: 10.1063/1.1579871]

Gallium nitride (GaN) is a promising material for applications in light emitting and laser diodes as well as in high temperature and high power electronic devices. In particular, one-dimensional (1D) GaN nanowires have recently attracted much research interest in materials science. Studies of GaN nanowires can be used to gain insights into the fundamental aspects of 1D physical properties and its application as optoelectronic nanodevices. The synthesis and morphology of nanometer-scale GaN has been investigated previously. The electronic structure of a nanometer-scale material is expected to differ from that of the bulk material. In the present study, x-ray absorption near edge structure (XANES) measurements at the N and Ga K-edges and Ga L 3-edge and scanning photoelectron microscopy (SPEM) measurements have been performed to understand the electronic structures of the GaN nanowires and thin film. N K-, Ga L 3-, and K-edges XANES measurements were performed at the high-energy spherical grating monochromator and Wiggler-C beamlines, respectively, and SPEM measurements were executed at the U5 undulator beamline of the National Synchrotron Radiation Research Center (NSRRC) in Hsinchu, Taiwan. The SPEM-end station of the NSRRC has been described elsewhere. Details of the preparation and characterization for GaN nanowires can be found elsewhere. The reference GaN thin-film epilayer sample with a hexagonal (wurtzite) structure was grown on an Al 2 O 3 (0001) substrate. From scanning electron microscope (SEM) and transmission electron microscope (TEM) measurements, the GaN nanowires were found to be several microns long and 16–24 nm in diameter as shown in Fig. 1(a). They were characterized to have a hexagonal (wurtzite) structure as displayed in Fig. 1(b). Figures 2(a) and 2(b) exhibit the XANES spectra of the GaN nanowires and the reference GaN thin film at the N and Ga K-edges, respectively. Features A 1 −D 1 and A 2 −D 2 are related to the four features of the calculated N (Ga) derived p partial density of states. These features agree well with the σ bond (bilayer bond) and the π bond (c-axis bond) XANES spectra of GaN films obtained previously. The overall spectral line shapes of both N and Ga K-edges XANES spectra of the GaN nanowires and thin film exhibit similar features. However, the intensities of the features A 1 −D 1 in the N K-edge XANES spectrum of the nanowire are noticeably smaller than those of the thin film as shown in Fig. 2(a). This result indicates a decrease in the number of unoccupied N 2p states in the nanowire, which implies an increase of the occupation of N 2p orbitals and an increase of the negative effective charge on N ions. In Fig. 2(b), the intensity of feature B 2 (C 2) in the Ga K-edge spectrum of the nanowire is clearly larger (smaller) than that of the thin film. While the intensities of features A 2 and D 2 for the nanowire and thin film are fairly similar. The enhancement of feature B 2 and depression of feature C 2 suggest an overall shift of the Ga 4p derived states toward lower energies in the nanowire and an increase of the attractive electrostatic potential on Ga

*Author to whom correspondence should be addressed; electronic mail: wfpong@mail.tku.edu.tw
ions. The overall intensity of the Ga K-edge XANES spectrum of the nanowire is larger than that of the thin film, which suggests a slight increase of the positive effective charge consistent with the increase of the negative effective charge on N ions implied by N K-edge spectra.

Figure 3 presents the Ga L3-edge XANES spectra of the GaN nanowire and thin film. Ga L3-edge XANES probes the unoccupied s and d derived states. Chiou et al. showed that the Ga L3-edge XANES spectrum of the GaN thin film is insensitive to the photon incident angle suggesting that the states contributing to the spectrum be primarily s-like. This result also agreed with calculations by Lawniczak-Jablonska et al., which showed that the states near the conduction band minimum do not have significant contribution from Ga d-orbitals. GaN is a relatively ionic material. If the Ga–N bond would be pure ionic without any covalent contribution, Ga 4s and 4p orbitals are expected to be completely empty. In this case, its three 4s and 4p valence electrons move to N, so that Ga and N become Ga3+ and N3– ions, respectively. In the real case, the Ga–N bond has a partial covalent character and the valence band of GaN contains a small fraction of Ga 4s- and 4p-derived states. The majority of the Ga 4s- and 4p-derived states are in the conduction band. Thus, the Ga 4s-derived states will contribute dominantly to feature A1. Since conduction s and p bands are wide bands, feature B3 and the spectrum in the higher-energy region may be attributable to a mixture of Ga 4s-derived states and other higher energy states which have s and/or d components projected on the Ga ion, for example Ga 5s and 4d and higher-energy Ga–N hybridized states. Figure 3 shows that the Ga L3-edge XANES spectrum of the nanowire almost coincides with that of the thin film, which may be attributed to the itinerant nature and environment insensitivity of these states.

Figures 4(a) and 4(b) display Ga 3d core-level and valence-band photoemission spectra of the GaN nanowires and thin film. The upper and lower insets in Fig. 4(a) are the SPEM images from the Ga 3d signal of the nanowire and thin film samples, respectively, measured from tophview. The maximum intensities are in the bright area corresponding to a bunch of GaN nanowires. The spectra shown in Figs. 4(a) and 4(b) are photoelectron yields from regions marked as A, B, and C of the nanowires and from regions marked as D and E of the thin film. The zero energy in Fig. 4(a) is chosen at the Fermi level, E_F, of the GaN thin film, which is the threshold of the thin film’s emission spectrum. The general line shapes of the valence-band spectra of the GaN thin film as shown in Fig. 4(a) agree with those obtained previously from the photoemission measurements of bulk GaN. There are two main features (A1 and B1) in the valence-band SPEM spectra, which were attributed primarily to the Ga 4p–N 2p and Ga 4s–N 2p states with the N 2p states dominating the top of the valence band. The main features A1 and B1 in the spectra of the nanowires are broader and less resolved and feature A1 apparently shifts to higher binding energies relative to that of the thin film. Figure 4(a) reveals that the intensities of the nanowire valence-band SPEM spectra are apparently smaller than that of the thin film. The valence-band SPEM intensity is proportional to the density of valence-band states, transition probability from the valence-band states to the continuum states, the photon absorption cross-section areas of electrons in the valence-
band states, and geometric factors. Since the initial states involved in the XANES measurements are core states, which are highly localized within the atoms, the relative intensities of the XANES spectra better represent relative densities of states than those of the valence-band XANES spectra. Then, the apparent depression of the SPEM intensity for the nanowires cannot be interpreted as a decrease of the density of states, transition probability from the Ga 3d states to the continuum states, the photon absorption cross-section areas of electrons in the Ga 3d states, and geometric factors. Since the integration of the density of Ga 3d states is 5 per Ga atom (i.e., the number of d orbitals) without spin degeneracy, which is the same for both the nanowires and thin film, the much larger Ga 3d SPEM intensities for the nanowires suggest that those factors unrelated to the density of 3d states be much larger for the nanowires than for the thin film. The broadening of the Ga 3d energy band stated previously indicates an increase of the degree of delocalization of the Ga 3d orbitals in the nanowires, which suggests that the cross-section areas of the 3d electrons in the nanowires are increased. The transition probabilities are also enhanced in the nanowires because the overlap integrals between Ga 3d orbitals and the continuum states are increased.

One of the authors (W.F.P.) would like to thank the National Science Council (NSC) of R.O.C. for financially supporting this research under Contract No. NSC 91-2112-M-032-015. C.C.C. wishes to thank NTNU (ORD92-3) for the support of this study.
